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Singularities in correlation functions for systems with defect lines and walls
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We consider a system consisting of a continuous solid-on-solid interface between two parallel defect
lines in the bulk and calculate its free energy and longitudinal (i.e., parallel to the defect lines) correla-
tion length. We find a nonthermodynamie singularity in the longitudinal correlation function, which was

also found to be present for an interface confined to a strip of finite width.

Statistical mechanics of systems with surfaces and de-
fect lines (planes) has generated much interest in the last
decade or so. Two-dimensional systems have proven to
be particularly accessible to such studies. ' Fisher and
Ferdinand made an extensive study of two-dimensional
Ising models containing a defect line. It was later shown
by Abraham that an interface bound to a defect line in
the bulk never depins although he previously demonstrat-
ed the existence of a pinning-depinning (wetting) transi-
tion if a row of weakened bonds is placed along the edge
of a semi-infinite Ising model. Defect lines also exhibit
unusual properties at the bulk critical point; in particular
McCoy and Perk discovered nonuniversal asymptotic
behavior for the pair-spin correlation function along the
defect line.

Interface models, which ignore bulk fluctuations, have
also proven to be useful in the study of pinning-depinning
phenomena. In particular, the solid-on-solid (SOS) mod-
el was found to mirror much of the behavior derived
through exact calculations of the two-dimensional Ising
model. 4 "

In this paper, we consider an SOS interface in a system
with two parallel defect lines in the bulk separated by a
distance R (see Fig. 1). The Hamiltonian, &, is given by

N —1

P&Ix I =X g ~x +,—x ~+ g V(x ),
j=—N

where x1 is the height of the jth column (see Fig. 1) and is
taken to vary continuously in the interval —~ &x & ~
with fixed end conditions x ~=x~=o. As usual, f3 is
the inverse temperature, P= I/k~ T. The effect of the de-

Ztt(x ) =(5„,( Ti T2 ) 'Ti 50) I

with

(T f)(x)= J e '" 'f(y)dy

( T,f )(x ) =e '"'f (x ),

(3)

(4a)

(4b)

and 6 is the Dirac 6 distribution centered on x.
By applying the usual methods for treating SOS mod-

els, as described, for example, in Ref. 8, which exploit the
fact that exp( —K~x —y ~) is the Green's function for a
free Schrodinger equation, Eq. (3) can be written

feet lines is embodied in V(x ) which is a symmetric
double-well potential with wells situated at x =+R /2 (in
this paper we shaH always take the pinning potential to
be the saine for both defect lines). The wells are assumed
to be sufficiently short ranged with V(x )~0 as ~x

~

~ oo.
Since the defect lines are situated in the bulk, one ex-
pects, from previous results, ' that the interface will al-
ways be localized to the vicinity of the defect lines so that
there is no pinning-depinning transition.

The probability that an interface, described by Eq. (1),
which is fixed at (

—N, o) and (X,O), passes through
(O, x ) is given by

Z„'(x)e

z, (o)

where Z&(x ) is the partition function for an interface
fixed at (0,0) and (X,x). This can be expressed in terms
of transfer integral operators in the following inner
product:

Xj

I I I I I I I I

J-1 J J+1

Z (x)= y q„(0)q„(x)1"„-',
n=0

where g„(x)is an eigenfunction, with eigenvalue X„,of
the transfer integral operator; that is, TiT2$„=~,$„.
These are eigenstates of the following Schrodinger equa-
tion:

x =-RI2

d2

dx
e ""i+re' q (x-)-=O.

n

FIG. 1. A typical SOS configuration. The dots represent the
defect lines.

It follows that —exp[ —V(x)] also has a double-well
structure, so we can now discuss the system in terms of a
one-dimensional quantum mechanical particle moving in
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FIG. 2. Wave functions for the two lowest-lying states of a
H2+-like system including (a) the bonding state, P+{x ), and {b)
the antibonding state, g (x ). The dots represent the nuclei and
clearly, in this case the potential is singular at the nuclear
centers.

FIG. 3. Schematic illustration of how the SOS string might
typically pin to the defect lines (rows of vertical bonds).

showing that the interface induces an exponential attrac-
tion between the defect lines. Equation (8) implies that

a double-well potential with wells separated by distance
R. This is a familiar problem particularly in the context
of (one-dimensional) models for the electronic states of
diatomic molecules such as the hydrogen molecule ion,
Hz+. For such a system, we expect to find at least two
(lowest-lying) bound states, It)+, with typical examples
shown in Fig. 2. The lowest state, i(I+(x) [Fig. 2(a)],
which is symmetric and has eigenvalue k+, can be
thought of as the bonding state in the H2+ analogy and
the next lowest, II'j (x ) [Fig. 2(b)], which is antisymmetric
and has eigenvalue A, , corresponds to the antibonding
state. One should remember that increasing A, is
equivalent to decreasing energy in the quantum mechani-
cal analogue.

The free energy per column, F, is given by

e asR
(@,+e )

which is the expected form and, in fact, similar to the re-
sults of Privman and Svrakic in the "nonwet" regime.

Let us now consider the exact results for the following
choice of potentia1:

e ' '=1+a5(x —R/2)+a5(x+R/2) . (12)

This would be appropriate if the SOS interface represent-
ed the long low-temperature contour in an Ising model
(with nearest-neighbor couplings K/2) with two rows of
weakened vertical bonds (see Fig. 3) with couplings Ed /2
and the rows separated by distance R. In this case, we
should put a = exp(K —Kd ) —1 and clearly a )0 since
Kd (K. Hence, for xW+R /2, Eq. (6) becomes

PI' = —lim [ lnZ2&(0) /2N ]= —in', + .
&~ oo

(7)
d2

dx
+K P„(x) =0,

n

(13)

A~=A, „+6+e + . . as R ~ac, (9)

We are also interested in the longitudinal correlation
length, g'~~, (characteristic length running parallel to the
defect lines). This might correspond to the expected
length which the interface stays bound to one defect line
before it jumps to the other (see Fig. 3). Since the matrix
element I" P* (x)xP+(x )dx is clearly nonzero, it fol-

lows that
g~~

can be expressed as

I/pl= I (A, . /A, ) .

Returning to the quantum mechanical H2+ analogy,
for large internuclear distance R, the bonding-
antibonding states can be understood as resulting from
tunneling between single atom states. On heuristic
grounds, such tunneling might typically lead to the fol-
lowing asymptotic degeneracy:

where the wave function g„(x) is continuous at
x =+R /2 but

y(1) + + y( I )

2 " 2 . " 2

(14)

The eigenvalue spectrum for this system is shown
schematically in Fig. 4. There is a continuous spectrum
of "scattering" states with 0 & A, & 2/K and only two
bound states f+, with I,+ ) A, )2/K which are solu-
tions of

i~a+ =Ka [1+exp( —~+R )],
where a+=[K(K—2/1, +)]' . For x )R/2, the bound-
state eigenfunctions are of the form

f+(x) o- exp( —a+x) . (16)
for su+ciently short ranged potentials, w-here 8+)0 and

is the eigenvalue for the lowest bound state of a sin-

gle isolated well (atom). If the pinning potentials are
sufficiently long ranged, then the exponential in (9) may
be replaced by an inverse power law but we shall not dis-
cuss this case any further in this Brief Report.

From (7), it follows immediately that

Note that although A, + (bonding state) is always present
for R )0, the second solution of (15), A, (antibonding
state), exists only for R )R, =2/K a ). This is interest-
ing, since it implies that the longitudinal correlation func-
tion is singular at R =R, . This singularity will show up
as a jump discontinuity in 8 gl/BR at R, with

—2/K= 'K a (R —R, ) as R~R,—+, (17)
PI'= —ink, „—e as R~~, (10)

although it has no thermodynamic consequences since
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Ka A,

Ka +k
(19b)

and

o. =Ka /A, (19c)

2 0
K P

FIG. 4. Schematic representation of the eigenvalue spectrum
plotted as a function of defect-line separation A. The

hatched region represents the continuum of scattering states
with 0(A, (2/E.

A, + (and hence the free energy) remains analytic. This
rather novel feature of these systems appears not to have
been noted before although it is reminiscent of behavior
found elsewhere. '

In fact, a similar singularity is also present when a con-
tinuous SOS interface is confined between two walls
separated by distance R. In this case, Hamiltonian (1) is
used but now x is constrained to vary continuously in
the interval —R /2 ~ xj. ~ R /2. With V(x ) given by Eq.
(12), the eigenfunctions, g„(x),of the transfer operator
obey the same Schrodinger equation (13) but with
different boundary conditions given by A,„g'„"(R/2)
=+(2a —A,„)Kf„(+R/2). For R ~ ~, one finds the
usual depinning transition at a =a, =1/K. For a )a,
(nonwet regime) and R finite, there are at most two
bound states whose eigenvalues (A, + & A, )2/K) are
solutions of

where x+ is defined as before. Again, although k+ exists
for all R &0 (provided that a &a„A, occurs only for
R &R,'=2/[K (a —a, )], leading to a similar singularity
in the longitudinal correlation function at R =R,'. Note
that R,' —+ ~ as the (semi-infinite system) wetting transi-
tion is approached, i.e., as a —+a, +.

We now return to the system with two defect lines in
the bulk. Taking R ~~ in Eq. (15), we arrive at Eq. (9)
with

I+(1+a K )'
K

(19a)

[A,+a+ —K(2a —A, + ) ] exp(~+R )

=+[A ~~~+ K(2a —A ~ )], (18)

o.(T,Kd )gi(T, Kd )=—,', (20)

which also holds for the continuous SOS interface
confined between two walls.
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Hence, we do indeed find exponential attraction between
the defect lines and exponential divergence of

g~~
as

R —+ ao.
Since, from (2), pz(x, O) ~itj+(x) for xW+R/2, then

Eq. (16) implies that p&(x, O) —exp( —2ox ) as R ~ oo for
x )R /2. This would suggest that we can identify 1/2o.
as some characteristic length scale (transverse correlation
length) and hence put pi= 1/2o. . Therefore, as R ~~,
g~~

—exp(R /2/i) which is similar to the finite-size scaling
result found by Privman and Svrakic in their model (in
the nonwet regime) which was itself in accord with gen-
eral expectations. ' Also, as a~0+ (i.e., Kd~K —),
where there are transverse fluctuations in the interface
across large distances, pi= 1/(K a)=R, /2. This then
leads to a simple scaling argument to account for the
singularity in the longitudinal correlation function;" the
singular behavior results from the onset of transverse
fluctuations spanning the distance between the defect
lines which occurs when R =2/i.

A similar argument accounts for the analogous singu-
larity found for the interface confined to a strip of finite
width except here we find that R,'=4/i. We may con-
clude that this singularity is a general feature of systems
containing walls and defect lines.

If, on the basis of comparing (11) to results obtained by
Fisher, ' we make the identification cr =2( T )/kz T where
X( T ) is the "interfacial tension, " we have
gi(T)X(T)/kii T= ,' which is, in fact—, exact for the two-
dimensional Ising model for all sub critical tempera-
tures. ' Note, however, that this comparison with Fish-
er' is strictly valid only for Kd =0 (or a =e —1), where
a strip of finite width decouples from the rest of the sys-
tem; otherwise, X( T ) would not be the interfacial tension.
In general, both cr and gi depend on "a" (and therefore
Kd ) although, interestingly, one still has the invariant re-
lation
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