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We treat the multicomponent fermion system (MCFS) in which several distinct types of fermions in-

teract and hybridize mutually. For the most general MCFS we reconstruct and unify the Fermi-liquid
theory for the susceptibility: (a) We obtain the dynamical susceptibility g(q, 0) on the basis of the Kubo
formula, in a form where the identity of the original local basis and its relation to the quasiparticle (qp)
band basis are transparent; (b) we obtain the isothermal static uniform susceptibility y& by Luttinger s

procedure; and then (c) we present the explicit identities showing that y(q ~0, 0=—0) coincides with y~,
provided that the magnetization is conserved; in addition to the mathematical origin, we give a physical
interpretation of the singular behavior of y(q, 0) for small (q, 0). In the latter part of this paper, three
kinds of periodic Anderson models (PAM's) are considered as examples of MCFS's: (i) the SU(N) PAM,
(ii) a doubly degenerate PAM with different g values for the c and f electrons, and (iii) an orbitally de-
generate PAM with different degeneracies for the c and f electrons. The qp and non-qp parts of the sus-

ceptibility are obtained separately, and we find that the non-qp parts of these models behave completely
differently from each other. This diversity of the behavior of the non-qp parts depending on the details
of the model suggests a possible resolution of the Wilson-ratio problem of the heavy-fermion systems
posed by Anderson and others.

I. INTRODUCTION

Electrons in several crystalline compounds containing
an actinide or lanthanide element form the heavy Fermi
liquid in other words, they behave as if they are weakly
interacting degenerate fermions with a mass much
greater than the electron mass in vacuum. For example,
the static uniform susceptibility g and the temperature-
linear coefBcient of the specific heat, y, of these materials
are very large and roughly proportional to each other.
The strong repulsive interaction between the bare f elec-
trons on the same site is consumed mainly to make the
quasiparticle (qp) heavy. The residual interaction plays
only a secondary role such as to affect the material-
dependent ratio between y and y, which is called the %'il-
son ratio.

The periodic Anderson model (PAM) is believed to
contain the essence of the heavy-fermion systems and is
widely used in the literature. In the PAM there exist
two distinct types of the electrons: the c and f electrons.
The f electrons are localized, and between them on the
same site acts a strong repulsive interaction. The c elec-
trons wander from site to site with some bare transfer-
matrix element, while the c-c and c finteractions ar-e

neglected. However, the c and f electrons are hybri-
dized. Thus the real qp is composed both of the c and f
electrons and has the characteristics of the heavy fer-
mion.

In the PAM the f frepulsive interaction -is assumed to
be large. Nonetheless, the perturbation expansion in this
interaction is useful, because the experimentally observed
Fermi-liquid property can be reproduced by making a
small number of hypotheses. %'e refer to these hy-
potheses in a bundle as the Fermi-liquid hypothesis

(FLH). Although we cannot deduce the validity of the
FLH starting from the Hamiltonian, we can justify its use
a posteriari, taking in advance that the PAM should show
the Fermi-liquid property. Once the FLH is made, we
can relate the phenomenological parameters, such as the
qp mass and qp interaction, with microscopically
definable objects, such as the self-energy and the vertex
parts; eventually, we can predict some correlation among
different observable quantities. This helps us to make a
clear and unified vision on the heavy-fermion systems.
Thus it is worthwhile considering the PAM under the
FLH. Let us review a few problems which have been
resolved and are to be resolved about the PAM under the
FLH.

First, Yamada and Yosida derived, by Luttinger's pro-
cedure, a formula for the isothermal static uniform sus-
ceptibility gr of the SU(2) PAM, where both of the c and

f electrons have only the spin- —,
' degeneracy. Their for-

mula is expressed with the bare c and f electron density
of states and the field derivative of the f-electron self-
energy on the Fermi surface. However, this type of for-
mula cannot be extended to the other more complicated
PAM's, because Luttinger's procedure is applicable only
when the magnetization is conserved. Yamada and co-
workers ' made a mistake in applying the procedure to
the PAM where the magnetization is not conserved ow-
ing to the orbital moment; then they realized the mistake
and have made some trials to overcome the difhculty and
to derive a similar formula for the more elaborate model
than the SU(2) PAM, but they have not fully succeeded
yet. ' Therefore, at this point, we would like to clarify
the range of the applicability of this type of formula, and
then we would like to derive the most general formula be-
ing valid in that whole range.
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Second, Yip' considered the dynamical susceptibility
y(q, Q), starting from the Kubo formula. He treated a
PAM which is slightly more general than the SU(2)
PAM, but is still very simple. He succeeded in reformu-
lating the theory in a form where one can see the identi-
ties of the original local c and f electrons. Yip's formal-
ism is very neat, but heavily depends on the special sim-
plicity of his PAM Hamiltonian; a disadvantage of his
formalism is that an extension to the more general mod-
els is impossible. On the other hand, there is earlier work
by Jones and McClure" on the multicomponent Fermi
liquid, whose formalism does not rely upon any special
simplicity of the system; however, it is formulated on the
qp-band basis throughout, and so the information on the
original local basis is completely lost, or such a problem
was not in their mind from the beginning. Therefore, at
this point, we would like to construct a general formalism
which is applicable to the wider range of models and
simultaneously retains the identities of the fermions with
respect to the original local basis.

Finally, Yip applied his formalism to the SU(2) PAM
and obtain a formula for y, the k limit (i.e., the usual
static limit) of y(q, Q); then he complained' that he
could not show the equivalence between his formula for

and Yamada and Yosida's formula for yT. In princi-
ple, these two static uniform susceptibilities may be
different, but it is commonly believed that they would
coincide. The correctness of Luttinger's procedure leaves
no room for doubt when the magnetization is conserved,
while the approach from the Kubo formula is more gen-
eral. Thus, at this point, we encounter a fundamental
theoretical problem whether y and gT are really
equivalent or not, at least in the Fermi liquid.

As described in the previous paragraphs, starting from
a few questions concerning the simple PAM's, we have
arrived at the point where we must develop a simple and
systematic way to treat the general multicomponent fer-
mion system (MCFS): The MCFS is a fermion system in
which there locally exist several distinct types of fermions
whose mutual hybridization and interaction may be com-
plicated in general. The PAM is a simple kind of MCFS.

In summary, what we would like to perform are (i) to
reformulate the Fermi-liquid theory for the general
MCFS in a form where the relation between the qp-band
basis and the original local basis is transparent; (ii) to ap-
ply Luttinger's procedure to the same general MCFS and
derive the general formula for gT, while examining care-
fully where the conservation property is used; and (iii) to
investigate as generally as possible the question about the

equivalence between y and yT. The former part of this
paper (Secs. II—V) is devoted to these problems.

Then, in Sec. VI, our formalism is applied to the
PAM's. Generally, the low-frequency and long-
wavelength susceptibility is divided into the qp and non-

qp parts. In the first of the three models we consider, the
non-qp part does not exist. In the remaining two models,
it does exist. However, the behaviors of the non-qp part
of these two models are significantly diff'erent. These re-
sults suggest that the character of the non-qp part is very
sensitive to the details of the model, and this makes it
very difficult to estimate it by theoretical analyses. In
connection with this problem, there has been some con-
troversy on the origin of the smallness of the observed
Wilson ratio of the heavy-fermion systems. ' ' The
more elaborate introduction to this subject is deferred un-
til the general formalism and the example calculations
are completed. In Sec. VII we review the foregoing argu-
ments in the literature and reveal the origin of the con-
troversy; then we propose a possible resolution. Al-
though it is not completely satisfactory, I believe that our
discussion will contribute to deepen one's understanding
and will serve as a step toward a true resolution of the
problem.

II. MULTICOMPONENT FERMION SYSTEM

In reformulating the theory for the susceptibility of the
Fermi liquid in a form applicable to the most general
MCFS, we try to classify the results as clear as possible
into the three categories: (i) the general results free from
the FLH, (ii) the consequences of the FLH, and (iii) the
consequences both of the conservation property and
FLH. This section is devoted to the results of the first
category.

A. Model

1. Kamiltonian

H=HO+ U,
with

(2.2)

We consider the most general MCFS, which we assume
to have v components locally. The creation operators at
a lattice point r are denoted as

g (r)=(P, (r), g,(r), . . . , f (r)) . (2. l)

The Hamiltonian is of the form

Ho= g E~(r, , r2)$, (r~)g. (r~)= gE; (k)g;(k)f (k)

g P (r, )E(r), r2)g(r2)= g f (k)Eqg(k), (2.3)

i,j,l, m r&, . . . , r4

U! (rl 2 r3 4)PI( 1)P'( 2)4 (r3)fi( 4)

g Ut" (k S»q)AV»)4, (q)4 (q k)4;(I +k»—
sys i j,j, m kp, q

(2.4)
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i, p+k If the external field is static and uniform, the above
reduces to

(2.12)

We set the equilibrium statistical average of m(r) under
no external field to be zero for simplicity:

zn, rl —k (m(r))O=O . (2.13)

FIG. 1. Two-body interaction vertex UI' (k,p, q).

where we assume the translational invariance of the sys-
tem,

Ej(r„rz)=E;,(r, —rz, O),

U/ (r), rz, r3, r4) = U/ (r) —rz, rz —r&, r3 —r4, 0),
(2.5)

(2.6)

and the spatial Fourier transform will depend on only one
variable as U/~ (k). The system size (the number of the
lattice points) is denoted by N,„,. The convention of the
indices of the two-body interaction is shown in Fig. 1.

In this paper, many v-dimensional objects such as vec-
tors, matrices, and tensors appear, as well as some objects
of reduced dimensions. To avoid the proliferation of
symbols, we use the same symbol for these objects and for
their elements; they are distinguished by the appearance
of indices. For example, in (2.3), g represents a v-

A. fdimensional column vector, g a row vector, and g;, g
their elements; E,Ek are matrices and E; their elements.

so that the spatial Fourier transforms of E, - and UI'~

have only one and three independent variables, respec-
tively. The Fourier transform is denoted by the same
symbol and distinguished by its argument throughout
this paper. If we further restrict the two-body interaction
to be velocity independent, like the Coulomb interaction
or the spin-spin exchange, then it reduces to

U/ (r„rz, r3 v4) =
U/ (r) rz)6(r) —r4)6—(rz —r3),

(2.7)

We call m (r) and M the local and total magnetization for
short. Accordingly, p; is called the magnetic moment of
the ith fermion, and the linear response function of these
quantities to the external fields is referred to simply as the
susceptibility.

B. Single-particle Green's functions

Most of the results in the remaining of this section are
probably familiar to the readers, except for the matrix or
tensor character of the Green's functions and related ob-
jects. The results are itemized rather routinely for the
completeness of the derivations and proofs in the subse-
quent development. However, please appreciate the 3-
matrix representation of the single-particle Green's func-
tion given in Sec. II84; this representation proves to be
very useful in the following development of the theory for
the multicomponent Fermi liquid.

[Qk(r r')]; = —(T—, f;(k, ir)gj(k—, i~'))—0, (2.15)

where ( )o denotes the equilibrium statistical average for
a given chemical potential p and a given temperature
T=I3 ', under no external field [(Al) with h =0]; T, is
the usual ~-ordering operator, and the time dependence
of a quantum operator in the Heisenberg representation
is given by

1. Definition

The single-particle Matsubara Green's function (or
temperature Green's function) is defined by'

Qk(r v')= —(T,—f(k, ir)g (k—, —ir'))o ) (2.14)

which is a vXv matrix. Written explicitly, the elements
are

2. Magnetization
g(t) i(H pt)t)to —i(H pP—)t—(2.16)

We define a scalar local one-body quantity m (r) and its
summation over the system M as

m(r)=g (r)MQ(r)= g p; f;(r)P;(r), (2.8)

M= g m(r)= g Pt(k)MQ(k) =m(q=0)N, „, ,
k

(2.9)

H,„,(t)= —g m(r)h(r, t) (2.10)

where, by a proper choice of a local basis, the matrix M is
assumed to be diagonal without loss of generality. The
coupling of our system to the external scalar field h(r, t)
is assumed to be prescribed by

The Fourier frequency transform of Qk(r) is defined by
13

Qk(iso„)= dr exp(ice„r)Q), (r), (2.17)

where co„=(2n+1)vrlP, with n an integer. The analytic
continuations' of Q), (iso„) from the upper and lower
complex planes to the real axis are denoted by Gk" (co) and
Gk (co), respectively.

2. Spectral representation

With the spectral weight function matrix pk(x) given
by (B 1) the single-particle Green's functions are ex-
pressed as

= —g f dQe'~" ~"m( —q)h(q, Q) .
q

(2.1 1)
Pk(X)

gk(tco„)= Jdx .
lCO~ X

(2.18)
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Gk (co)
dx

Gk (co) (co+io+) —x

Pk(x)=P Jdx +HrPk(co) . (2.19)

1=—ImGk"(co) .
'il

(2.20)

The symbols Re and Im before a matrix denote the Her-
mitian and anti-Hermitian parts of the matrix, which are
Hermitian by themselves. From the spectral representa-
tion (2.19), we can deduce that

The range of the integration over x extends from —~ to
Since pk is Hermitian, Gk (co) and Gk (co) are Hermi-

tian conjugate. Thus we can write

1
pk(co) = — . [Gk (co)—Gk"(co)]

2&l

4. A-matrix representation

The explicit form of the Green's-function matrix de-
pends on the fermion basis we choose. If we go from
basis to basis by unitary transformations, the elements of
the Green's function will transform accordingly. Howev-
er, the positions of the singular points as a function of the
complex frequency variable are independent of the choice
of the basis. Thus it is convenient if we can factorize the
Green's function into two parts such that one part con-
tains the singularity but is independent of the basis and
another part transforms according to the choice of the
basis but is free from the singularity. This purpose is
achieved as follows.

The inverse of the Green's function is diagonalized by
a similar transformation as

~k '(0)[(&+V)—Ek —&k(P) F'k(0)

0+@—&ki(k)

Re(Gk )~1/co and Im(Gk )~o(1/co) as ~co ~ ao

(2.21)
(+V —&k.(k)

(2.25)

The spectral weight function of the single-particle
Green's function is positive semidefinite and is sometimes
referred to as the density of states Neverth. eless, it is
quite di8'erent from the quasiparticle density of states,
which wi11 be defined later in the context of the Fermi-
liquid hypothesis.

3. Self energy-
The self-energy Xk relates the true Green's function 0k

defined above and the noninteracting Green's function

k (2.26)

where

(2.27)

Taking the inverse of the both sides and multiplying them
by Pk and Pk ' from the left and right, respectively, we
can rewrite the Green's function as

Qk (i co„)= (i co„+p, Ek)—
through the Dyson equation (Fig. 2):

(2.22)
and

(2.28)

~k ~k+ ~k~k ~k

Solving it, we obtain

Qk(l&„)—[(l&„+P) Ek Xk(l&n ) j

(2.23)

(2.24)

The analytic continuations of Xk(i co„) are similarly
defined and denoted by Xk (co) and Xk(co), which are Her-
mitian conjugate to each other. Note that the positive
semidefiniteness of ImGk"(co)=mpk(co) leads to the posi-
tive semidefiniteness of ImXk (co ).

Thus the Green's function can be written as a sum of the
product of the two factors: The one factor
[(+p—Xk (g) j contains a singularity and is invariant
under the transformation of the fermion basis, and the
other factor Ak (g) does not contain a singularity and
transforms according to the choice of the fermion basis.
Let us call (2.26) the A-matrix representation of the
single-particle Green s function in this paper. The A ma-
trix satisfies several useful identities, which is shown
later, and plays an important role throughout this paper.

Finally, let us note that, since ImXk is positive
semidefinite,

Iml. k" (co) ~0, (2.29)

where I.k~(co) is the analytic continuation of Xk~(i co„).

5. Under static uniform field

FIG. 2. Circle is the self-energy. The thin and thick lines are
the noninteracting and exact single-particle Green s functions
respectively. Ek(h ) =Ek —hM, (2.30)

When we consider the isothermal static uniform sus-
ceptibility or a kind of Ward identity, we need 9'k defined
under a static uniform field h. In this case,
H, , =H —hM is used in place of 0; thus the matrix Ek
in the one-body part of the Hamiltonian is replaced by
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and the average ( )0 is replaced by ( ) h of (Al). As a re-
sult, all of Qk, Xk, Ak, and Xk depend on h. However,
since the context will reveal which case we consider, the
parameter h is usually suppressed.

(a)

C. Two-particle Green's functions

1. Definition :XZ
The two-particle temperature Green's function we

need is the following:

A(q, if),&)= f dr exp(if'&r)%'(q, r ),P (2.31)
0

where

~(q, &—&')=X,„,(T m(q, ir)m—(
—q, is')—)

(2.32)

and 0i =2/m /P, with I an integer. The analytic continua-
tion' of the above from the upper complex plane to the
real axis is denoted by K (q, Q).

2. Spectral representation

With the spectral weight function w(q, x) given by
(83), the two-particle Green's functions are expressed as

FIG. 3. Square represents I and the circle I o.

The fermion indices run from 1 to v; thus these tensors
have v elements (v is the number of the local fermion
components). As a Feynman diagram, (2.35) is expressed
as in Fig. 3(a).

The vertex part I is obtained with the (bare-particle-
hole) irreducible vertex part I 0 through the Bethe-
Salpeter equation, symbolically as

(2.38)

and diagramatically as in Fig. 3(b).

4. Decomposition

We separate Qs 9 into two parts as

and

f dx w(q, x )

x —ill

dx w(q, x )
q, x —Q —i0+

(2.33)

(2.34)

(2.39)

where the equality of Q+q& to 0 0 is allowed to be an
abstract one such that it has meaning only after proper
analytical continuation and does not have one-to-one
correspondence for each discrete frequency variable.
With the same abstractness, we define I, as

The formula (2.33) is originally derived for l&0, but is
also applicable to l =0 with some care. The formula
(2, .34) is valid for all 0, including 0=0.

One must be very careful, however, that there is no
straightforward connection between %'(q, 0) and
E (q, O), because E (q, Q) is obtained from %'(q, i A&)
with l 1; no information about W(q, O) is contained in
K (q, A). Hence %(q, O) is different from E (q, O) in
general. I would like to emphasize this fact here, because
it is sometimes misunderstood in the literature.

3. Vertex parts

The complete vertex part I relates the two-particle
Green's function and the single-particle Green's func-
tions as

(2.40)

then it holds that

I =I,+I',QI

With these quantities, we can decompose%' as

%' = —M(p( 1+l,y )M

(2.41)

—M(l+@r, )(Q+Ql Q)(1+r,(p)M . (2.42)

At present, the separation into Q and y is arbitrary, and
so is the decomposition of A. Only after introducing the
Fermi-liquid hypothesis and defining the concept of the
quasip article, they will acquire appropriate physical
meaning and corresponding mathematical property.

(2.35) D. Susceptibility

[I (k, k', co, co', q, Q)]I'

and 0(3 0 a tensor of the form

(0 0)i' (k, co;q, Q)

=[9 I(+iso„+iQ)];[Qk(iso„)]i

(2.36)

(2.37)

In this and the following symbolic equations, the integra-
tions or the summations over internal frequencies and
crystal momenta are implicit, as well as the summations
over the local fermion indices; I is a tensor of the form

1. Dynamical susceptibility

5m(q, Q)=y(q, Q)h(q, A) . (2.43)

We refer to this proportionality constant y(q, 0) as the
dynamical susceptibility. By the Kubo formula, ' it is

Let us consider the linear response of the dynamical
average [defined by (A4)] of the local magnetization,
m (r, t ) = (m (r ) )(t), to the external field h (r, t ). In the
Fourier component,
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given by

p(q, Q)= Jdt e' +' "y(q, t),
where

(2.44)

y(q, t t—')=i%,„,( fm(q, t), m( —
q, t)]) oe(t t')—.

(2.45)

By rewriting y(q, Q) in the spectral form, we can see that
g(q, Q) can be identified with K (q, Q):

y(q, Q)—=K (q, Q), (2.46)

and since the spectral weight function w(q, x) is real,
(2.34) leads to

Imp(q, Q) =w(q, Q),

R ( Q)
dx w(q, x )

x —0

(2.47)

(2.48)

y"= lim [ lim y(q, Q)],
q~0 Q~O

y"= lim [ lim y( q, Q ) ],0~0 q~0

(2.49)

(2.50)

are difT'erent in general. We call them the k and co limits,
respectively.

The last equation is the celebrated Kramers-Kronig rela-
tion.

It must be noticed here that y(q, Q) may have singular
behavior for (q, Q)=(0,0): The two kinds of static uni-
form limits,

3. Static uniform susceptibilities y, g, and gr

So far, three kinds of the static uniform susceptibilities
are defined, but the relations among them have not been
clarified yet. As mentioned in Sec. II C 2, the relation be-
tween y(0, 0)=If (0,0) and yT=A'(0, 0) is not trivial, or
more precisely, y(0, 0) is not well defined in general. It is
easy to make an example such that

(2.56)

In fact, if M is conserved, g =0, while yT is a positive
constant. On the other hand, there is no general proof of

(2.57)

In the following we obtain formulas for both y(q, Q)
and yT separately under the Fermi-liquid hypothesis.
The formulas are useful by themselves, yet the interrela-
tion between them is not so trivial; this makes one feel
uneasy to use them. One of the purposes of this paper is
to give the identities, which show explicitly that the
equality (2.57) holds for any multicomponent Fermi
liquid, provided that M is conserved.

III. FERMI-LIQUID HYPOTHESIS

Those hypotheses on the regularities of the self-energy
and the vertex parts which are required for the formation
of the Fermi liquid are summarized for completeness.
The novel thing is only that the renormalized A matrix
Ak replaces the residue of the qp pole in the usual
theory. 4 Thus, after noting it, most readers can skip
to the next section.

2. Isothermal static uniform susceptibility

M„,(h )=(M)h = g (Q (k)MQ(k))1, ,
k

(2.51)

Under a static uniform field h, the total magnetization
is given by

A. Fermi surface, quasiparticle, and self-energy

We will take the following hypotheses as our starting
point and will make no argument for their plausibility.

Hypothesis 1. For an arbitrary k, ImXk is
infinitesimally small at (co, T) =(0,0), and

where ImLI," (co, T)=0++Ck co +Dk T +o(co, T ), (3.1)

(P (k)MQ(k ) )h =—g exp(ico„0+ )Tr[MQk(ico„)] .

(2.52)

/7 =0
(2.53)

The isothermal static uniform susceptibility (per site) is
defined as

for (co, T ) = (0,0), where Ck and Dk are some positive
constants.

In general, we know only that ImL&4 )0 [Eq. (2.29)].
However, the above hypothesis states that both ImLk
and Im(c)Lk" /c)co) will vanish at (co, T)=(0,0). Hence
this hypothesis restricts the behavior of the self-energy
very strongly.

The Fermi surface (FS) in k space is defined as a set of
points which satisfy

It can be rewritten as p —ReLk" (0,0)=0, (3.2)

sys

From this we can see that

(2.54)

y T =A(q =0, i Q& =0), (2.55)

where JV is the two-particle temperature Careen's function
(2.31).

for each band index o.. In the usual case, Eq. (3.2) has
solution points k only for a small number of bands, if any.
These small number of bands will have the FS and quasi-
particles (qp's). If Eq. (3.2) does not have solution points
k, neither the FS nor the qp exists and the system does
not exhibit any Fermi-liquid character. Thus we assume
our second hypothesis.

Hypothesis 2. The FS does exist.
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co+@—ReLk" (co, O)=0 .

The qp velocity vk is defined by

(3.3)

The qp energy measured from the chemical potential,
Ek —p, is defined as the solution of

0« Cp, g 'Vk~ &( fp (3.11)

Insofar as these conditions be satisfied, the values of Tp
and Ep do not enter into the final results of the Fermi-
liquid theory.

The energy Tp is the upper bound of T such that
dEk

k (3.4) Zk~Dk~T && T, (3.12)

The wave-function renormalization factor Zk for k on
the FS is defined as

and such that one can find an energy scale Ep simultane-
ously satisfying the following three conditions:

Zk =Zk (0,0),
where

(3.5)
and

Zk ck (Eo)' «T

T «pp,

(3.13)

(3.14)

Zk~(co, T)= 1 — Lk"~
Bco

(3.6)

(+i Lk".(P»=—0

are given by

ko; Eka

(3.7)

(3.8)

y g~ = ZkImLa~ (Ep~ p, T), — (3.9)

in the lowest order of Ek —p and T; in this case, 6k can
be used in place of Ek . To what extent T should be low
and to what extent k should be near the FS are elucidated
in the following.

B. Conditions on temperature and external field

In addition to the above hypotheses, which are neces-
sary for the system to behave as the Fermi liquid, some
additional conditions on the temperature and external
field must be satisfied in order for the Fermi-liquid theory
to give a good description of the response of the system.
Using the energy scales Tp and co defined later, the condi-
tions can be stated as follows: The temperature T must
be low such that

By (3.1), Zk is real. Our additional assumption is
Hypothesis 3. The wave-function renormalization fac-

tor Zk and qp velocity Uk are finite (neither zero nor
infinite) on the FS.

%'e further assume our fourth hypothesis.
Hypothesis 4. As a function of (k, co, T), Lk is satisfac-

torily smooth such that Cka~ Dka~ Eka~ vka~ and Zka a e
regular for k near the FS, as well as Zk (co, T) being regu-
lar for (co, T) = (0,0).

For T sufficiently low and k sufficiently near the FS, the
real part Nk~ and the imaginary part yk~ of the complex
solution of

6 c.p
—Ek —p &(1 .d k

(2ir)
(3.15)

and in this region of k space, the qp's are well defined in
the sense that the damping yk given by (3.9) is smaller
than the temperature or qp energy.

The conditions (3.14) combined with (3.15) represent
that Tp is lower than the degeneracy temperature of the
fermion system, which is often expressed as Tp &(EF in
the literature, where EF is meant to be the energy of the

qp on the FS measured from the bottom of the band and
is used as a characteristic energy scale of the system to be
compared with the temperature. However, we have in-
tentionally avoided using EF. It must be noted that EF
cannot have any definite meaning in the interacting case,
because the bottom of the band is not well defined; more-
over, even in the noninteracting case, EF cannot serve as
a characteristic energy of the band, except for those
featureless bands such as the parabolic band.

C. Single-particle Green's functions

Owing to hypothesis 1, at (co, T)=(0,0), both of the
analytic continuations of Ak (ico„,T) become Hermitian
and coincide with each other. Let us denote this by Ak ..

Ak =Ak (g=+iO+, T—=O) . (3.17)

By multiplying Zk, let us define the renormalized 3 ma-
trix as

The value of Tp depends on Ck, Dk, Zk and the
shape of the FS, and in turn they depend on the details of
the system; thus it is usually difficult to estimate Tp by
theory from the microscopic model. Nonetheless, the im-
portant thing is that such a temperature scale Tp always
exists under our hypotheses, however small it might be.

Under the conditions (3.10) and (3.11), the qp's excited
by the thermal fluctuation or by the external field are re-
stricted in the k-space region near the FS satisfying

(3.16)

T TQ (3.10) Ak(z —Zk~ Aka (3.18)

and the frequency and wavelength of the external field
h (q, 0) must be sufficiently low and long such that

Then, provided that the condition (3.10) is satisfied, the
advanced and retarded single-particle Careen's functions
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can be expressed as

Gk (co)

Gk"(co)
ka 0 kaA e(E ~E tM~ ) Gk (~)

a co+@ Eka + &7'ka k (~) incoherent

pk(co)= g Ak 6(co+tM Ek —)e(EO —~Ek —
tM~)

(3.20)

Although the residual term pk(co) due to the incoherent
term of (3.19) is nonzero for general co's, it will vanish at
co =0. Thus we obtain

(3.19)

The first term is nonzero only for k near the Fermi sur-
face, while the second incoherent term will vanish for k
near the Fermi surface.

In the zero temperature limit, yk can be replaced with
0+; as a result, the spectral weight function matrix can be
written as

There is generally a close relation between the self-energy
and vertex part, and the statement on the regularity of
the vertex part in this paragraph seems to be consistent
with our hypotheses on the self-energy. Nonetheless, I
am not sure of the mathematically rigorous derivation of
the statement on the vertex part from the hypotheses on
the self-energy. Therefore, I must take this as an addi-
tional hypothesis.

Hypothesis 5. The vertex parts have the regular prop-
erty stated above.

As a result, in the zero-temperature limit and, for our
purpose of evaluating the reactive part of the susceptibili-
ty, the sum over the discrete frequency variable can be re-
placed by the integration over the continuous imaginary
frequency variable; eventually, by the Wick rotation of
the path of integration, the whole formalism can be
identified with the zero-temperature one.

We refer to hypotheses 1 —5 as the Fermi-liquid hy-
pothesis (FLH) as a bundle in this paper.

pk(o)= & Ak &(p Ek ) . — (3.21) IV. IDENTITIES

D. Two-particle Green's functions

Now we can decompose Qt83 0 into the near part Q and
the far part ctp, where Q stems from the product of only
the coherent parts of the single-particle Green's function,
while y includes at least one incoherent part. Then the
qp irreducible vertex part I, can be defined through
(2.40). Following Leggett, we assume that, in evaluat-
ing E"(q,Q) under the condition of (3.10) and (3.11), the
several analytic continuations of I

&
can be replaced with

a single tensor 1 "(k,k';co, co';q, Q), which is regular for
co, co'~ED and (k, k') satisfying (3.16). As a result, the
near part can be identified with

Pk =Pk(g=+iO+, T=O) . (4.1)

A. Identities on the A matrix

The Hermitian matrix Ak defined by (2.27) and (3.17)
satisfies the following identities:

Here we collect the identities we need in the following
argument. Before listing them, a few notational conven-
tions are made here. Owing to hypothesis 1, Xk(co) and
Xk(co) and their derivatives are Hermitian and coincide
at (co, T)=(0,0). So we omit the superscript A or R in
most cases where they are evaluated at the origin in the
zero temperature. Similarly, the analytic continuations
of Pk(g) coincide at (co, T)=(0,0) and become unitary;
we denote this by Pk ..

Q(k, co;q, Q)

where

y ~ka(q&Q)~(P Eka +(~)( Aka Aka )

(3.22)

Trek =1,
(Ak ) =Ak

Aka 1 — Aka=(Zka) 'Aka,

(4.2)

(4.3)

(4.4)

9"'Uka
bk (q, Q):— 5(p Ek ) . —

q. u Q
(3.23) (4.&)

The near part Q is singular for (q, Q) =(0,0); in particu-
lar, the cu limit vanishes:

From these identities it can be deduced that

Q "(k,co)—:lim lim Q(k, co;q, Q) =0 .
Q~O q~O

(3.24) (Z„) '= Tr 1 — A„ (4.6)

On the other hand, the far part y can be replaced with a
regular function of (q, Q). Since I (k, k', co, co', q, Q) con-
tains no near part, it can be identified with the co limit of
the full vertex part and its dependence on (q, Q) can be
neglected:

Bh
=Tr M—BXk

k

For arbitrary v X v matrices B and C, it holds that

(Pk 'BPk) =Tr(BAk )

(4.7)

(4.&)

1 (kk', coco')= lim lim 1 (k, k', co, co';q, Q) .
Q~O q~O

(3.25)
and
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Tr(Ak BAk C)=Tr(Ak B)Tr(Ak C) .

The sum of all Ak will become the unit matrix

V

g A„
a=1

(4.9)

(4.10)

D. Specific heat

In this paper we concentrate on the susceptibility and
do not discuss the other experimentally obtainable quan-
tities. However, we make a brief exception here.

It is proved by Luttinger that the temperature-linear
coefticient of the specific heat, y, is given by

B. Identities free from conservation

BEk

gh ka (4.1 1)

The vertex parts satisfy

By differentiating the defining equation of the quasipar-
ticle energy [Eq. (3.3)], we obtain

r

where the total qp density of states, JP„'„is given by

k, a

Let us define

pk(0)= X Ak.5(v Ek»—

(4.21)

(4.22)

(4.23)
( 1+yl ")(1+Q I ) = I+(Q+ y) I (4.12)

The field derivative of the self-energy is related to the ver-
tex part by a Ward identity as

which differs from pz(0) in that AI,
' =Zk Al, is re-

placed by Ak . Then we can rewrite JP„', as

M[1+(Q"+y)I "]=M—ax
Bh

(4.13) JV,*«= g Tr[pq(0)],
k

(4.24)

A11 of the above identities are general ones free from the
conservation property.

where we use (4.2). Alternatively, from (3.21) and (4.6),
we can rewrite JV,«as

r

C. Identities based on conservation

The identities which stem from the conservation of M
are collected in the following. If M is conserved,

JV,*«= g Tr
k

BXk
pk(o) (4.25)

%(q =0, iQ, )=0,
for all 1%0. Therefore,

y(q =0, fl):—K "(q =0, 0)=0,
for all 0, including 0=0. In particular,

(4.14)

(4.15)

(4.16)

In the zero-temperature limit,

1 . + ~~k
g —g exp(iso„O+ )Tr M

k n
/= ice„

=0 (4.17)

Note that we need only the weak conservation to obtain
this identity (see Appendix C). The frequency derivative
of the self-energy multiplied by the matrix M can be re-
lated to the vertex part by a Ward identity:

(4.18)

(4.19)

Comparing this with the definition of pk(0) in (3.21), one
can find that (4.19) is reduced, in the k limit, to

—M(1+yI )Q"=Mpk(0)5(co) . (4.20)

Multiplying (4.18) by Q and using (3.22), (4.4), and the
definition of Ak in (3.18), we obtain

M(1+@I'")Q=—g p Ak (q, Q)5(p Ek )5(co)Ak"—

Be careful that, since Zk may be very small, the qp den-
sity of states, pk(0), and the bare-particle density of
states, pk(0), are completely different quantities.

Now let us return to our main theme, the linear
response to the external field, which we refer to simply as
the susceptibility.

V. SUSCEPTIBILITIES
OF THE MULTICOMPONENT FERMI LIQUID

First, utilizing the Luttinger's method, we derive an
expression for yT of the general multicomponent Fermi
liquid [Eq. (5.17)] and rewrite it in a form reminiscent of
the one by Yamada and Yosida for the spin susceptibili-
ty of the SU(2) PAM [Eq. (5.21)]. Next, we obtained
y(q, 0) based on the Kubo formula and express the qp in-
teraction function with the vertex part represented in the
original local basis. Finally, we show that y =yT at
three levels: (i) The explicit transformation form y to yz.
is performed, by using the identities presented in the pre-
vious section, under the assumption that M is conserved;
then (ii) a more formal mathematical origin, which is free
from the conservation of M, is discussed; and finally (iii) a
physical interpretation is given for the characteristic
(q, Q) dependence ofy(q, Q).

A. Isothermal static uniform susceptibility

1. General expression

We must note, from the outset, that Luttinger's
method is e%cient only when M is conserved. If M is not
conserved, the procedure breaks at the very first stage. It
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is regrettable that there is no way to escape from this
breakdown. I would like to emphasize it here, because
this fact is sometimes forgotten even by experts of this
method. '

First, we proceed as far as possible without using the
conservation of 1A', in order to reveal where the difficulty
arises when 1& is not conserved. The trace in (2.52) can
be rewritten as

Tr[MQk(g))=Xk(g)+Yk(g)+Ck(g)+Ck(g), (5.1)

1
XT pf sys

BM... 1

Bh N sys

1
XP=N X

sys k, a

1 ~Pk

ah
e(„-E„*.) .

sys k, u

(5.14)

(5.15)

(5.16)

where

Xk(g) = Tr[Mln( —Qk ')],

Yq(g) =Tr M

BPk
Ck(g)=Tr P„Q„[ek', M]

8Pk
Cl, (g) =Tr Pk [ln( —

Qk '), M]

(5.2)

(5.3)

(5.4)

(5.5)

All the quantities are evaluated at h =0. We call g~ the
Pauli term and yz the Van Vleck term in this paper,
whereas this terminology is not universal in the litera-
ture.

The Van Vleck term cannot be expressed by the qp's,
because the formula (5.16) includes an integration over k
far apart from the Fermi surface, where the concept of
the qp does not exist. Therefore, it is very difficult or
practically impossible to discuss the general property of
this term; it differs case by case depending on the details
of the system.

What is worse, any further simplification or even a
gross estimation of the term (BM„/Bh ) is impossible in
general. Thus Luttinger's method is useless, unless M is
conserved.

The frequency summation of the first term Xk(g) can be
transformed, in the zero-temperature limit, into a very at-
tractive form:

2. Luttinger's expression

1—g e xp(ice„)X (kiev„) (5.6)

(5.7)

=—Im J den TrIMln[E& —p+Xk (co)—co] I

a A

'TT — Bco

If M is conserved, M commutes with Qk. Then Ck and
Ck are simply zero. Furthermore, by identity (4.17), the
summation of Yk over both of the frequency and wave
vector will vanish. In addition, the pk s become in-
dependent of h and k; they coincide with the elements of
the diagonal matrix M. Thus we obtain yT as

=—Im Tr[Mln[Ek —
p+Xk (co=0)]]1

(5.8)
XT=

N
1

sys k, o.'
P P k (5.17)

1
g[l.„".(~=0)—~]

a

= &ok.e(V —E~.»

(5.9)

(5.10)

The Van Vleck term and residual correction term do not
exist when M is conserved. Here I would like to claim
that we need only the weak conservation of4 in deriving
the above expression, whereas Luttinger s original deriva-
tion for the spin susceptibility seems to require the strong
conservation of the spin (see Appendix C).

where, in the second step, we use (2.21); in the final step,
we employ hypothesis I. The quantity pk, which de-
pends on the external field in general, is defined by

3. Yamada and Yosida's expression

Pk~(h) = (Pk 'MPk )~~ (5.1 1)
Utilizing the above result of Luttinger [Eq. (5.17)] and

the equation

=Tr[MAk (h)], (5.12) det [co+p —Ek (h ) —ReXk (co) ]=0, (5.18)

where, in the second step, we use (4.8).
Thus the total magnetization can be written as

M„,(h)= g p (h)e(p —E„* (h))+M„(h), (5.13)
k, a

where M„(h) is the residual correction due to the terms
Yk, Ck, and Ck. Hence gT is obtained as

the roots of which determine the qp-band dispersion
Ek —p, Yamada and Yosida express the spin suscepti-
bility of the SU(2) periodic Anderson model in terms of
the spectral weight function arid field derivative of the
self-energy. We derive a similar expression for our more
general model. For this purpose it is easier to start from
(5.8):
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+T= g — Im TrIM In[Ek(h) —/M+2k (co=0)]I1 1 (3

Bh
(5.19)

1 QlmTr M M-
+sys

ax„'(0) —Gk (0) (5.20)

QTr M M—1

+sys

ax„'(0)
/ok(0) (5.21)

where, in the last step, we use the formula (2.20) and ImXk (0)=0. Let us note that the conservation of M plays a cru-
cial role again in the above transformation: The differentiation of the logarithm of the matrix can be done in such a
simple manner as in the above, because M commutes with the argument of the logarithm.

Finally, in order to confirm the consistency with Luttinger s expression (5.17), let us make a further transformation:
Using (3.21) and (4.7), Eq. (5.21) is transformed as

1 ar„'(o)
XT= & Q Tr M M —

&h
Ak Zk 5(/M Ek* )—

sys ka
(5.22)

1
XPa Zka

sys Bh
5(V —Ek. ) . (5.23)

By identity (4.11), this reduces to (5.17). Thus the consistency is confirmed, or (5.17) is proved by an alternative way.

B. Dynamical susceptibility

~e restrict ourselves to the low temperature, low frequency, and long wavelength in the sense described in Sec. III B.

1. Expected phenomenology

Let us first present the equations to be derived: The qp part of y(q, n) is expected to be obtained as follows.
Under the external field h (r, t ), the space-time-dependent qp energy 6'k (r, t ) is given by

6k~(r, t)=Ek~ —
pk h(r, t)+ g f p(k, k')5nk. p(r, t),

k', P
(5.24)

where Ek is the qp energy in zero field, pk the eifective moment of the qp, f p(k, k') the Landau qp interaction func-
tion, and 5nk (r„t) the deviation of the qp distribution function from B(p—Ek ). In the collisionless regime, nk is
governed by

dr 0 dk
dt dt /jr dt Bk

(5.25)

with

dr, dk=
Vka&

8@k*

Br
(5.26)

Combining these and taking the Fourier transform, 5n satisfies the following linearized Landau-Boltzmann kinetic
equation to the first order in h:

(n —
q U/,

* )5nk .(q, n)=q Uk* 5(p E/,
*

) pk h(q—, n)+ y—f p(k, k')5n/, p(q, n)
k', P

which can be solved as

5nk (q, n)
~k ('q n)pk ~k ('q n) g S p(k k 'q n)~k'p(q n)pk'p

h q, n k', P

with

S p(k, k';q, n)=f p(k, k') —g f (k, k")hk-y(q, n)Syp(k", k';q, n),
k",y

where 6k (qn) is defined in (3.23). Since the local magnetization is given by

(5.27)

(5.28)

(5.29)
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5m(r, t)= g p„* 5ni, (r, t),
k, a

the dynamical susceptibility

5m(q, Q) „5nka(q Q)

h(q, Q) k h(q, Q)

is obtained as

(q, Q)= X (pi ) iik (q, Q) —g +pi* bk (q, Q)S p(k, k', q, Q)6k p(q, Q)pk p.

(5.30)

(5.31)

(5.32)
k, a k, k' a, P

The above derivation of Eqs. (5.29) and (5.32) is purely
phenomenological. In the following, however, we can
derive the equations logically and can reveal what pk
and f &(k, k') are at all.

2. Decomposition

Applying the decomposition of 0 0 defined in Sec.
III D to (2.42) and (2.41), we obtain

[(r )',,"(A„*.),„]x[(A„*.)„,(r)'„J ] (5.41)

=[(r.A„*.) x( A„*.r)]L, (5.42)

and there remains the summation over the qp-band in-
dex."

Now, substitute (3.22) into (5.35) and (5.36), and then
apply the above technique. This yields exactly the ex-
pected formulas (5.32) and (5.29) with the quantities
defined as follows:

x(q») =x.„+x„(qQ»
where

g„„=—My(1+I "p)M,

(5.33)

(5.34)

&„*.——M(1+qr )A„*. ,

f &(k, k') = A„* I (k, k') A„'&,

S.tt(k, k';q, Q) = A,*.r(k, k', q, Q) A„',

(5.43)

(5.44)

(5.45)

and

y „=—M(1+ipr )(Q+QI Q)(1+I ip)M, (5.35)

r=r +r"Qr . (5.36)

(q—=0, Q~O)=0,

(q~O, Q—:0))0 .

(5.37)

(5.38)

Finally, note that, because of these limiting behavior of
, the co limit of the dynamical susceptibility g coin-

cides with the non-qp part:

X Xnqp (5.39)

3. Quasiparticle part

By virtue of identity (4.9), the intermediate tensor
product including Q given by (3.22) over the local-basis
indices can be decoupled into the matrix product over the
qp-band indices. For example, the tensor product in
r"Qr,

The non-qp part g„qv is smooth for small (q, Q), and so
we can replace (q, Q) by (0,0) and take it as a constant, as
the notation implies. The qp part y„ is singular for
(q, Q)=(0,0):

Thus we accomplish giving a microscopic foundation to
the phenomenology given in Sec. V B 1, while relating the
phenomenological parameters to the microscopically
definable quantities.

If M is conserved, the results are simplified further as
follows. From (5.39) and (4.16), it is deduced that

(0,0)=0 . (5.46)

Thus the low-frequency and long-wavelength response to
the external field is completely determined by the qp's
near the Fermi surface with dispersion Ek . In addition,
we can show that the qp eA'ective moment pk is not re-
normalized at all in this case: Substituting (4.18) into
(5.43) and using (4.4), we obtain

pk =Tr(MAi, )=p (5.47)

4. Advantage of our formalism

Therefore, the qp, which is a very complex object if
defined with respect to the bare particle, couples to the
external field exactly the same as the bare particle. Note
that this rather fortunate result is due to the conservation
of M. In general, the coupling of the qp to the external
field may be very complicated, as we11 as there being a
complication due to the existence of the non-qp part.

[r"(A„*.e A„*.)r]I
(re)ir( A e A e )rs (r)sj

=(r )',", (A„*.),„(A„*.),„(r): (5.40)

Jones and MaClure" have already derived the above
result, working on the qp-band basis throughout. The
vertex part in their representation is given in our formu-
lation as

can be decoupled as I p(k, k') = Ak I (k, k')A„,ti, (5.48)
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which is related to f & as

f p(k, k')=Zk I p(k, k')Zk. tt . (5.49)

that the magnetization is conserved:

(5.51)

Although the final result is the same, as it must be so, the
formulation of ours with the 3 matrix has the following
advantage compared with that of Jones and MaClure:
The identity of the original local basis is made to be
transparent as well as its relation to the qp-band basis.

The information connecting the local basis with the
qp-band basis is contained in the matrix Ak defined by
(2.27), (3.17), and (3.18). Written explicitly, for example,

= —M[1+(Q +y)l ]Q"(1+I "y)M (5.54)

M —
Q (1+I y)M

BX k

Bh
(5.55)

= —M(1+yI ")(Q + Q "I Q")(1+I "y)M (5.52)

= —M(i+q r )(I+Q "r)Q"(I+r q)M

f.,(k, k')= g (W„*.),,[r (k, k')]," (~„*,,), .

(5.50)

=QTr M M—
k

=ET .

(5.56)

(5.57)

Here, recalling that the indices i,j, l, m are the local-basis
indices, our purpose of relating the qp-band basis and the
original local basis is completely achieved. Although we
admit that expressions such as (5.50) are not so elucidat-
ing in general, most of the elements of I "will vanish and
an expression such as (5.50) will become neat and useful
on some occasions.

Furthermore, the factor Zk, which is originally
defined in the qp-band basis by (3.5) and (3.6), can also be
expressed in the original local basis through (4.6). The
matrix Ak, whose trace is unity, gives the constitution of
the qp in the eth band of the wave number k with respect
to the original local basis. Yip' has partly attained the
same purposes as ours; he has succeeded in reformulating
the Fermi-liquid theory retaining the identity of the c and
f electrons for one of the simplest periodic Anderson
models (PAM's). However, his method depends heavily
on the special simplicity of his PAM Hamiltonian. On
the contrary, my formulation and results accomplish the
same purpose in a form independent of any specific char-
acter of the Hamiltonian.

In the above transformations, we use successively the fact
that the non-qp part vanishes [Eq. (5.46)], the definition
of the qp part [Eq. (5.35)], identity (4.12), a Ward identity
(4.13), identity (4.20), and our formula for yT [Eq. (5.21)].

This resolves positively the question posed by Yip that
his y" for the SU(2) PAM seems diff'erent from yT of Ya-
mada and Yosida, in the most general form applicable to
any conserved quantity of any MCFL.

2. Math, ematica1 origin

In the above transformation, the condition that M is
conserved has been crucial; yet we expect that the
equivalence g =yT holds more generally. Below is a
sketch of the mathematical origin of this equivalence at a
more general but less rigorous level ~

The neighboring two poles of the first order at
Ek + q p i 0I and at Ek —p, which appears in
K (q, fl ) =y(q, II) [see (3.22)], yield the following factor,
under the operation (P) 'g„gk and after the analytic
continuation i AI ~0+ i0+:

X %X & XT

As we have seen, the behavior of y(q, Q) based on the
Kubo formula is singular for (q, Q) =(0,0). For example,
if M is conserved, y =0, while y )0. From this, one
could expect that the static uniform susceptibility one ob-
tains experimentally should be identified with the k limit

and it would coincide with gT. Nonetheless, this is
not trivial in principle. In fact, Yip complains that he
cannot see the equivalence between his g and Yamada
and Yosida s yT for the spin susceptibility of the SU(2)
PAM. The same complaint can be posed on our more
general formula for gT and g; they are considerably
diff'erent at first sight. Thus let us investigate the relation
between our y and yT.

1. Explicit derivation ofy"=yr
for conserved magnetization

Below, we show explicitly that the k limit of y(q, Q)
based on the Kubo formula can be reduced to gT ob-
tained by Luttinger's method, for the most general mul-
ticomponent Fermi liquid (MCFL), under the condition

+i fLI +p —Ek+q )m, +p —Ek

f«~+, ) f«k*)—
5(co)

EJ +q
—Ek —0

g 'Vp
5(p E„*)5(co), —

q. vk
—0

where f (x) is the Fermi distribution function

1

/3(x —p)+ )
f(x) =

(5.58)

(5.59)

whose derivative reduces to the 5 function in the zero-
temperature limit:

d == —5(p, —x) .
dx

(5.60)

(i co„+p Eq*)———5(p —Ek*)5(co) . (5.61)

On the other hand, the single pole of the second order at
Ek —p, which appears in %(q =0, i Q,, =0)=yr, yields
the following factor:
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The k limit of (5.58) coincides with (5.61), while the co

limit of (5.58) vanishes. Thus the k limit of E"(q,Q)
coincides with%'(q =0, i 0& =0).

In fact, the summation over m„must be performed
after multiplying extra factors, such as I (co, co') and
Z(co). However, with our Fermi-liquid hypothesis, such
factors are expected to be satisfactorily well behaved.
Hence the above consideration on the poles exhausts the
mathematical origin of the equivalence between y and

yT of the Fermi liquid.

h

~exi

I i I

3. Physical interpretation

Let me make a digression departing from the Fermi
liquid and present a physical interpretation of the charac-
teristic behavior of y(q, II) for (q, Q)=(0,0), which
seems to be valid beyond the case of the Fermi liquid.

The trouble in the Kubo formula is that, since the sta-
tistical density operator develops adiabatically and there
is no outer magnetic-moment bath, the system cannot
respond to the uniform field if the total magnetization of
the system is conserved. Therefore, let us think of the
following gedanken experiment in which the external
field is nearly uniform but not completely uniform.

First, we abruptly apply an external field h (r) of the
spatial profile depicted in Fig. 4(a). Then the magnetic
moment m(r) will grow and eventually stop changing;
the final profile of m (r) would be like the one depicted in
Fig. 4(b). By r„&,„(l,„,), we denote the time for this to
take place. We expect the final ratio of m(r )0/A( r)o

would be equal to yT, because the outer region can play a
role of the bath of the magnetic moment as well as the
thermal energy.

Now let us assume that M is conserved; then all the
magnetic moments appearing in this region of linear size

1„,must come from the outer region by the Aow through
the boundary. Therefore, r„&,„(l,„,) is a limitlessly in-

creasing function of I„,.
Next, we make the external field oscillate with a period

If the oscillation is too rapid or, more quantitatively,
if

+ext relax( ext ) (5.62)

then m ( r, t ) can follow the external field; the ratio
m(ro, t )/h (ro, t ) is expected to be independent of time t
and again equal to gr.

Finally, we apply the external field h (r, t) ee e'~"
Then we can make the following replacements:

(5.64)

then m(r, t ) cannot follow the external field, and hence
the response to the external field is to be zero. On the
other hand, if the oscillation is slow enough, i.e.,

(5.63)

rp

FIG. 4. Spatial profile of h (r) and m (r) in the gedanken ex-
periment.

On the contrary, if we take the limit Q~O first (the k
limit), r,„, becomes infinite, and hence condition (5.63) is
fulfilled; thus the k limit of g(q, 0) will coincide with yT.

On the other hand, for the unconserved part of the
magnetization, „ri(I,„,) is expected to become constant,
independent of I,„, for suKciently large l,„,. Therefore,
condition (5.63) is always realized as A~O. Thus this
part of y(q, Q) is insensitive to the order of the two lim-
its.

The digression ends here. We return to the susceptibil-
ity of the Fermi liquid. Before proceeding to some exam-
ple calculations on the periodic Anderson models, let us
make one more and final general consideration, this time
on how to make approximations in our Fermi-liquid
theory, in particular, on what is called the random-phase
approximation (RPA).

D. Susceptibilities in the RPA

One inevitably uses some approximations in calculat-
ing the values of the susceptibilities. In order to preserve
the Ward identities or the other identities deduced from
the conservation property, and hence in order to make
applicable the general theory developed by using these
identities, such as the one given in the former part of this
paper, we must be careful to retain the consistency be-
tween the self-energy and vertex part in approximating
them. The simplest approximation satisfying this con-
sistency is the one in which the self-energy and irreduc-
ible vertex part are approximated by the diagrams in
Figs. 5 and 6. In other words, the single-particle Green's
function is approximated by the self-consistent Hartree-
Fock approximation, while the two-particle Green's func-
tion by the random-phase approximation: The diagrams

(b)

(5.65)

If we take the limit ~q ~

—+0 first (the co limit), condition
(5.62) is realized, because ~„&,„(l,„,) becomes infinite, as
mentioned above; thus the co limit of g(q, A) will vanish.

FIG. 5. Self-energy in the RPA. The thick line represents
the full single-particle Green's function.
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FIG. 6. Irreducible vertex part in the RPA.

~~ Cl&+C Q+W'&
c

+ Cl3--(l3

contributing to the susceptibility are depicted in Fig. 7.
We refer to this set of approximations simply as the RPA
in this paper.

In the RPA the self-energy and, hence, the transforma-
tion matrix Pk are independent of the frequency variable.
Therefore, the terms Yk, Ck, and Cf, in (5.1) will au-
tomatically vanish, and so M„=O. Thus yT is given
by

+RPA 1

sys k, a
(5.68)

The Geld derivative of E& and pk can be obtained as fol-
lows: Since Z& = 1 in the RPA, (4.7) and (4.11) reduce to

FIG. 7. Three types of diagrams contributing to the RPA
susceptibility: (a) the bubble type ones, (b) the ladder type ones,
and (c) the mixed ones.

RPA RPA+ RPA
XT Xp Xp'

RPA BEka
x& =~ X

sys k a

(5.66)

(5.67)

BEk gyRPA

Bh Bh

Starting from (5.12), we can deduce

(5.69)

deka 1

P (~ ) &kP
—&k

gy RPA
Tr M —

h
( AkaMAkp+ Akf)Milka) (5.70)

On the other hand, we can naturally decompose the dynamical susceptibility into the qp and non-qp parts by separat-
ing Qe 0 into Q and g as

Q(k, ~;q, Q)= g 9k+ (iso„+iQ()(8 g'k '(i~„), (5.71)

y(k, co;q, Q)= g QP+q(ice„+iQ&)Q(k )(ice„),
a,P

(a&P)

(5.72)

where g(k ' is the summand of (2.26):

g(a)(g)
0+v —&k.

(5.73)

gRPA — MQ k[ 1 + 1 k( Q k+ @) ]M

Mq)[1+1 "(Q"+—q))]M .

(5.74)

(5.75)

Comparing these formulas with (5.34) and (5.35), we can
understand well why yz and y& are not equivalent to pqp
and y„. The origin of the inequivalence is that BX/Bh
and thus gz include the diagrams which vanish in the co

limit.
At this point you might think that what is wrong is our

terminology, and think that we should simply call pqp
and g„ the Pauli and Van Vleck terms (actually, this
terminology is sometimes used). What I would like to
emphasize here is that the naive definition of the Pauli

Note that the A matrix is independent of the frequency
variab1e in the RPA.

A lthough p p pnqp when U =0, they do not coincide
in the RPA. Substitute (5.69) and (5.70) into (5.67) and
(5.68), and then apply identity (4.13); this reveals that

and Van Vleck terms cannot be extended easily when
UAO if one considers only the isothermal static uniform
susceptibility as in Sec. VA. On the other hand, the
decomposition of the dynamical susceptibility y(q, fl)
into the qp and non-qp parts will never be obscured be-
cause of their characteristic dependence on (q, Q). This
ends the part of the general formalism.

VI. PERIODIC ANDERSON MODEL

In this section we apply the general formalism we have
constructed thus far to three kinds of the periodic Ander-
son models.

The first PAM we consider is the so-called SU(X)
PAM, which is widely used in the 1/X expansion and
which includes, as a special case (N =2), the simplest
PAM in which the c and f electrons have only the spin- —,

'

degeneracy. For this SU(X) PAM, we derive formulas
for yT and y(q, A). The resultant formulas are only sim-
ple and rather trivial generalizations of the ones obtained
by Yamada and Yosida and Yip, ' respectively, for the
SU(2) PAM. My emphasis here is on the utility of our
formalism, which enables one to reach the final desired
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(a) in the one-body part of the Hamiltonian can be decom-
posed into the direct sum of N pieces of 2 X 2 matrices

2A 2V

Ek —=Ek( J)Ek( J+$) kJ

Ez(

EkJ

(6.3)

(6.4)

(c) (cI)
where

E (6.5)

The two-body part of the Hamiltonian is of the form

FICz. 8. Schematic band structure of the PAM's: (a) unhybri-
dized c band and f level(s) ( V=0}, (b) hybridized band of the
DD PAM, (c) hybridized band of the OD PAM ( U =0), and (d)
Hartree-Fock band of the OD PAM ( UWO).

&»(k p»q)f~(p»)f~(q)
SyS A, , A,

' k,p, q

Xfq (q —k)f)„(p+k ) .

The local magnetization is defined as

g 0
m(r)= g Ag~(r) f~(r);0 g

i.e., the 2N X 2N matrix M is given by

(6.6)

(6.7)

results far more easily and simply.
In the second model, the spins of the c and f electrons

are allowed to have different g values, while the degenera-
cy of the spin is retained to be 2; we call this model the
doubly degenerate (DD) PAM. In the third model,
which we call the orbitally degenerate (OD) PAM, the c
and f electrons have different degeneracies. In these two
models, the magnetization is not conserved, and hence
the non-qp part of the susceptibility exists, in contrast
with the SU(N) PAM. Thus we carefully obtain the qp
and non-qp parts separately, although the treatment is re-
stricted in the RPA. The schematic band structures of
the DD and OD PAM's are illustrated in Figs. 8(b) and
8(c); in the former no band or level remains in the hybrid-
ization gap, while some remain in the latter. As a result,
the non-qp parts of these two models show completely
different character as a function of the hybridization be-
tween the c and f electrons and as a function of the
Coulomb repulsion between the f electrons. The results
of these example calculations are found to be helpful in
discussing the Wilson-ratio problem in the next section.

M P( J)IP( J+])I PJ I (6.8)

2. Susceptibility

Because of the conservation of the magnetization, the
self-energy and spectral weight function can be decom-
posed into a direct sum such as Ek and M as

where I is the 2 X 2 unit matrix and p& =g I,.
In order to apply the I /N expansion, Ek) must be in-

dependent of the Aavor A, , and it is desirable that
U(k, p, q)= U (where U is a constant). However, we do
not need these restrictions in deriving the general expres-
sion of the susceptibility below. In addition, we can take
pz arbitrary, departing from the SU(N) symmetry.

The important assumptions for us are only that the c
and f electrons have the same degeneracy and that both
the hybridization and two-body interaction conserve the
magnetic moment. The additional assumption which
makes the results considerably simple is that the two-
body interaction acts only between the f electrons.

A. SU(X) periodic Anderson model

1. Model

~k ~k( —J) ~k( —J+1) ~kJ

Pk Pk( —J)Pk( —J+1) 'PkJ

(6.9)

(6.10)

The SU(N) PAM is defined as follows. The electron
has 2 XX components locally:

Q (r)=(Q( J)(r), $( J+,)(r), . . . , PJ(r)), (6.1)

f~(&)=(c~(&»f).(&)1 (6.2)

where N=2J+1, with N an integer, and the flavor A,

takes the values from —J to J. The 2%X2N matrix Ek

Since the interaction is only between the f electrons, the
self-energy matrix has only the ffelement:-

0 0
&km= 0 ~f (6.11)

kA,

while all the elements of the spectral weight function are
finite in general:
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c cf
Pkk, Pkk,

Pkg, fc fPkz Pkz
(6.12)

1
XT=

N X (V~)'pkd0)
sys k, o

Substituting these to the general formula (5.21) for yT,
it is easy to obtain the result

The results corresponding to (6.13) and (6.18) for the
SU(2) PAM have already been obtained by Yamada and
Yosida and Yip, ' respectively. The advantage of our
formalism is that similar final results can be obtained
much more easily and systematically as above.

B. Doubly degenerate PAM

1. Model

arf„,(0)+ (pq) pg ~~
paq(0)

(6.13)

In order to make the simplest example in which the
non-qp part of the susceptibility exists, we modify the
SU(2) PAM as allowing the spin of the c and f electrons
to have different g values:

k k( —J) k( —J+1) akJ (6.14)

and so let us denote the elements of azz simply (without
an index of the lower band) as

The off-diagonal terms of pk& do not appear in the above
expression owing to the special simplicity of the two-
body interaction of the present model.

Now let us assume that the Fermi surface lies wholly in
the lower bands. Then we need only the renormalized 3
matrix for the lower bands (we use the symbol ak instead
of Ak in the following and reserve the subscript for the
flavor index),

C o
m(r)= g os (r) f Q (r)0 g

(6.19)

= gcr[g'c (r)c (r)+g f (r)f (r)], (620)

while keeping the degeneracy to be twofold, i.e., 0.=+—,',
which are sometimes denoted by 1' and $. In addition,
we assume, for simplicity, that the bare transfer to the f
electron is zero and that the hybridization between the c
and f electrons and the repulsive interaction between the
f electrons are on site:

C

~km =
~pc

cf
akim

ag
(6.15)

EP=E

Vk = V,

(6.21)

(6.22)
Similarly, the qp interaction function f has elements only
between the lower bands, and so we denote it simply,
without indices of the lower band, as f&z (k, k'). This
fez (k, k') can be expressed with the elements of a&& and
vertex part I "(k,k').

Out of the (2N) elements of the vertex parts I, N
terms will be identically zero, because the c electrons do
not interact:

(6.16)

In the expression of the susceptibility, only the following
elements will appear:

r r ~ r r
CT, CT

(o.Wo')

(6.23)

g f (p)f (q)f (q —k)f (p+k),
sys a, o' k,p, q

(6.24)

where we set V real positive without loss of generality.
The existence of the non-qp part of the susceptibility is

manifested in Fig. 9: The magnetization appears linearly
as a function of h, although the Fermi level lies in the

If(k k A, A ):[I (k k )]IgIIfg I
(6.17)

I t I

i
I I I 1

i
I I I I

i
I I I I

0. 5—

Using this, we can write the qp interaction function as

fez (k, k') =ag&agz I f(k, k', A, , A, ') . (6.18)

Because of the conservation, the magnetic moments
are not renormalized: The qp of the flavor A. has the
same effective moment p& as the bare particle. In addi-
tion, the non-qp part of the dynamical susceptibility does
not exist, again because of the conservation. Therefore,
now that we have obtained the interaction function and
effective moment of the qp's, we can completely deter-
mine the dynamical susceptibility for low frequencies and
long wavelengths.

We will not pursue further simplifications as a result of
the spatial isotropy or the spherical symmetry, which is
incompatible with the lattice translational symmetry.

0. 2

E

0. 1

0. 0
0. 0 0. 1 0. 2 0. 5

h

FICx. 9. Magnetization as a function of h calculated for the
band structure described in Fig. 10 with D =1.0 and 6=0.1 at
U=O for g'=2. 0 and g =0.5. The Fermi level is assumed to
lie at the center of the band gap when h =0. The analytic ex-
pression is given in Appendix D. The bend in the curve is due
to the field induced metal-insulator transition. D =1.0 V=0.5,
and thus 6=0.2.
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band gap.
Whereas we refer to 0. as the spin, it should not be tak-

en literally. This model can be seen as a simplified ver-
sion of the model considered by Hanzawa, Yosida, and
Yamada and Yamada and Nakano, in which the degen-
eracy of the f electron is reduced to 2 by a strong spin-
orbit coupling and crysta11ine field.

2. Green's function in the RPA

Xfk =—,'nf U, (6.25)

where nf is the number of f electrons per site. Thus let
us make gf absorbed in Ef, by redefining E . In addi-
tion, let us take this redefined E as the origin of energy:
Ef=O.

With these preparations the single-particle Careen's
function in the RPA in zero field is obtained as follows.
It can be written in a block-diagonal form as

~k=~kg~kt .

The block-diagonal element 9'k is given by

~k k + k

where

(6.26)

(6.27)

The self-energy has only the f felem-ent Xk . In the
RPA described in Sec. VD, it is independent of k and
coincides with the number off electrons per site with the
opposite spin multiplied by U, which is the contribution
from the diagram of Fig. 5(a); the diagram of Fig. 5(b) is
irrelevant in this model, because the f electrons with the
same spin do not interact at all owing to the on siteness
of our simplified two-body interaction. In the following
we treat the Green's function in zero field only. In zero
field the self-energy becomes independent of cr:

Note that, in this approximation, the k dependence of the
elements is only through the band energy (of the lower
band), as the notation of the right-hand sides implies.

Although it is of less importance, we also need ak+

when calculating the quantities such as the qp interaction
function, qp effective moment, and non-qp part of the
susceptibility. Using the same ak and ag, the matrix a„+
can be written as

a+=
kyar

ag
+(aca)t')'/2

+ ( a cap)
1/2

(6.33)

Be careful that, in the above expression, the c-c element is

ag and vice versa; this happens because we make the no-
tation so that the expression for ak would be natural. It
is instructive to check that these A matrices satisfy the
identities presented in Sec. IV A.

The decomposition of g g into Q and y is done ac-
cording to the scheme given in Sec. V D:

Q
—g( —) g( —)

—g(+) g( —)+ g( —) g(+)

(6.34)

(6.35)

The term g' )I8) g'+' is redundant under our assumption
that the Fermi level lies in the lower bands.

3. Static uniform susceptibility in the RPA

In this model, owing to the on siteness of the two-body
interaction, the diagrams in Figs. 7(b) and 7(c) will never
appear. Thus the irreducible vertex part of Fig. 6(b) can
be neglected completely. In the RPA all of the internal
frequency and wave-vector summations can be performed
independently; the following two summations over k will
appear after the frequency summation:

g(+ )( p)
0+i Ek— (6.28) —,'JV,O,

——g 5(it Ek )—
k

(6.36)

The energy dispersions of the upper and lower bands,
Ek, ale

2aka&—= X e(i —Ek ) .
k Ek Ek

(6.37)

E„+=—,'I „+[( „) +4V—]' (6.29)

The explicit forms of the A matrices are given below.
Now let us assume that the Fermi surface lies wholly in

the lower bands; in this case ak is more important. Thus
we denote the c cand f-f elem-ents of ak simply by ak
and ag. Then the explicit calculation shows that the off-
diagonal elements can also be expressed with these ak
and ag, and the final form of ak is obtained as

a c (a cap)1/2
(6.30)

I'f(o =o')=

I f(outcr')=.

—UAU
1 —(U%)

U
1 —(U%)

(6.38)

(6.39)

The first one is the density of states per spin at the Fermi
level, coming from the term —Q". The second one is
coming from the term —y.

The co limit of the vertex part is of the form (6.17) with
I, replaced by o., and it is independent of the k's in the
RPA. They are given by

where the diagonal elements are given by

(Ek )'
ak= "—:a'

(Ek ) +V

a = =af(E1, ). —p'2

(Ek ) +V

(6.31)

(6.32)

The non-qp part of the susceptibility is obtained as

yRPA2(g f gc)2
1'
2 1 —U%

0

(6.40)

where the factor 2( —,') comes from g cr (our convention
is o =+—,'). The superscript 0 on yo means U=O. The
effective moment of the qp on the Fermi surface is
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—=o g'a'+ g +(g —g') U
1 —U

af

(6.41)

(6.42)

1

CD
C:
CD

[a)

F':—(a ) [1 f(o =o.') —1 f(o&o')]—,'A;„ (6.43)

where a' and af without argument are evaluated at the
Fermi level: a'=a'(p) and a =a (p). The effective g
value g* is renormalized, varying from g =g'a'+g a
with U. If g'=g =g, however, we can see that g*=g as
well as gzqp =0; this is in accordance with the general re-
mark that the effective moment is not renormalized and
the y„does not exist if 19 is conserved.

In the expression of pqp, only the following combina-
tion of the interaction function multiplied by A;„ap-
pears:

CD

0

C3

I

CD

C:
(/)

I I I
)

I I

0 2

DOS

0—

I I i
I

I I

0 2

DOS

FIG. 10. (a) Symmetric and constant c-electron density of
states and f-electron level. (b) Density of states after hybridiza-
tion. D = 1.0, V =0.5, and thus 6=0.2.

f 2

1 —UA 2
(6.44)

~RPA g
e1

qp

ot

1+F' (6.45)

With this parameter, the qp part of the susceptibility (in
the k limit) is expressed as

2

and the c and f-el-ectron weights are

p'2
a'(p)=, af(p) =

p+V p+V
The k summation (6.37) can be performed as

(6.51)

If one prefers the form in which the enhancement factor
will appear only in front of the f-electron density of
states, one can rewrite (6.45) as

~RPA —
( ]go)2[~ +(1+~f )~ ] (6.46)

where

JV, =a'JV„„JVf=afJV„, ,

and

(6.47)

F'[a (1+F—')]
fU

1 —U( —,'afJVf +%)
(6.48)

orfk
penh go ~h RI A

(6.49)

4. Constant density of states for the conduction band

Now let us further assume that the density of states of
the conduction band ck is constant with width 2D and
symmetric about F. =0 (Fig. 10). Then the parameters
appearing in the preceding expressions of the RPA sus-
ceptibilities are evaluated as follows. The density of
states per spin is

p2+ p2

p
(6.50)

Nonetheless, one must be careful not to give too much
physical interpretation to expressions such as (6.46), be-
cause such a rewriting is not unique and nor is the mean-
ing of g,„h clear. If and only if g'=gf =g, it is given by

1 V —p + D
2D 2+ V2 (D 2+ 4V2) 1/2 (6.52)

By the way, I would like to emphasize again the fact
that the decomposition of the susceptibility into the qp
and non-qp parts can easily be obscured if one considers
only the static uniform susceptibility; in fact, one can
rewrite Z„q~=+& as

2 2

gv=2 — (gf—g') a'a JV„,+0 —, (6.53)

where y~ seems to be proportional to the density of states
at the Fermi level: It cannot be distinguished from the
qp part in this respect. Only through the characteristic
dependence on (q, Q) can the identities of the qp and
non-qp contributions be established without ambiguity.

Besides, it must be noted that, even if V becomes small
and hence the gap 6 between the upper and lower bands
becomes very small, p qp

does not grow large, but
remains almost constant: The factor a 'a fJV„,=A in
(6.53) is equal to (1/D )[ V /(p + V )]= 1/D, as long as
V/D (1 and nf =1. The origin of why A remains small
is as follows: First, because of the conservation of the
wave number, the energy denominator of (6.37) does not
become small in most of the k space, although the gap 6
becomes small [see Fig. 8(b)]. Second, the interband ma-
trix element [the numerator of (6.37)] is small in most of
the k space.

Let us return to the RPA susceptibility. Some results
are depicted for V/D =0.3, g'/g =4.0, and nf =0.9.
The renormalizations of g„and g

* are small [Figs. 11(b)
and 11(c)],while yqP is much enhanced in the usual RPA
manner [Fig. 11(a)]. Thus the ratio of y and y„
which is already small at U=O, becomes smaller at finite
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U's. Therefore, in the whole range of U where y
remains finite, g„qz is negligible.

However, we must be careful that the above behavior
of +IIqp is specific to this model. The behavior of +IIqp
varies from model to model. In the next subsection, we
consider a different kind of PAM, in which g„„will
behave in a completely difFerent way.

C. Orbitally degenerate PAM

1. Model

As a final example, we consider a PAM which has a
band structure as schematically shown in Fig. 8(c) when
U=O: The unmixed f-electron levels are left in the gap
after the hybridization.

The f electron is assumed to have the orbital degenera-
cy of 2L, +1 in addition to spin- —, degeneracy, while the t."

electron has only spin- —,
' degeneracy; so the total number

of local fermion components is 2(2L +2):

g (r)=(P)(r), gt(r)) (6.54)

is 2(2L+2) dimensional, and

0
0. 00

I I I I I I I I I I I I I I I

0. 05 0. 10 0. 15
U

1 . 2

1.0

I I I I
I

I I I I
I

I l I I
I

I1.

4o' ( a&f( —L)g&f( —l. +1)v& ' ' ' &fms& ' &fig ) (6.55)

is (2L +2) dimensional. It is assumed that all the f elec-
trons of spin 0 are hybridized with the c electron of the
same spin o. by a common matrix element V(2L + 1)
independent of k and m:

Ek =Ek g Ek g,
(6.56)

ck Vu

Vu Efl

where Lj is the (2L+1)-dimensional row vector, whose
transpose u is given by

0 . 8 I i i i I i & i i I

0. 00 0. 05 0. 10 0. 15

1. 2 I 1 I I
I

I l I I
I

I I I I
I

I I

0. 8

=(2L+1) ~ (1 1 . . . , 1),
and I is the (2L + 1)-dimensional unit matrix

(6.57) 0
I I I I I I I I I I I I I I I I I

0. 00 0. 05 O. IO O. I5

(6.58)

The two-body interaction is assumed to be only between
the f electrons on the same site:

FIG. 11. Renormalization of (a) the qp part of the suscepti-
bility, (b) the non-qp part of the susceptibility, and (c) the qp
eftective moment of the DD PAM in the RPA for V/D =0.3,
g'/g =4.0, and nf =0.9.

r r ~ r ~ ~ r
m m' ao' r

(mmmm') (o.Wo')

(6.59)

g g g f .V»f .(e)f...(e —k)f .(s+k)
&Y& m, m' o, o' k,p, q

(6.60)

The magnetization is assumed to be given by

m (r) =g (r)M f(r) =.v(r)+I(r),
where

(6.61)
s(r)=g (r)SQ(r)=g'go/ (r)P (r),

(6.62)

(6.63)
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and

I(r)=f t(r)LQ(r)=g' g mf (r)f (r) . (6.64)

2. Green s function in the RPA

The single-particle Green's function in the RPA is the
direct sum of 9k as in the previous DD PAM, but the
block diagonal elements Qk has an additional term, Q'k ',
in contrast to the previous model, representing the un-
mixed f levels:

~ko ~krr + ~krr + ~krr

where

(6.65)

akg(+)( )
krr

0+S —&k
(6.66)

+P—
—,'nf U

(6.67)

The matrices M, S,L are 2(2L+2) dimensional, o takes
the values +—,', and m takes the values from —L to L.

The assumption that the hybridization matrix element
is independent of m and k contradicts the physical mean-
ing of the spin and orbit. Therefore, although we call o.

the spin and m the orbit, it cannot be taken literally.
This model should be regarded simply as a model for a
model in which the unmixed f bands (levels) remain in
the hybridization gap as a result of the different degenera-
cies of the c and f electrons. (Some results of an alterna-
tive choice of the hybridization matrix element are given
in Appendix E.)

seem to be natural, since we consider only the case in
which the Fermi level lies in the lower bands.

Note that, even after the redefinition of Ef, which re-
moves the self-energy from the denominator of 91k ', (a
half of) the self-energy ,'n—fU remains in the denominator
of 9'k'. This is in contrast to the previous DD PAM.
The reason is that the f electrons in the unmixed bands
feel the Coulomb repulsion from all the f electrons in the
lower bands of both spins, while the f electron of a spin
in the lower band feels the repulsion from only the f elec-
tron of the different spin. This happens because we can
recombine loca/ly the f electrons into those which are
mixed with the c electrons and those which are not
mixed, owing to the somewhat artificial assumption that
the hybridization matrix element is independent of k and
m. A more realistic choice of the hybridization matrix
elements may alter this aspect of the model. (For another
possible choice of the hybridization matrix, see Appendix
E.) However, since our object is only to present a model
whose gzqp have a different character from that of the
previous model and to show the variety of the behavior of
pzqp let us continue to concentrate on this specific and
somewhat artificial model.

It is often convenient to use Green's functions
represented in the recombined local basis mentioned
above in evaluating the diagrams. It is one of the su-
periorities of our A-matrix representation of 0k that we
can easily move from basis to basis including such an in-
termediate basis, as well as the original local basis and
qp-band basis. By this local transformation
f (r)~f (r), the two-body interaction and matrix S
are invariant, while

with the 2 matrices

a
—(a'af)' u

(g c f )1/2uT

afW (6.68) Ek

V

V Ef
Ef (6.72)

a+ =ko.

0

af
+(a'a )' u

~ ~ a 0 o ~ ~

+( c f)1/2 T

a'W (6.69)

0

a'
(a cO f)1/2

Ef

(a c& f)1/2

af
b 0 I

—W (6.70) ak~ ~ak~ =
0 (6.73)

The (2L+2)-dimensional matrix bk is the sum of the A
matrices over all of the unmi, xed bands, and W is the fol-
lowing (2L + 1)-dimensional matrix:

+ ~ +
ak —+ak

a +(a'df)'
+ ( & c&f)

1/2 a c

0 (6.74)

1 0 ~ ~

1 1

2L, +1
1 1 . 1

(6.71) bk ~bk

0 0
0 0

(6.75)

The constants a', a, and Ek
+—are given by the same for-

mulas as (6.31), (6.32), and (6.29) in the previous model;
in fact, we have normalized u by (2L + 1) '/ in order for
them to be given by the same formulas. As in the previ-
ous model, the notation is such that the elements of ak

L~L . (6.76)

The explicit form of L is complicated, but we do not need
(or do not use) it.
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The decomposition geg=Q+q)=Q+y(, )+(p(&) is

done as
M—((p+ q&1 tp)M (6.87)

Q
—g( —) g( —)

—g(+) g( —)+ g( —) g(+)0 (a)

—g(p) g( —)+g( —) g(p)
'P[b&

(6.77)

(6.78)

(6.79)

3. Static uniform susceptibility in the RPA

Now that we have determined the 3 matrices, the
remaining work is not dificult to perform. After the fre-
quency summation, the k summation

In contrast to the previous DD PAM, both of the irre-
ducible vertex parts in Figs. 6(a) and 6(b) are relevant.
Therefore, all three types of diagrams in Fig. 7 might
contribute to the susceptibility. Fortunately, however,
the diagrams of the type shown in Fig. 7(c) will complete-
ly vanish owing to the special simplicity of our model,
which can be easily seen if one uses the recombined basis.
Thus the evaluation of the RPA susceptibility in the fol-
lowing is considerably simplified.

( p(b)+'P(b) p(b)L

L (L + 1)(g')2 4S
3 1 —US '

(6.88}

(6.89)

L(L+1)/3factor

~y„qp[8) +O(1/U)] as U~ m,

y„qp ~y„q [1—UBq+O(U )] as U~O,

(6.90)

(6.91)

where the comes
m /(2L+1).

Let us now consider the meaning of 4 and 4/( I —U()')
in the above equation. If we had approximated the
single-particie Green's function in the Hartree-Fock ap-
proximation, but inconsistently and erroneously had ap-
proximated the irreducible vertex part I o as zero, then
we would have obtained y„q& as proportional to
(without denominator). The integral 4 represents the
non-qp contribution evaluated for the Hartree-Fock band
of Fig. 8(d) as the noninteracting band. Thus it varies as
1/U for large U, which is completely incorrect. Dwing
to the correction due to the vertex part, it has regained
the correct order. The correct limiting behaviors are
given by the following:

—,'nf U —Ek
(6.80)

where

will appear from (p(b), as—well as —,'JV«, and % given by
(6.36) and (6.37) from —

Q and —y(, ). In the following
we restrict ourselves to the symmetric constant density of
states for the conduction band [Fig. 10(b)]. Then, after
the k summation, we obtain

D 1B —n
3V 2

B)= IE,„I—I) I

IE;.I+I) I »(IE;.I/I( I)
'

' IE;.I

—Ipl

IE;.I+I) I

'

(6.92)

(6.93}

1 1 1 V
ln

U U' (&nf}2 2D
IE,„

I pl

I pl+ —,'nf U

IE.,„I+...U

(6.81)

and

() L(L+1)(g')
+nqp (6.94)

where the bottom of the lower band, E;n, is

E;„=—,'[ D (D +—4V )' ]-
and a half of the f-electron number per site is

1 V 1

2 f 2D lpl

(6.82)

(6.83)

with

1 V

I)
I'

V2

IE,.I'
(6.95)

Let me once again emphasize that the distinction be-
tween y and y„ is obscured if one considers only the
static uniform susceptibility and metamorphosizes it too
much; in fact, the above p qp

can be transformed as

S(Qk+Qkl Qk)S
r 2

1+E'

(6.85)

(6.86)

The Fermi-liquid parameter F' and total density of states
at the Fermi level, JV«„are given by the same formulas
as (6.44) and (6.50}.

To y„q~, only L and the diagrams of Fig. 7(b) contrib-
ute;

The m.atrix L out of M=S+L does not contribute to
the effective moment of the qp, and only the diagrams of
Fig. 7(a) contribute to y

= —M(1+pl )(Q "+Q"IQ")(1+I q))M (6.84)

P L(L+ 1)(g') f +O V
+nqp (6.96)

I, L(L+1)(g') (6.97)

In this formula the missing contribution to the qp
effective moment from the orbital moment seems to be
completely recovered; this formula gives an incorrect im-

Adding this and gqz=(2g') JV, „we obtain, neglecting
O((V/D) ),

2

o 1 sXqp+X'. qp
=

2
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0. 00 0. 05 0. 10 0. 15

U

If 19 is conserved, the non-qp contribution to g does
noi exist, i.e., g=pqp At the same time, the effective mo-
ment of the qp is not renormalized; so there is no ambi-
guity in the theoretical evaluation of (p, tr&. Thus R,b,
can be directly related to the Fermi-liquid parameter,
which is an average of some combination of the qp in-
teraction function f &(k, k') over the Fermi surface (FS).
For example, in our DD PAM with g'=g [i.e., in the
SU(2) PAM] and in the RPA, R», is given by

R
1

Obs
1 +~g (7.2)

a~1 0

0. 5—

0. 0 I » i t I «» I

0. 0 0. 5 1. 0

FIG. 12. Renormalization of (a) the qp part and (b) the non-

qp part of the RPA susceptibility of the OD PAM for
V/a=0. 3 and n~=0. 9. The dashed line in (b) decreases as
1/U, which is the one calculated without the vertex correction.

VII. %'ILSON RATIO

pression that the term L(L+1)(g') l3 should be includ-
ed in the effective moment of the qp. Note that, in con-
trast to the previous model, pQqp grows roughly in pro-
portion to V similarly as pqp because the factor a' is
not multiplied: Compare (6.96) and (6.53).

Now let us turn to the numerical results. The depen-
dcncc of Pqp and Pzqp on U 1S dcP1ctcd 1n F1g 12 for
n&=0. 9. As U increases, gq„ is enhanced in the usual
RPA manner [Fig. 12(a)], while y„„decreases slowly

[Fig. 12(b), in which the range of U is taken far beyond
the stable region of g in illustration of the asymptotic
behavior of (6.90)].

In this model the ratio of y„and g „,which is appre-
ciable at U=O, decreases as a function of U, but remains
the same order: The Coulomb interaction between the f
electrons reduces the importance of the non-qp part, yet
the reduction is not complete.

1 Xqp

& Pqp & ~tot
(7.3)

where (pq & stands for an average of the renormalized qp
moment over the FS. However, we can neither extract

logically from an observed value of the static uniform

g nor predict the value of (p p & theoretically. Therefore,
we cannot obtain R from the experimental data if 4 is
not conserved. This conclusion is somewhat pessimistic,
yet is unavoidable.

Nonetheless, there has been a strong desire to extract
some information about the Fermi-liquid parameter of
the PAM's or the heavy-fermion systems where 4 is not
conserved. The problem has been discussed by Anderson
and others, yet there has been no consensus. In the fol-
lowing we first review their discussion, taking our OD
PAM as an example; then we seek for a possible resolu-
tion. In preparation, let us further define

For the spin susceptibility of the isotropic single-
component Fermi liquid, R,b, is given by the same for-
mula as the above, where I"' is a simple combination of
the coefficients of the spherical harmonic expansion of
f &(k, k') multiplied by the total qp density of states at
the Fermi level. In anisotropic systems and beyond the
RPA, the relation between R,b, and f &(k, k') becomes
more complicated. Yet it can be given by the same for-
mula as the above; in this case, F' stands for a complicat-
ed weighted average of f &(k, k') over the FS. Anyway,
R,b, conveys us some knowledge about the interaction
between the qp's if 1& is conserved.

On the contrary, if Q is not conserved, R,b, cannot be
related to the Fermi-liquid parameter directly, because
the susceptibility contains necessarily pzqp and at the
same time, the effective moment of the qp is inevitably re-
normalized. What is related to f &(k, k') directly is

A. General

We define the obserUed Wilson ratio as

where
7.1

1 &nqp

&C'qp& ~t.t
(7.4)

(7.5)

where y is the observed static uniform susceptibility, JV'„,
the qp density of states at the Fermi level deduced from
the observed temperature-linear coefficient of the specific
heat by the relation (4.21), and (p, tr& is the qp efFective
moment, which must be obtained theoretically.

Then R,b, can be rewritten as

obs
&

2
&

qp
&

2
&

oqp
Pea Per

(7.6)
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B. Orbitally degenerate PAM

Let us refer back to Eq. (6.97), an expression for the
static uniform susceptibility of our OD PAM at U=O. If
one would try to define R,» such that it reduces to unity
when U=O, one should set

Possibility 1. R„=R
Possibility 2. R

qp
1.

In the first case, (7.6) reduces to R =R i„. In the
second case, (7.6) reduces to

(p', ) =(—,'g')'+ —,'L(L +1)(g')', (7.7)
pqi

(7.12)

which coincides with the effective moment deduced from
the high-temperature Curie law. (In this section we
neglect JV„ taking it as much smaller than JVf.) Howev-
er, the qp effective moment is [see (6.86)]

& pqp) =(—'g')', (7.8)

and the other term is due to the non-qp contribution [see
(6.96)]

(p„' ) =
—,'L(I-+1)(g')' . (7.9)

Thus the effective moment of the qp is severely quenched
compared with the high-temperature value given by (7.7).

The observed Wilson ratio is less than unity in the ex-
isting heavy-fermion systems. It might be taken as
direct evidence for the Fermi-liquid parameter being pos-
itive, if one does not realize the difference between R,»
and Rq .

In the Letter by Zou and Anderson (ZA), ' they calcu-
lated (p, ), finding that it is much less than (p,ir).
(Their calculation is, of course, based on a more realistic
model, but what will happen is independent of the details
of the model; our oversimplified model is sufficient to il-
lustrate their results. ) Then they argued that (p,s) in
(7.1) must be replaced by (p ), and they defined

& p4&
obs

~qp
(7.10)

The factor (p,s) /(p ) is considerably greater than uni-

ty according to their calculation (as in our OD PAM re-
sult). Therefore, Rz~) 1, even though R,i„&1. They
took this evidence for the Fermi-liquid parameter being
negative; ZA identified RzA with Rqp by neglecting y„qp.

However, this identification is incorrect. In fact, from
(7.6) and (7.10), it is deduced that

& p'„qp&
ZA qP l 2 X IIqP

Pqp
(7.11)

Thus the largeness of RzA does not necessarily mean the
largeness of Rqp unless the second term is negligible.
Note that ZA's calculation is actually at U =0; the effect
of U is presumed to be incorporated by the use of a renor-
malized value for V. In such a calculation, the second
term of (7.11) is large: (p„)/(p ) is large and R„ is
of the same order with Rq . Thus, as a calculation at
U =0, ZA's result was incorrect as pointed out by many
authors' ' and as admitted by Anderson and Zou'
themselves.

Furthermore, Zhang and Lee' argued that
R,» &1 =Rqp &1 as follows. They inferred two possi-
bilities for the effect of U on R „qp.

In both cases, Ro» &1 Rqp &1 Their deduction is
correct at all; nonetheless, there is a room for doubt in
their assumption.

Anderson and Zou' criticized this point: they pro-
posed the following.

Possibility 3. R„=O.
Hence they asserted that Rq~ =RzA in reality [see

(7.11)] and that their former argument for the smallness
of the observed Wilson ratio need not be changed essen-
tially. Their reasoning for the above possibility is that
the qp mass enhancement, i.e., the renormalization of V,
is not effective to the enhancement of p qp Seeing our
Eqs. (5.34) and (5.35) and noting that the mass enhance-
ment is solely embedded in Q, it is not astonishing even if
R IIqp is somewhat smal ler than R qp, whereas we cannot
be sure of such a quantitative a%rmation as possibility 3.

Aeppli and Varma' argue that g„ is also affected by
U in the same order as gqp by exploiting a sum rule.
Their argument seems reasonable. Nonetheless, it is only
an order estimation; it is not surprising even if the
enhancements of pqp and pzqp due to U are different by a
numerical factor.

Now let me propose another possibility.
Possibility 4. R q&WObut R qz & 1.
In other words, the enhancement of p qp

is of the same
order as that of the qp specific-heat mass, but smaller by
a numerical factor. In a sense this proposal is a reconcili-
ation of Anderson and Zou's and Aeppli and Varma's.
My proposal is as vague and abstract as theirs, so that
one may think it too tricky. Nonetheless, whether
R

qp
& 1 or not is such a subtle problem which depends on

this tricky numerical factor.
For example, let us tentatively set (p ):(p2~) =1:5,

which is realized by putting g'=2g and L =3 in our OD
PAM. In addition, let us tentatively set Rqp 1 5 and
R„=0.3; our OD PAM in the RPA allows that R

qp
) 1

and at the same time R„&1. Then (7.6) is evaluated as
R,» =0.54. Thus possibility 4 combined with a large ra-
tio between (p ) and (p„) can lead to R ) 1 even if
R.» &1.

Although possibility 4, which favors negative F, is
proposed, the true intention of mine is not to insist that
R

qp
) 1 or F & 0 Possibility 4 lacks a quantitative physi-

cal background as well as the other possibilities. Further-
more, our OD PAM in the RPA does not support the
above values R =1.5 and Rzqp 0.3; these values are
chosen only for an illustration.

What our results in the RPA suggest, instead and in
actual, is that there can be a variety of behaviors of p qp,
depending on the details of the model. If we make the
model more realistic by incorporating the crystalline field
and spin-orbit coupling, the Hartree-Pock band would
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change somewhat and thus pzqp might change consider-
ably; we cannot predict which one is realized out of possi-
bilities 1 —4. Therefore, my conclusion is simply that we
have no ability to obtain R or F' from experiment by
theory.

Finally, let me comment on the two alternative ap-
proaches which might be used to discuss the present
problem, but, in fact, would not work efhciently. The
first one is the renormalized-parameter theories, which
are obtained by unsophisticated approximations in some
sophisticated methods such as the slave-boson
theory, the 1/N expansion, or the Gutzwiller projection
method. In these theories there is no legal procedure to
define the qp part of the response function, as well as the
fact that those unsophisticated approximations are as un-
reliable as our RPA. Thus these theories are incapable of
treating the problem of F'.

The second one is the sophisticated band calculation.
While the band calculation preserves the symmetry of the
real materials well, it is nothing but a somewhat elaborate
but incomplete version of the Hartree-Fock approxima-
tion. When one tries to calculate the susceptibility based
on a band calculation result, one must take into account
the correction due to the vertex parts. (Recall that, in
our OD PAM, the Hartree-Fock band without the vertex
correction gives unphysical results. ) However, as the
method of the band calculation becomes intricate and the
model used in the band calculation becomes complicated,
it becomes more and more a formidable task to treat the
vertex correction consistently with the way the electron-
electron interaction is treated in the band calculation.
Thus, although the band calculation might be valuable
for the determination of the Fermi surface, it is not
efticient, at least, in the estimation of the non-qp part of
the response function.

What we can afBrm with confidence is only that the
static uniform susceptibility is large if the specific-heat
mass is large, because there is always a conserved part of
the magnetization. This is trivial from the first. Alas, we
cannot know what is not trivial at present.

It has been also emphasized that there is no simple way
of extending the concept of the Pauli and Van Vleck
terms to the interacting case if one considers only yz-,
which is in contrast to the fact that the qp and non-qp
parts of the dynamical susceptibility are well defined even
for the interacting Fermi liquid. On the other hand, if
the magnetization is conserved, a compact general formu-
la for y& has been obtained.

We have presented explicit identities which shows

y =yz-, while y"=0, provided that the magnetization is
conserved, where y" and g are the k limit (the usual stat-
ic limit) and the co limit of the dynamical susceptibility.
In addition, we have given a physical interpretation of
the difFerence of g and g . Thus we have unified the two
seemingly distinct Fermi-liquid approaches for the static
uniform susceptibility, in the most general form applic-
able to any conserved quantity of any multicornponent
Fermi liquid.

By applying the above general formalism to the three
kinds of the periodic Anderson models, we have found
great variety of the behavior of the non-qp part of the
susceptibility. It has been shown to be possible, in princi-
ple, that the Fermi-liquid parameter F' is negative even if
the observed Wilson ratio is less than unity. However,
our more unfeigned and a bit regrettable conclusion is
that it is impossible to estimate the value of F' theoreti-
cally or experimentally in practice at present.
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APPENDIX A: STATISTICAL AVERAGES

The equilibrium statistical average of a quantum ob-
servable under a static uniform external field h for a tem-
perature T=P ' and a chemical potential p is given by

VIII. CONCLUSION (O &h
=—«(PhO),

In this paper we have reformulated the Fermi-liquid
theory for the dynamical susceptibility y(q, A) based on
the Kubo formula with sufFicient systematics and general-
ity as applicable to the most general form of the mul-
ticomponent Fermion system. The long-wavelength and
low-frequency response can be divided into the quasipar-
ticle (qp) and non-qp parts; the qp part can be described
by a natural extension of Landau's phenomenological for-
mula for the Fermi liquid. An advantage of our formal-
ism is that the relation of the qp-band basis to the origi-
nal local basis is transparent.

Luttinger's procedure to obtain the isothermal static
uniform susceptibility gz- has been examined with a simi-
lar systematics and generality. We have carefully
clarified where the conservation property is required in
the procedure and recognized the difFiculty in applying it
to the systems where the magnetization is not conserved.

where the equilibrium density operator is

(T )
—pu —hM —pR /Z (T ) (A2)

and the grand partition function is

z =tr( P(A' —hi& —p+)
) (A3)

(O)(t )—:tr[p(t)O), (A4)

where the time dependence of the density operator is
governed by

with 8' the total number operator.
The dynamical statistical average of a quantum observ-

able under the space-time-dependent external field given
by (2.11) is defined as
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i p(t) =[8„,(t) —pA', p(t) ],at

with the initial condition

lim p(t) =pa,

where po is given by (A2) with h =0.

(A5)

(A6)

y, =y + g &alMlh&&hlMla&e
~

0 .y. .b

APPENDIX C: PROOF OF (4.17)
UNDER 8'E AX CONSERVATION

(B12)

APPENDIX 8: SPECTRAL WEIGHT FUNCTIONS

f dco[pk(co)];~ =
& [g, (k), g (k)] &0=5, (B2)

The spectral weight function w ( q, co ) of the two-
particle Green's function is given by

w(q, co) =n(1 —e ~ )S(q, co), (B3)

The spectral weight function (matrix) pk(co) of the
single-particle Green s function is given by

[pi, (~)];,= & &aliis;(k)lb &&bi@i~(k)la &

a, b

X(e '+e ')5(co (Eb —E, ))I—ZD,

(B1)

where Ia & and E, are an eigenpair pair of 8—pA', and
satisfies the sum rule

By the (weak) conservation of 4, we mean that
[M,H ]=0 and therefore

PI +Pm =PI +PJ ~ (Cl)

(p p) ('p pl ) or'(p p ) (pl p (C2)

We sketch the proof of (4.17) under the weak conserva-
tion of Q, which is a slight modification of the argument
given in Sec. IV of Luttinger and Ward (LW). ' First,
note that M, Xk, and 9k are simultaneously diagonaliz-
able because of the weak conservation; we denote the di-
agonal elements of the latter as Xk, and Qk, , respectively.
Thus, by a partial integration, the left-hand side of (4.17)
can be rewritten as

at each two-body interaction vertex (Fig. 1), as well as M
commutes with Ek. On the other hand, by the strong
conservation, we mean that there is a further restriction
at each two-body interaction vertex such that either

where

S(q, io)= f e' '&m(q, t)m( —q, O) &0
dt i mt

=N, y, g & a
I
m ( q ) I

b & & b
I
m ( —q )

I
a & (B4)

with

—1
Xpi jkr

27Tl
(C3)

a, b
—PE

X e '5(co —(Eb E) )I Zo. — (B5)

ki
~k = f,d0&k;(0)

~
(C4)

At q =0, they satisfy the sum rules

f dred w(O, co) = & [M,Q] &0=0,
sys

f dc@ S(0,co) = & 19'Q & 0,
sys

dco N O, co

Pf ' =K (q—:0, Q~O)=g

(B6)

(B7)

(B8)

(B9)

where the contour of integration is the same as that of
LW. If we further assume the strong conservation, each
of Jk,. vanishes independently by a similar argument to
the one given in Sec. IV of Luttinger. But this does not
hold generally under only the weak conservation.
Nonetheless, the sum of all the Jk s vanishes as a whole.
The only change we need compared to the argument of
LW is that a factor of the following form appears instead
of the left-hand side of Eq. (64) in LW:

ay P $5(01+02 '03 04) (C5)
i=i i

Be careful with the last two formulas. The principal-part
integral is defined as

P—:lim + (B10)
~~0+, —oo +g

In (B8), first the limit e~O+ is taken and then the limit

q —+0; in (B9), the order of the two limits is reversed. Ex-
plicit formulas for the right-hand sides of (14) and (15)
are as follows:

This factor reduces to zero because of (Cl). Therefore,
(C3) yields nothing, and thus (4.17) is proved under the
weak conservation.

APPENDIX D: m (h ) OF THE DD PAM

&aIQIb &&bIQIa &

'
0 sys a b

(E AEb )

PE PEbe

(B1 1)

The expression for the magnetization per site at T=O
under a static uniform field, m(h)=M(h)/N, „„is given
for U=O and iM=O (i.e., for the noninteracting case,
where the Fermi level lies in the gap when h =0).

(i) For 0(h (h„
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5 I I I I
]

I I I I
I

I I I I APPENDIX E: ANOTHER OD PAM

1.0 Another orbitally denigrate PAM is considered: Vfe
assume that the hybridization matrix element is of the
form

0. 5
VI, =&4m /(2L + 1)VYI ( k / k ), (El)

0. 0
0. 0 0. 5 I . 0 1 . 5

m(h)= [[(D+p,h ) +4V ]'~

FIG. 13. Magnetization per site of the DD PAM with
D =1.0and 6=0. 1 at U=Oand p=O for g'=2. 0 and g =0.5.

(E2)

where F is given by (6.44) with U replaced by

where YL (k/~k
~ ) is the usual spherical harmonics. For

the same noninteracting band as the OD PAM of Sec.
VI C 3 and in the same RPA, we obtain the susceptibili-
ties as follows: the qp part is

2

Rp~ 1 & tot
qP 2 1+F*

[(D P )2+4V2]1/2]

(ii) For h, & h &h2,

m(h)=p2+ [(D+p,h) +4V ]'

(D 1)

(D2)

U* = U/(2L + 1) .

The non-qp part is

Rp~ L(L+1)(g ) 0

1 —U*SO

(E3)

(E4)

2V+ —[(g')' —(gf)'+2g'g ]h-
2D 4 h

(iii) For hz &h,

m(h)=p~,

where

(D3)

(D4)

where So is given by (6.95).
The main difference between this OD PAM and the

one in the text lies in the fact that the f electrons cannot
be recombined locaOy into those which hybridize with
the c electron and those which do not. As a result, (i) the
term ,'nf U v—anishes from the denominator of 9'k, and
(ii) the elements of the matrix W become dependent on k
and cr differently. As long as nf = 1 and V/D & 1,

and

vi =-,'(gf —g'»

s 2=-,'(gf+g'»

[ Dg f+ [(Dgf—)'+4g'gf V']'"]1

g gf

[Dgf+ [(Dgf)'+4g'gf V']'"11

g gf

(D5)

(D6)

(D7)

(D8)

The I ( h ) curve on the whole range of h is depicted in
Fig. 13.

(E5)

Thus, as opposed to the model in the text, both y and
are enhanced, while the enhancement of pzqp is

slightly smaller than that of p„qp
The above results have already been obtained in the

limit of V/D —+0 by Yamada et al. In their calculation,
however, the condition V/D «1 is used in the inter-
mediate steps, and hence the origin of the terms is ob-
scured, and their result cannot be applicable unless
V/D «1.

In this paper the term "Fermi liquid" always represents what
should be called more precisely the normal Fermi liquid.
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