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We apply Gutzwiller’s variational method to the interacting Bose lattice gas. In contrast with the
Fermi case, the Gutzwiller wave function for bosons can be treated with no further approximation in
several limits. Furthermore, this wave function can be shown to be exact for large dimensionality, and
also in arbitrary dimension for suitably chosen short-range interactions. At densities commensurate
with the lattice, a superfluid-insulator transition is found. These results are compared with the
fermionic case, and are applied to several interacting-boson systems.

I. INTRODUCTION

Gutzwiller’s variational method? is a simple yet power-
ful technique for studying strongly correlated Fermi sys-
tems. In this approach, a variational state for an in-
teracting system is constructed from the corresponding
noninteracting ground state by systematically reducing
the amplitudes of configurations with large potential en-
ergies. Unfortunately, in the case of interacting fermions
even this modest program cannot be carried out analyt-
ically without further approximations. We present here
a natural generalization of Gutzwiller’s ansatz to the in-
teracting Bose lattice gas, which can be treated exactly
since boson operators on different sites commute.

The simplest model of interacting particles on a lat-
tice is the “Hubbard model,” introduced by Gutzwiller,
Hubbard, and Kanamori:2

H=—t ala;+Y V(n), (1)

<ij> i

where the sum is performed over all pairs of nearest-
neighbor sites, n; = a:-fai is the number operator at site ¢,
and V(n) is a potential energy which penalizes multiple
occupancy of a given site. This is the usual spin-—;- Hub-

bard model if af is the two-component spinor (c}, cI) and
V(n) = Un(n — 1)/2. We discuss here the case in which
al creates a spinless boson.

The Gutzwiller variational ansatz for spin-% fermions
is

W) = [J[1 — (1 - g)nigni)]IG), (2)

13

where |G) is the Fermi sea at the density under consid-
eration and g is a variational parameter which ranges
from 0 (forbidding double occupancy) to 1 (leaving the
wave function unchanged). This ansatz can be trivially
generalized to apply to bosons (and fermions with spins
greater than one-half) by rewriting (2) as

4

%) = [T v(=)IG), 3)

where [T, 7(n;) is a factor which suppresses the amplitude
of configurations with large potential energies and |G)
is the corresponding noninteracting ground state. We
will consider y(n) = ¢"(»~1)/2 which closely parallels
the original Gutzwiller ansatz, but any function which
progressively suppresses multiple occupancy is expected
to give qualitatively similar physics.

For a Bose system, the noninteracting ground state |G)
is a macroscopically occupied single-particle state:

IG) = (a}=0)"10), (42)

where “L:o = > az creates an (unnormalized) zero-
momentum plane wave state and |0) is the vacuum. Al-
ternately, one may work in the grand canonical ensem-
ble, where the ground state is a coherent state of definite
phase rather than particle number:

IG) = exp[VAaf_o][0) = [TexpVAalll0).  (4b)

The second equality holds because the boson creation
operators at different sites commute. Thus both the non-
interacting ground state (4b) and the variational wave
functions constructed from it via (3) can be written as a
product of single-site wave functions. It is this property
which permits an exact treatment of the Gutzwiller wave
function for bosons.

Wave functions constructed from (3) and (4) are of the
“Jastrow”3 form, i.e., can be written as a product of func-
tions of the interparticle separation Il¢; j» x(r; —r;)|G),
where 7 and j run over all pairs of particles. Jastrow wave
functions have been extensively studied? in the context of
“He, treating x(r) variationally. The Gutzwiller ansatz
assumes the computationally simple case of x(0) = ¢
and x(r) = 1 for r # 0. This form of x can describe
arbitrary on-site correlations. The presence of linearly
dispersing phonon modes, however, requires® that x(r)
tend to 1 — const/r? as r — oo, which is not contained in
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the simple Gutzwiller form. Thus long-wavelength den-
sity fluctuations are not properly taken into account by
the Gutzwiller ansatz. We note that off-diagonal long-
range order is a generic feature of boson-Jastrow wave
functions® since these states are obtained by modify-
ing the magnitudes but not the phases of free boson
states which possess long-range phase coherence. This
feature of boson-Jastrow wave functions in general (and
the boson-Gutzwiller ansatz in particular) is analogous
to the preservation of the discontinuity in the momen-
tum distribution at the Fermi surface! in the fermion-
Gutzwiller wave function.

Although originally proposed as a variational wave
function, the relevance of Gutzwiller states to interact-
ing Fermi systems has been strengthened by the dis-
covery that the completely projected, half-filled, one-
dimensional Fermi sea is the exact ground state of an
antiferromagnetic spin model with algebraically decaying
interactions.” It has also been shown® that the approxi-
mation Gutzwiller introduced for calculating expectation
values within the ansatz (2) is equivalent to a saddle-
point approximation to a path integral formulation of
the Hubbard model. This result and its generalization to
include antiferromagnetism becomes exact in the limit of
infinite dimensionality.® We discuss below the connection
between the Bose-Gutzwiller wave function and the ex-
act solution of the Hamiltonian (1) in the limit of large
dimensionality.

Using the generalization [(3) and (4b)] discussed above
we apply the method of Gutzwiller to lattice bosons in-
teracting via the boson Hubbard model (1). The Bose-
Gutzwiller ansatz reduces to a product of single-site wave
functions, so that the expectation value per site of the
Hubbard Hamiltonian (1) in this variational state is sim-

ply
(H) = —zt{at){(a) + 5 (n(n — 1), (5)

where z is the mean number of neighbors per lattice site
and (- --) is evaluated in the single-site state

(e )‘n/2
ey = g" V2= ). (6)

Vnl

The problem becomes tractable in three interesting lim-
its: (a) for dilute bosons and arbitrary U, when only
the first three terms in (6) need be retained; (b) for
large U, at a density between two integer densities m
and m + 1, when only the terms corresponding to these
two integers need be kept; and (c) at integer densities
near the superfluid-solid transition, where number fluc-
tuations are suppressed, so that only m—1, m, and m+1
need be considered. Below, these variational results are
applied to the dilute interacting Bose gas, spin--% XY
models (ferromagnetic and antiferromagnetic), and lig-
uid helium-4, respectively.

II. THE DILUTE BOSE GAS: PERTURBATION
THEORY VERSUS GUTZWILLER

Our understanding of interacting Bose systems is based
upon Bogoliubov’s!? analysis of a dilute, weakly interact-
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ing Bose gas using the canonical transformation method.
Alternately, the same results can be obtained by the sum-
mation of an infinite set of “ladder” diagrams!! in per-
turbation theory. Although they are generally incalcula-
ble for dense or strongly interacting bosons, the general
features of (a) a nonzero condensate and (b) a linear dis-
persion for phonon excitations (corresponding to a finite
compressibility) are expected to persist even when per-
turbation theory is inapplicable.

At density p per site, Bogoliubov’s theory yields a con-
densate fraction

(af)? A ay2_ B 2
= ~1——(pu — —(pu)?, 7
f== p(p ) p(p ) (7)
and an energy per site of
E) ~ 22U & pU[C(ou)!? + D(pu)? 8
(p) = ==+ pULC(pu)™* + D(pu)’], (8)

where the zero of energy is chosen so that the free Bose
gas has energy E = 0, and where the dimensionless in-
teraction strength

U
- 9
U 2zt ©)

is defined as the ratio of the on-site potential U to the
characteristic kinetic energy 2zt, which is the bandwidth
for a bipartite lattice with z nearest neighbors per site.
The constants A, B, C, and D are lattice dependent.
These expressions are valid when the typical interpar-
ticle spacing is much larger than the scattering length,
permitting the neglect of three-particle scattering and
allowing the depletion of the condensate to be assumed
small.

In comparison, Bose-Gutzwiller variational wave func-
tions for dilute Bose gases yield (to lowest order in p)

u \?2
le—p(1+u)

E(”)z%g<1iu)'

The optimal Gutzwiller parameter is ¢ = 1/(1 + u), re-
sulting in an on-site density-density correlation (n(n—1))
of A2g =~ p?g. The Gutzwiller results depend on dimen-
sion and lattice structure only through the mean coordi-
nation number z.

It is instructive to compare the momentum distribu-
tions ny = (aLak) of the two approaches. Both calcu-
lations yield delta function peaks at k = 0, correspond-
ing to a nonzero condensate fraction. In the Bogoliubov
solution the uncondensed particles have nx varying as
k~* for large momenta, while the Gutzwiller distribu-
tion is independent of k. Thus the Gutzwiller wave func-
tion does not correctly describe long-wavelength corre-
lations, as noted above. A related problem with the
boson-Gutzwiller ansatz is presented by the single-mode
approximation for the phonon excitation energy, which is
found to be quadratic in wave number rather than linear.

(10)

and

(11)
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II1. INFINITE U: FULLY PROJECTED STATES

The case of an infinite Hubbard U (i.e., hard-core bo-
sons) can be solved!? in the dilute continuum via an
expansion in pa?, where a is the scattering length; the
results correspond to perturbation theory using a pseu-
dopotential to eliminate singularities due to the hard
core. The corresponding ground-state wave function!3
never yields a vanishing on-site density-density correla-
tion. The (admittedly simplistic) Gutzwiller variational
wave functions do not suffer from this constraint, and
can easily be applied to the dense hard-core regime.

Consider the case of density p lying between the two
integers m and m + 1, with a large Hubbard U. The ap-
propriate wave function (3) and (4a) is then the fully
projected state |W,_.0), which consists of the equal-
amplitude superposition of all configurations with m or
m + 1 bosons per site distributed such that the aver-
age density is p. Without loss of generality we specialize
to the case of density between 0 and 1. Expectation
values in this fully projected state can be easily com-
puted via combinatorial methods. Alternately we may
use the grand canonical state (3) and (4b) which cor-
responds to the (normalized) single-site wave function
(1—p)*/2|0) + p*/2|1). No variational parameters remain,
i.e., ¢ = 0. The condensate fraction becomes simply
f = 1—p and the energy per site E = —ztp(1—p). In the
limit of large U the compressibility remains finite even at
densities near one particle per site, as in the Fermi case,
and is given by & = (p?0%E/8p?)~! = 1/(2ztp?). The
“particle-hole” symmetry relating density p and 1 — p is
preserved in the Gutzwiller approach.

The fully projected wave function is the equal-
amplitude superposition of states |C) in which each site is
either empty or singly occupied and the overall density of
occupied sites is p: |¥, ) = ) |C). (Only these config-
urations survive the complete Gutzwiller projection.) A
simple method!* can be used to construct a short-ranged
Hamiltonian which has this equal-amplitude state as its
ground state, as follows. First, recall that the ground
state of a Hamiltonian whose off-diagonal matrix ele-
ments are all negative is the unique nodeless eigenstate
of that Hamiltonian. We now show that the (nodeless)
state Y |C) is in fact an eigenstate of a Hamiltonian with
infinite on-site repulsion and a nearest-neighbor interac-
tion. The kinetic energy operator 1" acting on this state
yields —t 3~ v(C)|C), where v(C) is the number of nonmul-
tiply occupied configurations which can be reached from
C by hopping a single particle. Therefore v(C) counts
the number of empty sites in configuration C which are
adjacent to an occupied site:

v(€) =3 Y [ni(1—nj)+n;(1—mny)], (12)

<ij>

where the sum is over pairs of nearest-neighbor sites. If
we then consider a potential energy term V(C) = +tv(C)
(corresponding to a nearest-neighbor interaction in addi-
tion to the infinite on-site repulsion), the equal-amplitude
state will be an eigenstate (with zero energy) of the oper-
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ator 7'+ V. Thus the equal-amplitude state is the ground
state of this short-ranged Hamiltonian.

IV. THE SPIN-1 XY MODEL

Following Matsubara and Matsuda,'® we may rep-
resent spin-% magnets as lattice hard-core Bose gases:
down spins correspond to unoccupied sites and up spins
correspond to occupied sites. The nearest-neighbor XY
model then precisely corresponds to (1), with ¢t = —Jg,
and U = oco. The appropriate Gutzwiller states are the
fully projected states discussed in the previous section.

Consider first the ferromagnetic XY model on an L site
lattice. The corresponding noninteracting boson ground
state is obtained by macroscopically occupying the k =
0 single particle state, as in (4a). Let the occupation
of this state be denoted by N. Completely projecting
out multiple occupancy (g = 0) we arrive at the equal-
amplitude superposition of all spin configurations with N
up spins. We find that the minimum energy is achieved
for N = L/2. This spin state is simply the result of
applying the total spin lowering operator L/2 times to
the ferromagnetic state with all L spins up. Its long-
range magnetic order in the zy plane corresponds to the
superfluidity of the related boson state.

On a bipartite (e.g., square) lattice, the ferromagnetic
and antiferromagnetic XY models are related by a trans-
formation which rotates the spins on one of the sub-
lattices by 7 about the y axis. Equivalently, one may
macroscopically occupy the k = (, 7) free particle state,
which is the lowest energy free particle state for J > 0
[t < 0 in (1)]. The analysis of the previous paragraph
then applies with only minor modifications, and the best
variational state of the form (3) and (4a) is again a su-
perposition of all spin configurations C having L/2 spins
up. In this superposition, configuration C has amplitude
(—=1)#(©), where p(C) is the number of up spins on one
of the two sublattices. This amplitude explicitly satisfies
the Marshall sign rule,'® a requirement for the true an-
tiferromagnetic XY ground state. Our variational state
has perfect long-range staggered magnetic order in the
zy plane. This state has been considered previously'7 in
variational studies of the square lattice spin-% XY model,
and its energy E = —J per site is quite close to numeri-
cal estimates!® (E ~ —1.08J per site). Of course, much
more sophisticated variational wave functions of the Jas-
trow form have been applied to models mentioned here.
What is remarkable about the simple Gutzwiller ansatz
is its quite reasonable performance despite the absence
of any variational parameters.

V. THE SUPERFLUID-SOLID TRANSITION

At integer fillings, an interacting Bose lattice gas un-
dergoes a transition from a superfluid to a solid as the on-
site repulsion U is increased, similar to the Mott metal-
insulator transition for fermions. This transition has
recently been studied in low-dimensional Bose-Hubbard
models using quantum Monte Carlo techniques.!®2° In
contrast with the spin-% Fermi gas on a bipartite lattice,
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which is an insulator at half-filling for arbitrary positive
U due to the formation of a commensurate spin density
wave, the corresponding Bose gas remains a conductor
up to a critical interaction strength U,.. The difference is
the absence of occupied states at momenta +n/2 in the
weakly interacting Bose gas, which renders the system
insensitive to umklapp scattering at small U.

Brinkman and Rice?! have shown that within the
Gutzwiller ansatz and in Gutzwiller’s statistical approxi-
mation, a half-filled band of spin——é— fermions becomes in-
sulating at a critical value of the interaction parameter.
At this U,, the Gutzwiller variational parameter is driven
to zero: for U > U, the best variational wave function of
the Gutzwiller form (2) has exactly one particle per site.
Accompanying the vanishing of g is a diverging effective
mass, a vanishing compressibility, and a vanishing quasi-
particle residue (computed from the discontinuity in the
momentum distribution function at the Fermi surface).
When the energy of the fermion-Gutzwiller wave func-
tion is evaluated exactly,?2 however, the best variational
wave function always has nonzero g of order /U, and has
a discontinuity at the Fermi surface. Thus the transition
found by Brinkman and Rice is an artifact of Gutzwiller’s
statistical approximations for evaluating the free energy.

As in the analogous fermionic transition, the Bose
solid-superfluid transition occurs only when the den-
sity of particles is commensurate with the lattice. The
boson-Gutzwiller ansatz admits a simple calculation of
the superfluid-solid transition which can be carried out
without recourse to further approximations. Unlike the
fermion case, the boson-Gutzwiller ansatz alone does
yield a finite-U transition. We consider an integer den-
sity lattice gas near its Mott transition. (Without loss of
generality, let p = 1.) Since number fluctuations are sup-
pressed near U,, we are justified in retaining only states
with 0, 1, or 2 particles per site, i.e., taking the limit
g — 0, gA = const in (3) and (4b). For U approaching
U. from below, the condensate fraction, energy per site,
and on-site density-density correlations are

(13)

(14)

and

(n(n — 1)) = i (1— ui)

[

(15)

where a = (14++/2)/2. (Note that the condensate fraction
plays the role of the quasiparticle weight in the fermion
case.) In the Gutzwiller approximation, the critical inter-
action strength u. is given by u, = U./22t = o? ~ 1.45.
For comparison, quantum Monte Carlo calculations in
one dimension yield!® u, = 1.2 and in two dimensions
give?® u, = 2.1. As u, is approached from below, the
compressibility vanishes linearly as
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(16)

Above U,, the optimal Gutzwiller parameter g is zero.
The variational wave function is then the insulating state
with precisely one boson per site, so that E = f = (n(n—
1)) = 0. For large U, this insulating state has a charge
gap A = Eny1+ En—1 — 2EN of U — zt. Approaching
U, from above, this “Mott gap” collapses as

A = 2V/2v22t(u — u,)V/2. (17)

Not surprisingly, our factorizable variational states yield
mean-field exponents for the superfluid-solid transition,
rather than the correct d+ 1-dimensional XY behavior.?3

VI. CONNECTION WITH MEAN-FIELD
THEORY

In the fermionic case the Gutzwiller approach to the
Hubbard model involves two approximations: (a) the
Gutzwiller ansatz itself and (b) the Gutzwiller statisti-
cal approximation for evaluating the energy of the trial
wave function. Considerable effort has been devoted to
finding limits in which these approximations become ex-
act. Only recently, Metzner and Vollhardt® have shown
that step (b) in the Gutzwiller approach is exact in the
limit of infinite dimensionality. The ansatz (2) itself does
not seem to become exact in any limiting situation. In
contrast, the generalized Gutzwiller ansatz (3) and (4)
for the bosonic case is exact in the limit of infinite di-
mensions, i.e., the infinite range hopping model where 1
and j of Eq. (1) runs over all possible pairs of lattice sites
has a ground state of the form (3). The function y(n) is
determined by the condition that the state )", y(n)|n) is
the ground state of the single-site mean-field Hamiltonian
humr given by

hve = —§(<a)a1 +a(ah)) + V(ata). (18)
In principle this defines the best trial wave function for a
given Hamiltonian, but it is difficult to solve in practice
except when the potential energy assumes the simplified
form V(n) = oo for n > 2.

Why does the boson-Gutzwiller state experience a
fluid-insulator transition at a finite interaction strength,
while the fermion-Gutzwiller state does not? The reason
for this difference lies in the properties of the free particle
states which are used in the construction of these wave
functions. In both cases, at commensurate densities and
for large U, the determining factor is whether or not a
partially projected wave function (¢ # 0), which is de-
scribed by a small density of empty and doubly occupied
sites in a sea of singly occupied sites, can realize a lower
energy than the fully projected wave function (¢ = 0),
which consists of precisely one particle per site. In par-
ticular, the energy of the partially projected state will be
lower (even for large U) if the empty and doubly occupied
sites are correlated so that the matrix elements connect-
ing states with two singly occupied sites and states with
nearby empty and doubly occupied sites are enhanced
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relative to a random distribution of such sites, i.e., if the
system can realize an energy gain of order t2/U by having
g different from zero.

The question of the correlation between the nonsingly
occupied sites in partially projected states is related to
density fluctuations in the corresponding free particle
states, which is in turn determined by the compressibili-
ties of these states. Since the free Fermi sea has a nonzero
compressibility we expect that empty and doubly occu-
pied sites in the related projected state will be more likely
to occur near one another, leading to a small (g ~ t/U)
nonzero projection even for large U. On the other hand,
the free Bose gas is infinitely compressible. In the nearly
completely projected Bose wave function at a density of
one particle per site, the nonsingly occupied sites will be
completely uncorrelated, so that there is no energetic rea-
son (within the framework of the Gutzwiller variational
states) for retaining such sites for large U.

VII. HELIUM-4

Anderson and Brinkman2* have suggested that liquid
3He can be viewed as a “nearly localized Fermi-liquid,”
i.e., a strongly correlated liquid close to its solidifica-
tion point. This physical picture has been elaborated
and quantified by Vollhardt et al.,?® using the results
Brinkman and Rice obtained with the Gutzwiller approx-
imation. To compute the properties of a strongly inter-
acting Fermi fluid, such as 3He, the liquid is modeled
by a lattice gas of fermions at a density of one per unit
cell. (This is not to suggest that 3He, is a lattice system;
rather, one imagines coarse graining the helium liquid to
obtain an effective lattice model with parameters ¢ and
U which are related to the bare kinetic and interaction
energies.) The Fermi liquid parameters m*, Fj, F2, ...,
corresponding to a given U/t and filling factor are then
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computed.

Even though the boson-Hubbard model lacks some es-
sential features of *He, such as an attractive long-range
van der Waals attraction, it is nevertheless amusing to
compare the results of the simple calculation given above
with experiment in “He. For simplicity let us assume U is
large so that we can use fully projected states. Using the
experimentally determined zero temperature condensate
fraction f & 0.10 & 0.02 we find that p ~ 0.9. From the
experimentally determined chemical potential y = —7.1
K we determine that zt &~ —9.0 K. The Gutzwiller pre-
diction for the sound velocity is then 1.8 x 10%cm/sec,
which compares favorably with the experimental value
of ¢ = 2.4 x 10* given the simplicity of our approach.
The agreement is much less dramatic than in the spin-%
fermion case, with its multitude of “Fermi liquid” pa-
rameters, since the spinless boson gas has only these two
“Bose liquid” parameters. Given a model for U and p as
a function of pressure, one could study the dependence of
c and f on pressure at zero temperature along the lines
of Ref. 25.

Note added: After completing this work we received
a prepublication copy of work by Krauth, Caffarel, and
Bouchaud?® describing similar boson-Gutzwiller calcula-
tions.
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