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Based on a generalization of the equation which solves exactly the two-electron problem, we
have found a method which allows the nonperturbative, asymptotically exact solution for the
ground state of any finite number n of electrons in the low-density limit (n/N —+ 0) of the N-site
two-dimensional Hubbard model. The three-electron case is checked against the exact numerical
diagonalization and the total energy is shown by finite-size scaling to agree well, to leading order
of an expansion in powers of 1/ln N, with the asymptotic solution. We then indicate how to
solve for an arbitrary electron number, including both closed and open shells. The case of four
electrons is explicitly presented as an application. More generally, the closed-shell d=2 ground
state is a nondegenerate singlet with zero total momentum. Similar to d=1, all observables diR'er

from their U=O value by a correction which is U independent. Unlike d=l and similar to d=3,
however, the ground state is a linear combination of the unperturbed U=O Fermi sea with the
set of two-particle excitations. Moreover, the momentum distribution n(k) can be evaluated
explicitly, and shows a finite Fermi jump Z = 1 —4 ln2/ln (n/N). This result appears to
argue in favor of a Fermi-liquid-like behavior for d=2 in the zero-density limit n/N —+ 0. The
open-shell ground states display an interesting degeneracy between a nondegenerate singlet and
high-spin states.

I. INTRODUCTION

A large eA'ort is currently being devoted towards un-
derstanding the physics of two-dimensional (2D) strongly
correlated electron Hamiltonians, some of which may be
related to high-temperature superconductivity. In par-
ticular, there has been wide discussion of the possibility
that the 2D Hubbard model

H= t ) ct c—+V) n;ln 1
(i,j),o

could exhibit non-Fermi-liquid behavior, i.e. , a vanishing
"Fermi jump" even away from half filling

where ni, —(c„c„)is the momentum distribution func-
tion. In that case, the implication is that the system has
different quasiparticles from electrons and holes, and the
very interesting possibility of charge-spin separation, well
established for d=l, might arise for d=2.

While most of the ongoing effort is being concentrated
on the general case of large electron density, there is less
work in the low-density regime. Yet, there are several
reasons why the low-density limit is interesting. Firstly,
there is more hope for a solution. Secondly, low-density
is effectively the same as taking the continuum limit
(a ~ 0) at finite density, therefore all understanding
obtained will apply to that case, too. Thirdly, the re-
cent understanding obtained in d=l (Refs. 2—6) implies
a surprising behavior in that limit. In essence, in the
low-density limit there is a competition between weak

coupling —which should prevail for a short-range dilute
system according to standard Fermi-liquid methods-
and strong coupling, which is, for example, suggested by
the form of the two-electron problem. For d=l, strong
coupling actually prevails, and the effective interaction
renormalizes to infinity for all values of U in the low-
density limit. The question is then whether anything like
that could take place for d=2 too, or if instead a Galitskii-
type Fermi-liquid theory, as proposed earlier by Bloom9
and very recently by Engelbrecht and Randeria and by
Fukuyama, Narikiyo, and Hasegaw'a, will prevail in the
end.

One intriguing suggestion in this context came from
solving the two-electron problem in d=2. The answer in
that case was mixed. There is, as in 1D, a change of all
ground-state properties which is U independent, so long
as U is nonzero. This points to strong coupling. However,
the magnitude of these corrections is only logarithmic
with size, instead of power law as in d=l dimension. This
suggests that corrections might in the end be insufFicient
to wash out Fermi-liquid behavior at low densities.

The motivation for this work comes from the need to
further clarify this issue. We must develop a nonpertur-
bative method, which should cope with a strong-coupling
sit;uation, and be capable of calculating Z and detecting
whether it does or does not vanish in the low-density
limit. At the same time, we need a small parameter in
the theory, or else the many-electron problem is insoluble.
As it turns out, the relevant small parameter does exist,
and it is I/lnI for d=2 (I. is the linear size, I2 = N
the number of sites, hence I. ~ oo in the low-density
limit). In the I —+ oo asymptotic limit the ground state
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can be solved exactly for any number of electrons, with
very interesting consequences.

The detailed plan of this paper is as follows. First, in
Sec. II, we shall reexamine the two-electron problem. It
will be shown how, by introducing the scattering ampli-
tude, the problem can be solved in a way which is asymp-
totically exact for L ~ oo. In Sec. III we demonstrate
the use of the asymptotic method by direct application
to the three-electron problem. Three electrons in the
Hubbard model were considered earlier by Mattis, who
discussed in detail the negative-U case. In order to pro-
vide a direct visual check of the asymptotic results, we

have solved numerically the U & 0 three-electron prob-
lem, and shown by finite-size scaling that the two agree
well. In Sec. IV we generalize the asymptotic method to
any even number n of electrons (the generalization to odd
n, although straightforward, is not presented). Separate
descriptions are then provided for electron numbers such
that the noninteracting Fermi system is nondegenerate
(i.e. , closed shells in k space) in the same section, and
for the degenerate case (open shells), in Sec. V. In that
section the n = 4 case is presented as an exemplification.
Finally, a general discussion, including connections with
Galitskii s low-density theory, is presented in Sec. VI.

We call J the right-hand side of this equation, so that

(E —s, —sp )

By substituting this expression in that for J it is easy to
obtain a self-consistent equation of the usual type for the
energy i.e.

U )— 1

(E —s~ —si, )
(6)

E= F —2ZO— n(L)
0

The solution to this equation can be found analytically in
1D and asymptotically (large L) or numerically in d ) 2.
A possible approach to this problem was presented ear-
lier in Ref. 8. Our strategy in this paper will be to recon-
sider the asymptotic solution in a form which emphasizes

(a) applicability to all space dimensions, (b) the crucial
importance of the scattering amplitude, and (c) transfer-
ability to more than two electrons.

Let us write the diAerence AE between a generic eigen-
value E of Eq. (6) and the U=O ground-state energy 2so
as

II. TWO ELECTRONS
IN THE HUBBARD MODEL:

ASYMPTOTIC VERSUS EXACT SOLUTION

Let us consider two electrons in a d-dimensional hy-
percube of L" sites. The Hubbard Hamiltonian in mo-
mentum space is

where

k ko ko d g +
k)o' v v I

d

s„= 2t ) cos(—k;a)

and a is the lattice spacing. Since this Hamiltonian con-
serves the total momentum P, we limit ourselves in a
subspace in which P is fixed. A generic wave function is

I&) = ) L(q)c.'1",tlQ)

We may distinguish two classes of eigenvalues. In the
first class we include all the eigenvalues whose o.(L) goes
to zero when L ~ oo, while the second class contains all

the other eigenvalues. If the first class is not empty, then
it obviously includes the ground state, since a(L) ) Q

for the repulsive Hubbard model. We note that, by con-
struction, the interaction corrections to the eigenvalues
AE in the first class go to zero faster than the U = 0
excitation energies (which go like I/L~). Let us assume
that the first class is indeed not empty, and let us solve
Eq. (6) for a generic eigenvalue belonging to it. This
assumption will be justified a posteriori. We also assume
P = 0, as we want to find the ground state. In order to
solve the self-consistent equation let us extract from the
sum the term with g = 0, which is the most divergent
for L ~ oo. In this way Eq. (6) becomes

U U 1
d —2 d~(L)L" 'L" (a-E+ 2s. —2s.)

This function is the eigenvector of eigenvalue E if the
coefficients L(q) satisfy the Schrodinger equation

(E —&. —s .)L(q) =
Ld ) .L(p)

In the second term of the right-hand side, we can neglect
the interaction correction AE (we will show later that
this is asymptotically correct for d ) 2) with respect to

—co when taking the limit L ~ oo, thus obtaining

U 1 —Ua d

(~ ) (AE+ 2so —2s~)

1 p'ad —2

(2~)' (2g —2g, ) 2t J'0
'
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where kp m/a is an upper cutoff and fp is the low-

energy scattering amplitude, that is,

in 3D

by L (0) L /n(L) T. his implies that, inside the U =
0 Fermi surface (i.e. , just for the wave vector 0), the
momentum distribution is

n(0) 1 —un 2 (I.)

fp= &

27r 27r
ln(ka) ln I (10) while, just outside it is

n(2~/La, 0, 0, . . .) = un (L), (16)
(2m)2

La ln 1D

Equation (6) at last reduces to

V
a(L)L" 2- V d —2

2~ fp

whose solution is unique (i.e. , the first class for P = 0
contains only the ground state) and yields simply

r L i U
1+ U/(8~&)

cx(L) = 1 U 4~t
U~"
2t fp

, 8~2t

in 2D

in 1D.

L(q) = o.(L) J
2s, + n(L) L 2 —2~,

iffy=

0

otherwise .

Finally, the momentum distribution n(p) is given by

-(.) =
L'(o)+ ).L'(q)

q (go}
In the limit L —+ oo the second term in the denominator
behaves as L~, so that if a(L) ~ 0 (which is the case
in d ) 2), the behavior of the denominator is dominated

(14)

(»)
This general expression of n(L) shows that, when fp ~ 0
in the large size limit, i.e., in d & 2, the asymptotic limit
I ~ oo drives the system towards strong coupling (i.e.,
t'I -+ oo) and a(L) tends to a limiting value independent
of U, as long as V is not zero.

These results are consistent with the initial assumption
limL, n(L) = 0 only in d ) 2. In 1D (more generally
in d ( 2) n(L) is instead finite for L ~ oo. Therefore the
result (9) does not apply and the first class of eigenvalues
is empty. The exact solution of Eq. (6) in 1D is (for
large size and for the ground state) AE 2t(x/L)2 and
indeed does not belong to the first, class, as the previous
simple calculation predicts. We can now address the error
made in neglecting AE in Eq. (9). For d=2, for example,
inserting AE = 4m'/L ln L yields a further correction
of order 1/I2 ln I to AE. Therefore, neglect of AE in

(9) is asymptotically exact to order 1/L2 ln L (in general
f2/L2)

Besides the ground-state energy given by (7)—(12), we
also obtain an explicit form for the ground-state wave
function. By using Eq. (7), it follows that, for any di-
mension d, the "envelope function" I is

that is,

Z = 1 —(u+ u)n (L), (»)
where u and v are positive coefFicients. Inserting (12) we

get

L 2 in 3D

This result shows that the U g 0 momentum distribution
for L ~ oo reaches the V=0 value in d ) 2. In 1D this is
not the case. Exact solution of the Schrodinger equation
yields a(L) = 2tvr2, which inserted into (13) and (20)
gives the known result

( 2vr1 b 8 1
n

I
p=

La p x2 (412 —].)2

which is characterized by a jump across the Fermi surface
strictly smaller than 1. The main results of this section
can be summarized as follows.

(i) The two-electron problem is particularly simplified

by working in the asymptotic limit L ~ oo, and by focus-
ing on the asymptotic behavior of the ground-state en-

ergy shift AE. The asymptotic shift is a simple function
of the scattering amplitude, and so are all other ground-
state properties.

(ii) There is a similarity between d=l and d=2, in that
(for I ~ oo) all properties of two electrons are modified
by the presence of the interaction t'I by U-independent
terms. In other words, both cases are in the strong-
coupling limit. 8

(iii) By contrast, there is a similarity between d=3 and
d=2 in that the energy correction AE = L a(L) van-
ishes for large I faster than the noninteracting energy
level spacing. A remarkable consequence of this fact is
that the Fermi jump Z ~ 1 in the asymptotic limit, for
d & 2, but not for d ( 2.

III. THREE ELECTRONS

Having solved the two-electron problem, the next ques-
tion which arises is to what extent the behavior just de-
scribed is stable or instead radically modified by the pres-
ence of a third electron. Mattis considered this problem
long ago, in his study of the pair stability for attractive
I-Iubbard U ~2

I et us consider three electrons in the subspace of to-
tal momentum P = (&, , 0, 0, . . .) (in d dimension). A
generic wave function is

i@) = ) L(q, P —q —k, k)cttct „ tctti0) . (20)
qk

The coefFicients L must be antisymmetric in the first and
third variable. The Schrodinger equation for the L's is
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U(E —s —s~ „—s„)L(q, P —q —k, k) = „) [L(p, P —p —k, k) —I (p, P —p —q, q)], (21)

whose solution is

L(q, P —q —k, k) =

where

J(k) —J(q)
)

(E ~Q sP —g-k sk)
(22)

J(k) =
& ) L(q, P —q —k, k) .

U

Substituting the expression of L in that of J we obtain
a homogeneous set of equationsi~ (instead of a simple
self-consistent equation as for two electrons),

J(k) = J(k), )
q p P—p —k k

U ). J(q)

q
(E sg ~i —~ i si)

which can be formally written in matrix form

(24)

J = UT(E) J (25)

Together with (24), this equation defines the operator
T(E). The rows and columns of this matrix are labeled

by the k vector of the third particle only. The third
particle is a "spectator, " while the other two are getting
virtually excited. The final ground state is, if n(L) -+ 0,
a linear superposition of the unperturbed Fermi sea (FS)
plus all these doubly excited states [which would not be
the case if n(L) g 0 for L ~ oo]. The crucial point
which will make the asymptotic solution very easy, is, as
it will turn out, that the spectator particle belongs to the
unperturbed Fermi sea with probability one, as L —+ oo.
This makes the (otherwise infinite) matrix T(E) finite
and very small, as we now show.

The self-consistent set of equations (25) will only
find solution when E corresponds to an eigenvalue of
Schrodinger equation (21). We now show how the asymp-
totic procedure of Sec. II can be applied to the ground-
state problem. Let us define as usual n(L) = (E Eo)I—
where Eo ——2c'0 + si, t[ 6d+—(2m)2/L2] is the U=O
ground-state energy of three electrons. If we assume
that the ground state satisfies the asymptotic condition
limI. n(L) = 0, then it is possible to show, using Eq.
(24), that the matrix T(E) has a part T~'& which dom-
inates for L —+ oo. I et us consider first the off-diagonal
elements of the full T(E), which are of the form

L (E —E'~ —6rk —'8 k )

L~2 "&/a(L) if (k, q) = (0, 0), (0, P), or (P, O)
~

~I (2—d) otherwise.
(26)

Hence, if n(L) ~ 0, the upper case, when all momenta
belong to the unperturbed Fermi sea (FS) (which consists
only of the two wave vectors 0 and P), dominates the
second. If we extract from the diagonal elements the
dominant terms in the sense of Eq. (26), the remaining
terms may be used to define a function I(k)

d-2

2t fo
I(k) = L)-

~gFs (E sQ sp —g k sk)

the last equality holding only for small k. For small wave
vectors this function is of the same order in L as the
leading terms of Eq. (26). Asymptotically we obtain the
dominant part of T(E), which is

(s)

1
( (L)L~ ~

—I(o)

1
n(L)L" ~

0

n(L) I.
1 „2—I(P)

-I(k.) 0

0 0 ~ ~

0 e ~ ~ (27)

—I(k4) 0

~ ~ ~

~ ~ ~
~ ~ ~



NONPERTURBATIVE RESULTS FOR FEW ELECTRONS IN THE. . . 1037

where some ordering of the k's is implicit in order to
change a matrix of dimension (L x L x L x L) in one
(L2 x L2). In Eq. (27), the first 2 x 2 block represents the
two states where k = 0, P, that is, precisely that where
the spectator particle belongs to the unperturbed Fermi
sea. As one can see, all couplings to other spectator states
I(k;) are exactly zero in the asymptotic limit. Equation
(24) now becomes j = VT&') j in d ) 2 and T&'& j = 0
in d ( 2. The solution of these equations (in d = 3 we
take V ~ oo for simplicity) is

~—11.4

~—1 1.6

—1 1.8
J(0) = —j(P), J(k) = 0 if k g 0, P, (28)

4t o
( )=(L), , (29) 10 15 20

Linear size L

In d ) 2 Eq. (29) is compatible with the initial assump-
tion liml. ~ n(L) = 0. On the contrary, in d ( 2, the
result does not satisfy that assumption, exactly as we
found for two electrons.

The d = 2 three-electron ground-state energy is thus
predicted to be, according to Eq. (29)

FIG. 1. Ground-state energy of three electrons on a 2D
L x L square lattice vs L. The points are the exact numerical
result for U = 10t (black squares), U = 100t (open squares),
and U = 1000t (starred points). The solid curve is the asymp-
totic solution Eq. (28), while the dashed curve is the U = 0
ground-state energy.

t (2z ) 16m.t
12 ln L, & (30)

The persistence of the logarithmic term already found
for two electrons (however, a factor 2 larger), suggests
that the essential physics of that case is stable against
addition of a third electron. From Eq. (20) it is easy to
derive the expression of the momentum distribution in
terms of the function j(k), i.e. ,

J(q) —J(k)
q ( sk sQ sp —q-k f

level we have also performed a finite-size scaling of the
numerical results. I et us notice that, according to our
asymptotic solution, the quantity

n(L) ln L = (E —Eo)L ln L

is predicted to be equal to 8zt + 0(1/lnI). In Fig. 2
we have plotted the right hand side of Eq. (33) versus
1/ln L for the exact numerical results. The solid lines

nkvd
—2 ) . ( J(q) —J(P —q —k) t

q ( sk ~'0 sp —g—k)
(32)

I I I I

J

I I I I

I

I I I I

[

I I I I

[

I I I I

«+- A = Bvr

We calculate the momentum distribution simply substi-
tuting Eqs. (28), (29), and (30) into Eqs. (31) and (32).
Again the result does not diA'er substantially from the
two-electron problem. In fact it is easy to convince our-
selves (although we will not show in detail here) that
the momentum distribution again difFers by terms of or-
der n2(L) from the unperturbed n(q) = 1 only when

q = 0, P, while n(q) = 0 otherwise.
The three-electron Schrodinger equation (24) has also

been solved numerically in order to provide an indepen-
dent check of the asymptotic solution given above. The
numerical solution is obtained by exact diagonalization
of (24) for square lattices of size 8 x 8, 9 x 9, . . . , 23 x
23, 24 x 24. In Fig. 1 we have plotted the asymptotic
ground-state energy of Eq. (30) versus linear size L, to-
gether with the numerical solution of (24) for V = 108
(black squares), U = 1008 (open squares), and U = 10008
(starred points). The agreement at larger sizes appears
to be quite good. In order to get to a more quantitative

22

20

I

18

14
0 0.1 0.2 0.3

1/1n(L)
0.4 0.5

FIG. 2. Finite-size scaling of the asymptotic solution Eq.
(28). We have plotted the quantity (E—Eo)L 1n L vs 1/ 1n I
The points are the numerical results. The curves are fittings
by using a three-parameter function (E —Eo)L 1n L = A +
B/ln L + C/In L The isolated . point at 1/ln L = 0 is the
asymptotic result A = Sa, to be compared with the zero
intercepts of the three curves.
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are a fitting of Eq. (33) with a three-parameter function

(E —Ep)L ln I = A+ B/in L+ C/ln I
suggested by the asymptotic expansion. Even if the exact
results are not in the asymptotic regime (I/ln L ~ 0),
the Atted parameter A, as shown by the zero intercept
of Fig. 2, is not far from the predicted asymptotic value
8n (the isolated black point). In conclusion, we believe
the remaining error to be due to slow convergence of the
expansion (34), and 8x to be asymptotically exact.

IV. GENERALIZATION TO ANY FINITE
(EVEN) NUMBER OF ELECTRONS

We have shown that also the three-electron problem
can be solved using as an asymptotic assumption that
n(L) = (E~gp —EU p)I ~—0, at least in d ) 2. The re-

suit is compatible with the initial hypothesis if the size of
the system is very large, and it agrees quite well with the
exact solution. In this section we generalize the method
to any number of electrons n and solve approximately
the problem when the V=o Fermi surface is not degen-
erate. I et us suppose to have n electrons in a subspace
of P total momentum (for simplicity n is taken even). A
generic wave function can be written as

~I'„) = ) L(ki, k2, . . . , k„)ck )c„) . c„)~0) .
kykg .

(35)

The coefficients L are odd functions with respect to the
interchange of two odd (even) momenta. Notice that L
depends only on n —1 momenta because of the conser-
vation of the total momentum. The eigenvalue equation
is

(E—sk, —. . —sk )L(ki, . . . , k„) = ) L(ki+q, k2 —q, ks, . . . , k„)+L(ki+q, k2, ks, k4 —q, . . . , k„)+

(36)

where the dots correspond to all the possible pairings
of momenta of one spin-up and one spin-down electron.
Analogously to the three electron problem we define a
function of n —2 momenta

J(ks, . . . , k„)

satisfy, turns out again to be of the general form

J=VT(E).J. (39)

The main advantage in working with the J rather than
the L, is that the asymptotic expansion for large system
size L ~ oo is far more straightforward. To solve the set
of equations we assume again that

„) L q P —q —) k;, ks, . . . , k„
E = Ep +, where lim n(L) = 0 .

n(L)
L2 L~oo (40)

(37)

J(ks, k4, . . . , k„) —J(ks, kg. . . , k„) + . .

(E —s —. —s )ky k~

which allows rewriting the coefficients L as

L(ki, k2, ks, . . . , k„)

This condition is fully compatible with zero density
(n/L") for L —+ oo (if the density were finite in the ther-
modynamic limit, the interaction correction to the total
energy would instead be finite and proportional to the
number of electrons). As in the case of three electrons,
the matrix T(E) has a singular part T(E)('1 which in-
cludes terms like

j2

(38)

The self-consistent set of equations that the J's have to and

(E —s — - —s )ky kn n(L)

) b q'+q+) I; —P
g ~&gFs ( j—3 ) (E s x ~~ sk3 k»)

a d —2

2tfp '
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where all the k's belong to the V=O FS. As a first ap-
proximation we just solve the equation T(E)('l.J = 0 (as
before, that implies U ~ oo in 3D, but not in 2D). This
again requires that the only J dN'erent from zero are
those whose arguments k are part of the Fermi sphere
of the unperturbed n electrons. [Their number X~ is
(n/2)2 for nondegenerate closed shells, counting the pos-
sible pairings of diAerent spin states in the Fermi sphere.
In the case of open shells this number is bigger, because
the pairings involve all the degenerate possibilities which
can be realized at the outer shell of the Fermi sea.] In
general, the equations these J must satisfy look like an
eigenvalue problem of the type seen earlier,

M. J = AJ, (41)

where A determines the unknown n(L) through

('cr(L)a" 2I"
A=

/

2tfp ) (42)

and the ground-state energy expressed as a function of A

1s
A2t foE=EO+ ~ ~ ~.a (43)

( 1
—1

1

—1 1 —1
1 —1 1

1 —1

—1 e

1 —1
~ ~ ~

~ ~ ~

~ ~ ~

(44)

of dimension (n/2)z x (n/2)~. The case in which the
Fermi surface is degenerate (open shell) is a little bit more
complicated. Let us suppose that it, is m-fold degenerate.
First we construct a block matrix made up of m boxes like
(44) each of which is defined in a particular degenerate

In (41) the matrix M is independent of E and has dimen-
sion ¹&.The method for constructing M is very simple
and can be deduced by inspection of (36) and by using
the symmetry properties of the I's.

For the sake of physical clarity, we recall again t, he
significance of the rows and columns. In this matrix M,
each vector represents a given configuration of the n —2
spectator electrons, while the remaining two are getting
into a doubly excited state. Similar to what happened for
three electrons, it turns out that, if o.(L) ~ 0 for L ~ oo
(i.e. , first class not empty), then in the limit no spectators
are alloised to lie ou/side of the unperturbed FS. Since the
number of ways N& in which the spectator electrons can
be assigned inside the FS is finite and small, the matrix
M is always very simple, and can be diagonalized exactly.

First, suppose the U=O Fermi surface to be nondegen-
erate (closed shell). Then M is the matrix

TABLE I. Values of A and of the total spin for the degen-
erate ground state of 4, 6, and 8 electrons.

No. of electrons

7
15

Total spin

0,1,1
0,2

0,1,1

Fermi surface. However, some rows (columns) of different
boxes correspond to the same J component. For this
reason we move these rows (columns) in order to let them
coincide with just one. The final matrix will look much
more complicated than (44), and it will generally be more
difIicult to diagonalize. In this case we expect that the
interaction partially removes the degeneracy. In Table
I we show the value of A and the possible (degenerate)
values of the total spin of the ground states of 4, 6, and
8 electrons.

For the nondegenerate case, however, the solution is
very simple. In fact the matrix (44) has only one phys-
ical solution, i.e. , A g 0, which is A = (n/2) . For this
solution the ground-state energy is

(45)

and

—1

1
—1

(46)

nkvd
— ) L

I
k P —k —) k;, ks, . . . , k„

(kp, . . . ,k~) k i=3 j
(47)

for spin-up electrons, and analogously for spin-down
ones. The asymptotic solution of Eqs. (45) and (46) im-
plies that the only L's difI'erent from zero are

where, as was said before, the components difI'erent from
zero correspond to the spectator electrons belonging to
the unperturbed FS.

The expression of the momentum distribution can be
easily derived from (35) and (38). Apart from a normal-
ization factor, it is

L'((FS —k; —k,'+ k. + k'. )) =
s~, + sk. + sk. )

= A(k;, k';, k„k',),



M. FABRIZIO, A. PAROLA, AND E. TOSATTI

where (FS}means the set of k vectors defining the Fermi sea, the k, are wave vectors inside the FS while k, are
outside, and the prime refers to down-spin electrons. Notice that k;+k'; = k, +k', . As was said before, the asymptotic
ground state is a linear combination of the unperturbed Fermi sea with the entire set of two-particle excitations. Let
us consider first the case k&FS. Then

ni, t = I. ((FS})+

k, ,k', gFS

k, )k;QFS&k, gk

k. , k' gFS
L ((FS —k, —k' + k, + k', })b(k; + k,' —k, —k', )

) A(k;, k', , k„k', )b(k; y k',. —k, —k', )
k, k' gFS

k', gFS

) A(k, k', , k. , k'. )b(k+k', —k. —k'. ) = K+0 —:-(k)
ko, k' gFS

(50)

which also serves as a definition for 0 and:-(k) . When kgFS then

k;,k', qFS

n„l = ) L'((FS+ k+ k'. —k; —k,'})6(k;+k',. —k —k'. ) = =-(k)+,
k' gFS

(51)

where the + or —refers to kg'FS or k&FS, respectively.
It is easy to see that

n 1:-(k)- —=-(k)+ ——)
~Fs (2E'g —2sf )

and

) n„g ——(4+ 0) —0
kqFS

(52) (57)

(the factor nj2 counts the dawn-spin electrons, i.e, k';,
inside the FS). This means that

nkvd
——0 .

kgFS
(53) =-(k) k~(~-2), g

Jo (58)

If we properly normalize the momentum distribution, i.e. ,

we divide by
and that the jump Z in the momentum distribution scales
to one when kf ni~"/L ~ 0 as

nk 1'

= 4+0,

then we find

1 —Z = 1 —(ng pt
—np +p1)

~2(g —9) g (kf a) in SD
ln 'L, in 2D . (59)

for kEFS. Outside the Fermi surface, instead

(56)

To obtain (55)—(56) we have assumed A » Q. This is
actually true in our approximation (i.e. , L ~ oo while n
is finite), because 0 n = (k), where, as we are going
to show, " (k) L4, so that 0 I,4 « 6 ( I41n L
in d = 2 and Ls in d = 3). It is possible to evaluate
the asymptotic behavior of nk close to the Fermi surface.
In this case, orders of magnitude are

V. FOUR ELECTRONS,
AND OTHER OPEN SHELLS

In this section we solve the asymptotic set of equations
(41) for an open shell, in particular two extra electrons
added to an otherwise closed shell. As an exemplification
we consider first the case of n = 4 electrons. A generic
S, = 0 wave function of four electrons is

~@) = ) L(ki, kg, ks, k4)c„)c„tc„~c„)~0), (60)

~h~~e L(ki, k~, ks, k4) = —L(ks, k2, ki, k4) = —L(ki,
k4, ks, k2). The Schrodinger equation for the coefficients
is
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U
(E —s„—s„—s„—s„)L(ki,kz, ks, k4) = ) [L(ki + Z, kz —q, ks, k4) + L (ki + Z, k2, ks, k4 —Z)

If we define the function

U
J(ki, k2) =

d ) L(q, P —g, ki, k2),

+ I.(ki, k2 —q, ks+ q, k4) + L(ki, k2, ks+ g, k4 —cl)] .

(61)

(62)

then the coefFicients I are

J(ks) k4) —J(ksi kg) —J(ki) k4) + J(ki, k2)
1) 2) 3) 4 E —ck1 k2 k3 k4

The self-consistent set of equations the J's have to satisfy is

U 1
J(ki, k2) = J(ki, k2) d )Id

q Gk 1 6k Eq Ep k k 2 q

U ~ . J(ki, g) + J(q, kq) U ~ J(q, P —g —ki —k2)
rd ~- +

E —6' E —E' —E' —E' —6'
q k1 k2 q P-k1 —k2 —q q k1 k2 q P—k1 —k2 —q

Let us define the functions

U
A(ki i kg) ks, k4) = I"E —ck1 k2 k3 k4

(65)

I(ki, k2) = — „)U 1

E —E'k —E'k —6'q —E'~

d —2

2t fo
(66)

and the wave vectors (for simplicity we work in 2D)

0=(0,0), 1=io, i, 2= 0, —--i, 3=i,OI, 4=I-( 2x & 2n-) t'2z l ( 2'
q 'Lap ' ' La) ' qLa' ) ' ( La'

I et us look for the P = 0 ground state (for P g 0 the problem becomes electively closed shell, and is solved as in
the previous section). The unperturbed Fermi sea for total momentum zero is fourfold degenerate. If we assume the

asymptotic condition n(L) = (E —Eo)L~ ~ 0 where, as usual, Eo ——2so+ 2m, is the U = 0 ground-state energy, then
the value of A is more singular when the arguments belong to one of the possible Fermi surfaces, i.e.,

A(0, 0, 1,2) = A(0, 0, 2, 1) = A(0, 0, 3,4) = A(0, 0, 4, 3) = U

o(L) ' (68)

while in the other cases A does not diverge when L —+ oo. As it happened for closed shells, just, the J whose arguments
(the two spectator electron momenta for this n = 4 problem) belong to the degenerate Fermi surfaces are nonzero,
to leading order. The number of spectator configurations is 13. The peculiarity of the general case n = no (closed
shell)+2 (of which n = 4 is an example), is that the spectator configuration of the electrons which belong to the no
Fermi surface mixes with all the others. I et us show how this happens for n = 4. We can write explicitly the set of
Eq. (64) as

J(0,0) = J(0, 0)[—I + A(0, 0, 1,2) + A(0, 0, 2, 1) + A(0, 0, 3, 4) + A(0, 0, 4, 3)]
—A(0, 0, 1,2) [J(0, 2) + J(1,2)] —A(0, 0, 2, 1)[J(0,1) + J(2, 0)]
+ A(0, 0, 1,2)J(1,2) + A(0, 0, 2, 1)J(2, 1) + A(0, 0, 3, 4)J(3,4) + A(0, 0, 4, 3)J(4, 3),

J(0, 1) = J(0, 1)[—I + A(0, 1,0, 2) + A(0, 1,2, 0)] —A(0, 1, 0, 2)[J(0,2) + J(0, 1)]
—A(0, 1,2, 0)[J(0,0) + J(2, 1)] + A(0, 1,2, 0)J(2, 0) + A(0, 1,0, 2)J(0, 2), (69)

J (1,2) = J(1,2)[—I + A(1, 2, 0, 0)] —A(1, 2, 0, 0)[J(1,0) + J(0, 2)] + A(1, 2, 0, 0)J(0, 0) .
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All the other ten equations can be easily obtained by these ones. Again, since both A and I are logarithmically
divergent we can set the left-hand-side terms equal to zero. Then we can divide the equations by the term U/n(L) of
Eq. (68), so that the resulting set of equations look like an eigenvalue problem, where the eigenvalue is

I n(L)
A 2tfo

(70)

and the 13 x 13 matrix M is

4 —1 1 —1 —1 1
—1 1 —1 1 0 0

1 —1 1 —1 0 0
—1 1 —1 1 0 0
—1 0 0 0 1 —1

1 0 0 0 —1 1
—1 0 0 0 1 —1
—1 0 0 0 0 0

1 0 0 0 0 0
—1 0 0 0 0 0
—1 0 0 0 0 0

1 0 0 0 0 0
k —1 0 0 0 0 0

—1 —1

0 0
0 0
0 0
1 0

0
1 0
0 1

0 —1
0 1
0 0
0 0
0 0

1 —1 —1 1 —1)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

—1 1 0 0 0
1 —1 0 0 0

—1 1 0 0 0
0 0 1 —1 1
0 0 —1 1 —1
0 0 1 —1 1)

(71)

Qq
1

0

k o)

(
0
0
0
00, J3 ——

1
—1

1
—1

1
4-1)

Oq

—1

1

1
—1

1
—1

1
—1
—1

(72)

J~ and J2 correspond to triplet states, while J3 is a sin-
glet, as is seen by direct inspection of the relative sign
of, e.g. , J(0,1) [second from top in (72)], and $(1,0) [sev-
enth from top in (72)]. The eigenvector corresponding to
A = 7 is

The first row (column) corresponds to j(0,0), while
the others in order to J(0, 1), j(2, 1), J(2, 0), J(0, 2),
J(1,2), j(l, 0), J(0, 3), j(4,3), J(4, 0), J(0,4), J(3,4),
and J(3, 0). We see that matrix has the form we antici-
pated in Sec. IV. However, in the present open-shell case,
the (0, 0) spectator configuration mixes with all others
The matrix can be easily diagonalized to find two physical
(i.e. , nonzero) eigenvalues, A = 3 (threefold degenerate),
and A = 7 (nondegenerate), and nine unphysical A = 0
eigenvalues [unphysical eigenvalues of M are generally
caused by the transformation from Eq. (61) to Eq. (63),
which is singular for A = 0]. The A = 3 eigenvectors are

1
—1
—1

1

J4 —— —1
—1

1
—1
—1

1
—1

(73)

and is a singlet.
We note that the lowest singlet J3 has a rotational d

symmetry, while the highest J4, s symmetry.
We further note that for the lowest eigenvalues, Jy,

jz, js, the component J(0,0) is zero. This result, in-
serted in Eq. (63) for the coefficients I, implies that in
the lowest-energy states, it is not possible to excite a pair
of electrons keeping the "core" of the Fermi sea frozen. In
other words, the coe%cient of the states with two spec-
tator electrons at k = 0 and the other two excited out
of the FS are rigorously zero in the four-electron ground
state.

The results just found for n = 4 can be immediately
generalized to the case n = no (closed shell) ~2-electrons.
Let us suppose that there are 2m degenerate states in the
outer k-space shell. The matrix M will be similar to the
matrix (71), the only differences being that now there
are 2m boxes of dimension [(n/2)2 —1] x [(n/2)2 —1]
instead of 2 . 2 = 4 boxes of dimension 3 x 3, and that
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the first diagonal element is 2m instead of 4. The first
(top left) M matrix element corresponds to the j whose
arguments belong to the "core," that is to the case where

n, spectator electrons rigidly occupy the (n —2) closed-
shell FS. It is easy to show that the lowest eigenvalue
is

and it is 2m —1 times degenerate. Of the lowest eigenvec-
tors, m are triplets and rn —1 d-like singlets. As before,
for all these eigenvectors the component corresponding
to the J of the "core," is zero. This again implies that
the ground state has exactly no components in which the
spectator electrons are in the "core." The other nonde-
generate eigenvalue is

n'
A = —+(2m —1)

4
(75)

n'
4

(76)

which is higher than the true 2m —1 degenerate ground
state (74).

VI. DISCUSSION, AND CONNECTION
WITH FINITE DENSITY

We have presented a solution for the ground state of n
electrons in the d=2 and d=3 Hubbard model. The re-
sults are simple, analytical, and formally exact. However,
they are asymptotic in the sense that only the lowest-
order term of an ordered expansion in powers of 1/ ln L
(for d=2) and I/L (for d=3) is obtained. In particular,
we have not yet shown that the coe%cients of the higher
orders in this expansion are all finite, for any finite num-
ber of particles n. With this only provision, which we

hope to be able to clarify in the future, the results pre-
sented are exact.

We obtain the ground-state energy, total momentum,

and corresponds to an s-like singlet (in this case the com-
ponent corresponding to the J of the core is 2m times
bigger than the others).

For the sake of completeness, we report here also the
ground-state energy for P = 2kf + 4n/La. In that case,
we have a singlet with

Eo + n2zpta3, (77)

which is exactly the first-order correction obtained by
Galitskii. 7 In the same way, it is not diKcult to realize
that the momentum distribution as given by Eq. (55) and
(56), coincides with the general expression obtained, for
example, by Belyakov.

In d=2 the extrapolation to finite density is not so
straightforward, simply because the low-energy limit of
the scattering amplitude Eq. (10) is not a constant. The
problem in d=2 is that we have no unique prescription
to extrapolate fs 1/ln L to finite density. In order for
this question to be answered, we need the corrections to
next order in fo both for the ground-state energy and the
momentum distribution. We show in the Appendix how
this can be achieved for the ground-state energy, which
has the form

1 1
L" ) v(k;, k';k;, k') ' (78)

where the function y(ki, k2, ki&kq) (ki, k2CFS) is de-
fined as

syrruaetry, wave function, and momentum distribution.
For a general closed shell in k space (i.e. , n = 2, 10, 18, . . .

in d=2) the ground state is a P = 0 singlet, with energy
given by Eq. (45). The situation is considerably richer
for open shells, which display degeneracy. However, the
basic physics should converge to that of closed shells for
large n, at least to within correction of order n

The momentum distribution n(k) for the closed-shell
case yields a Fermi jump [Eq. (59)] which, modulo U-
independent logarithmic corrections, scales asymptoti-
cally to 1 for d=2. This result foreshadows a Fermi-liquid
behavior at very small density, which is what Bloom,
Engelbrecht and Randeria and Fukuyama, Narikiyo,
and Hasegawa have claimed.

In fact, if we assume, reasonably but without proof,
that our results can be extrapolated to small but fi-
nite densities p = n/(aL)", we obtain formally the
same ground-state energy and momentum distribution
obtainable by T-matrix technique in the low-density
limit. . The analogy between finite n, p ~ 0 and
finite p is direct in d=3, where the low-energy limit of
the scattering amplitude is a constant. In this case, by
substituting fo ——4+a in Eq. (45), we obtain

1
y(ki, k2,.ki, k2) = — „) b(q+ q' —ki —k2)

~,~'g'FS + E'k —E'
(79)

One can immediately see that Eq. (78) coincides with the ground-state energy obtainable by the T-matrix technique.
The function y(ki, kq, ki, kq) is in fact similar to the low-density limit of the T matrix, and at leading order its
analytical expression is

g(P/2 + k, P/2 —k; P/2 + k, P/2 —k) = — In(kg a) + —ln
1 j 1 [(kg + P/2)z —k'] l

4~ 2 k~2
(80)
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Equation (80) diverges both for kga ~ 0 and for P = 0
and k = kJ . Hence there is strictly no contribution to E-
Eo of Eq. (78) from backward scattering. 14 However, the
error made by ignoring this cancellation, i.e. , by ignoring
the second term in Eq. (80), is small, of order 1/ ln (kg a).
Therefore, if we are only interested in the first order in
1/ln(k~a) corrections, then we can consistently take

breakdown of Fermi-liquid theory in such a model.
The question of a possible phase transition to a state

with totally diferent properties at finite densities, even
quite small, remains of course untouched. These issues
are fully open and will require more work.

1
y(ki, kg., ki, k2) — ln(ky a)
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This is the same expression we would have obtained
by simply substituting fo ——2'/ln L in Eq. (45) with
—2z/ ln(k~a). The same consideration holds for the mo-
mentum distribution, whose jump at the Fermi level
turns out to be

4 ln 2

ln (pa2)
(83)

Therefore, unless some yet undetected change of regime,
or phase transition, takes place precisely for n ~ oo,
there is every reason to believe that the very low-density
Fermi-liquid results are correct also in d=2. We stress in
particular that the formal coincidence with our extrapo-
lated results for finite electron numbers of Eq. (45) was

by no means expected from the start, because our ap-
proach is nonperturbative. It is interesting to note, as
a side remark, that also in d = 1 the p = 0 point is

nonsingular, so that even there, the finite n, n/L" ~ 0
results extrapolate smoothly into the finite-density, small

p regime.
It is also instructive to discuss how dimensionality af-

fects the low-density behavior of interacting electrons.
Oill' basic assumpfioll (40), that tile iiltel'actloil col'1'ec-

tion to the ground-state energy is of higher order with
respect to the bare kinetic energy level spacing, gives a
consistent solution to the Schrodinger equation, only for
d & 2. At the same time, the independence of the low-

density behavior from the strength of the interaction U,
occurs only for d ( 2. These two inequalities suggest
that d=2 is the marginal dimension separating strong
coupling (possibly always non-Fermi-liquid) for d ( 2
from the conventional perturbative Fermi liquid which
applies for d ) 2. In other words, the whole region d & 2
might be governed by a kind of Luttinger-liquid fixed
point while interacting electrons in high dimensionality
always belong to the usual Fermi-liquid regime. 8'such
a conjecture is true, it implies that particular care is re-
quired in the two-dimensional Hubbard model and that
leading order results, as Eqs. (82)—(83), might give only
a partial answer to the delicate question of the possible

APPENDIX

M J =L" n(L)y J, (A1)

where M and J are the same as in Eq. (41), while y
is a diagonal matrix in the "spectator electron" configu-
rations of the unperturbed FS, whose diagonal elements
are

In this appendix we address the question of a possible
generalization of our results to small but finite density
in the thermodynamic limit. The problem does not arise
in d=3 where the low-energy limit of the scattering am-
plitude is a constant. In fact, in d=3, the ground-state
energy as given by Eq. (45) substituting fo with 47ra,
and the expression of the momentum distribution given
by Eqs. (55) and (56) coincide exactly with the result
Galitskii obtained in 1958 for a dilute system of electrons
interacting through a strong short-range repulsion7 (see
Ref. 13 for the expression of the momentum distribu-
tion). In d=2 the generalization is not straightforward
because the low-energy limit of the scattering amplitude
does depend on the energy. The consequence is that the
simple result (45) cannot be extrapolated at finite den-

sity simply because we have no a priori prescription to
extend fo ——2'/ln L to finite density. This problem can
be solved by a little refinement of our calculations, which
amounts to evaluating corrections up to second order in

1/ln L. The second-order correction to the ground-state
energy, which is proportional to 1/ln L, can, as usual, be
obtained simply through the first-order correction to the
eigenvector J given by Eq. (46). Unfortunately, the next-
order correction to the momentum distribution (propor-
tional to 1/ln L) is more complicated, because it in-

volves the second-order correction to the eigenvector J,
which is harder to evaluate. For simplicity, let us con-
sider only the next-order correction to the ground-state
energy. It is not difficult to show that Eq. (41) is the
large size limit of another equation, namely
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1 1
z(ki, kz, ki, kz) = — „) b(q+ q' —ki —k2)

FS ~k, +&k,
(A2)

L
1

kI )kg QFS
(A3)

From Eq. (Al) it is also possible to calculate the second-
order correction to the components of the eigenvector J
corresponding to the spectator electron configurations in-

In Eq. (A2) ki and kq are the two states (one for a
spin-up electron, the other for a spin-down) which be-
long to the unperturbed FS and are going to be excited
to higher states q, q'. In other words, all electrons inside
the FS are spectators except ki, T and k2, $. In the large-
size, zero-density limit I —+ oo, n/L ~ 0, the matrix
L~ ~n(L)y ~ AI where I is the identity operator and A

has the same meaning as in Eqs. (41) and (42), so that
we recover all the results already quoted. It is impor-
tant, however, to retain the full momentum dependence
of y. It is then easy to show that the solution of Eq.
(Al) (we restrict to closed shells, because the differences
with the open-shell case is expected not to survive in the
thermodynamic limit) is now

side the FS. This is, however, not enough, because other
spectator configurations are also allowed at that order (in
particular those which refer to three- and four-particle
correlations), and Eq. (Al) is not sufhcient to calculate
these corrections, unlike as was the case for the energy.
From Eq. (A3) the ground-state energy turns out to be

1 1

ci

(A4)

which, in the limit I ~ oo, is just Eq. (45). In or-
der to obtain self-consistent results, the sum in Eq. (A4)
must be expanded in powers of 1/ln L up to second or-
der. Hence Eq. (A4) provides the formally correct gen-
eralization of the energy shift to small but finite density,
in a way which is unique. The next-order correction to
the momentum distribution is harder to evaluate. How-
ever, one can show that Eq. (55) and (56) give the right
result with the same definition of the functions =+(k)
and:- (k), and with the only provision that the correct
function A(k, , k,'; k„k', ) to be used is

A(k;, k', ;k„k', ) =
(~k. + ~kl ~k, Skl. )

x y (k;, k';;k, , k,') + ) ) b(k, + q' —k —k,')
2(2tfo)' 1

l kfFS~ fFS k g k

+'("f)' )- )-b(k. +, k-k, )
k'CFS~fFS k' + q ki k')

(A5)

The erst term inside the large parentheses corresponds to
the spectator configurations of the Fermi sea [it is simply
the solution of Eq. (Al)], while the second term derives
from the three-particle correlations, which must also be
included at this order. These corrections remain of higher
order in I/In(kya), even when we generalize the results
to finite density. This is not trivial, and was not a priori
evident nor guaranteed. In particular, there might have
been terms, e.g. , like n /in L, which are well ordered in
1/ln L, but diverge when n ~ oo. However, these types
of terms turn out to be strictly absent, at least up to
third order. Let us see qualitatively, how this happens.
The function A(k;, k';; k„k', ) which gives the Fermi jump
through Eqs. (50)—(56), is just the square of a function
I, that is, from Eq. (38)

L(ki, kz, ks, . . . , k„)
J(ks, k4, . . . , k„) —J(ks, k2. . . , k„)+

(& —sk, — —&k„)

We see that, in order to obtain consistent results to
third order in 1/ln L, it is necessary to expand up to
first order the energy denominator in AE = E —Eo.
This expansion, however, yields terms proportional to
AE np/ ln p, which is not well ordered at finite density,
as discussed earlier. However, a consistent calculation
shows that, at least up to third order in fo, each time
one of these dangerous terms appears, it is canceled by
an identical one coming from the numerator. Thus, in
the end, the net result is well ordered in I/In(kya) as
well as in 1/ln I.
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