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Interaction potential of a sHe atom in a superAuid ~He background

F. Brosens
Department of Physics, Universitaire Instelhng Antwerpen, Universiteitsplein I, B M-XO Antwerpen, Belgium

L. F. Lemmens
Institute of Applied Mathematics, University of Antwerpen, Il UCA, Groenenborgerlaan I7I, B P02-0 Antwerpen, Belgium

J. T. Devreese
Department of Physics, Universita~ re In'stelling Antwerpen and Institute of Applied Mathematics,

University of Antwerpen, PUCA, and University of Technology, Eindhoven, The 1Vetherlands

(Received 28 May 1991)

The deformation of the superfluid He ground state caused by the presence of a He atom is
described in terms of a polaron model. The parameters of the model are derived from the ex-
perimentally known spectrum of the He elementary excitations and the static structure factor of

He. The resulting effective mass of the He atom is calculated with the Feynman path-integral
technique, and compares well with the experimental He effective mass, on the condition that a
microscopic He- He interatomic potential is used that is consistent with the static He structure
factor. The main result of this paper is that the interatomic interaction potential, as, e.g. , realized
in the hypernetted-chain approach, leads to an accurate description of the deformation cloud around
the He atom.

Microscopic theories for He- IIe mixtures provide an
effective potential between a IIe atom and the Bose
liquid. This effective potential can be used in a more
phenomenological approach, to make predictions for the
mixture which are not easily attainable within the mi-
croscopic theory from which the effective potential is de-
rived. The quality of the effective potential of course
strongly depends on the degree of sophistication of the
microscopic description of the superfluid He.

The Bogoliubov pairing theory is one of the first mi-
croscopic approximations that relates the static structure
factor of superfluid He to the matrix elements of the in-
teratomic potential.

The pairing theory implies the Feynman-Bijl relation
between the energy of the elementary excitations and the
static structure factor in superfluid He, and neglects the
backflow. ~ As a consequence, it cannot simultaneously
provide accurate quantitative results for the frequencies
of the elementary excitations and for the static structure
factor. The question then arises: should the matrix el-
ements of the effective interatomic potential be derived
from the elementary excitation energies or from the static
structure factor or from some combination of both. ?

In the framework of the hypernetted-chain (HNC) ap-
proach, Owen proposed an interatomic interaction po-
tential in a He-4He mixture which is superior to the
interatomic potential in the pairing theory in several re-
spects. First, it stems from a theory that —at least in the
long wavelength limit —reproduces both the static struc-
ture factor and the excitation frequencies for the pure He
superAuid. 4 Second, it allows us to predict the Landau

parameters for the Fermi liquid formed by the He atoms.
Third, the interaction potential contains the masses and
the structure factors of the components of the mixture
as input parameters, and it can thus be constructed from
the best available theoretical or experimental data.

Unfortunately, the evaluation of the effective mass of
He turns out to be very difficult in the HNC approach,

merely because higher-order correlations between the
bosons have to be introduced in the wave function. As
we will show below, a polaronlike theory overcomes this
difhculty. The main purpose of this paper is to construct
a suitable polaron model describing a He atom in super-
Quid 4He and then to illustrate its use by calculating the
effective mass of the He atom in the superfluid.

The operator form of the Hamiltonian contains three
parts. The first part is the kinetic energy operator of
the bare He atom. The second part describes the boson
field characterized by the frequencies of the elementary
excitations of superfluid He and their number operators.
The third term represents the interaction of the He atom
with the excitations of t,he superfluid. This term is lin-
ear in the boson lowering and raising operators for an
excitation with a well-defined wave vector, and contains
the Fourier transform of the 3He particle density together
with the matrix element for the interaction between the
bosons and He.

Our aim is to describe the deformation of the superfluid
He ground state caused by the presence of a He atom in

terms of a completely defined polaron model, which opens
new possibilities for calculating the static and dynamic
properties of He in superfluid He using all the powerful
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techniques and tools available from polaron theory.
The idea of a "polaron" type of description for He in

superAuid He is based on the phenomenological theories
of Bardeen, Baym, and Pines and of Emery, with dif-
ferent choices for the frequencies of the bosons and the
interaction matrix elements, with calculations of the ef-
fective mass mostly on the basis of perturbation theory.

Specific heat experiments as well as second-sound
measurements indicate that the experimental effective
mass of He equals 2.3m3. It is clear that second-order
perturbation theory is not a reliable procedure to cal-
culate this effective mass: one can hardly trust a per-
turbation calculation to second order which predicts a
doubling of the mass.

In order to proceed beyond second-order perturbation
theory we generalize in this paper Feynman's variational
approach for the polaron problem, and allow for wave-
vector-dependent boson frequencies in the model (instead
of the dispersionless LO-phonon frequency in the Feyn-
man treatment of the polaron). We then calculate the
effective mass of He in superfluid He with the Feyn-
man trial action. As will be shown below, very good
agreement with the experimental effective He mass of
2.3m3 is obtained if one uses the effective interatomic
sHe-4He potential from the HNC approach, which leads
to a. calcula. ted He mass of 2.312m3.

Our construction of the polaron model for a, He atom
in the Bose liquid proceeds as follows. The energy op-
erator for the excitations of the superfluid with energy
h~(q) and with creation and annihilation operators az
and a& is considered to be diagonal in the number op-
erator, and it is assumed that the excitations are well
defined. The kinetic energy operator for a He atom is
given by P-'/2ms where ms is the bare sHe mass. We
consider a very dilute mixture, in which the interaction
with the other He atoms can be neglected. The density
fluctuations p(q) of the superfluid are given by

p(q) = QNqS(q)(at + a„).

fl qf HNc(q) = —
4 & ~ ., [S(q) —Ij'
4rn@N4Sj qj~

x 1+ 1+ S'
q (4)

Vfe consider here the limit of a su%ciently small He
concentration, such that S3 4(q) S4 4(q) S(q): the
structure factors Ss 4(q) and S4 4(q) only differ in the long
wavelength limit, 7 where S4 q(q) tends to zero whereas
Ss4(q) tends to a constant a for q ~ 0. As argued
by Owen, the constant n gives the fractional difference
between the volumes occupied by the He atoms and the

He atoms, and consequently tends to zero in the limit
of an extremely dilute mixture.

Figure I shows the absolute values of the matrix ele-
ments V(q)~V (where U is the volume of the mixture)
as obtained from the Bogoliubov pairing theory and from
the IINC approximation, using for S(q) the experimen-
tal structure factor. The noise in the matrix elements
stems from the experimental uncertainties in the struc-
ture factor (no smoothing was performed). It should be
noted that there are major quantitative differences be-
tween both approximations: the matrix elements from
the IINC scheme are smaller and faster decaying as a
function of wave vector than those from the pairing the-
ory. This indicates that the efft.ctive interaction potential
is of shorter range in the pairing theory than in the HNC
scheme.

Apart from bot;h approximations considered here, we
mention that, in some cases, even much less justified con-
tact potentials are used to describe the interactiol1 of
a sHe atom (or an ion) with superfluid He, with their
strength fitted to obtain the effective mass in the frame-
work of a perturbation scheme. In view of the structure
in the effective potential, revealed by both microscopic
theories discussed above, a contact potential is clearly an
oversimplification of this interaction, and hardly allows
to make any quantitative prediction of the He properties
in sup erfluid He.

The interaction potential V(q)p(q) seen by the He
atom then leads to the well-known form U(q)aze'r' +
H.c. for the interaction term in the Frohlich EIamiltonian,
with the interaction matrix element V(q) given by

V(q) = ~(q) v'~4S(q)

where U(q) is the interatomic interaction potential be-
tween the He atom and the EIe atoms.

In the framework of the Bogoliubov pairing theory, the
relation between the interatomic potential and the struc-
ture factor of the superfluid is given by
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But for the consistency reasons discussed above we pro-
pose in this paper to take this interatomic pot, ential from
the HNC approach:

FIG. l. iU(q)~Ui from Eq. (2) from the Bogoliubov pair-
ing theory and from the HNC, using the experimental struc-
ture factor of Ref. 10.



10 298 F. BROSENS, L. F. LEMMENS, AND J. T. DEVREESE

The interaction matrix element as discussed here
should not be applied for other than He atoms in su-
perAuid He, like, e.g. , the spinning "snowball" where
a difFerent type of interaction should be introduced.

Once the polaron model for the He interaction with
the boson excitations is established and molded into the
structure of the Frohlich Hamiltonian, the powerful cal-

culation techniques of the polaron problem become avail-
able to calculate the ground-state energy and the efFective
mass of He. This is of particular interest for the efFec-
tive mass, because polaron theory allows us to take all
self-correlations of the particle into account in an accu-
rate way. In standard notation, an upper bound for the
ground-state energy of the model is given by

3h (v —u))2

4 v
—) I&(k) I'

OO h k2
dec p xhw(k)r —— p(r)),2nl3

0) 5 —Q)
y(~) =—,~+ „, (1 —e '""),

in which v and zI) are variational parameters, to be determined by minimizing the energy expression (5). (For simplicity
in the notations, we here only consider the limit of zero temperature, but the extension to the variational calculation
of the free energy is straightforward )T.hese parameters can then be used to calculate the He effective mass M~
with the Feynman approach:

Mp 2 - zh k 62I 2
= 1+ —) (v(k)P dew~exp

~
h~(k)r — — p(r)) .

ms 3 ——— 2ms () 2r03

Since v ~ z() in the small coupling limit, the effec-
tive mass M& of He in superAuid He from second-order
perturbation theory can be obtained by taking the limit
v ~ z() in Eq. (7). In terms of the effective Feynman mass
one then obtains

Mp l
ms 2 —M~/ms

By the standard conversion of the summation into an
integral, the expression (7) for the effective mass M~ is
readily written in the form

dk p(k)

variational parameters and of the efFective mass with sev-
eral models will be published elsewhere.

From the Bogoliubov pairing model, i.e. , by using
U& „,„s(q) from Eq. (3), and with the energy of the ex-
citations derived from the experimental structure factor
via the Feynman-Bijl relation, one obtains a He efFec-
tlve Dlass of 1.5724m3. Since backflow is neglected in the
pairing theory, it is not surprising that the He efFective
mass obtained is in good agreement with the efFective
mass from a hard-core model. Incidentally, if one would
assume second-order perturbation theory to be applica-
ble, fortuitous agreement is obtained between the effec-

The function p(k) as plotted in Fig. 2 reveals that rela-
tively large wave vectors (i.e. , larger than the wave vector
of about 1 a.u. at the roton minimum in the dispersion
relation of the 4He excitations) have a negligible contri-
bution to the efFective mass. This feature stresses the im-
portance of an interatomic potential which consistently
describes both the static structure factor and the energy
of the superHuid for relatively small wave vectors, as re-
alized in the HNC approximation.

The self-energy obtained from Eq. (5) should not be
confused with the binding energy of a He atom in su-
perfIuid He, which is the energy required to replace the

He atom by a He atom. This calculation would require
an extra term in the Hamiltonian to account for the en-
ergy gained if the He atom which replaces the He is
added to the superAuid medium. This interaction term
of the He atom with the superAuid excitations is absent
in the present model.

The minimization of the He self-energy (5) has to be
performed numerically. Details on the calculation of the
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FIG 2 p((t) fronz Eq. (9) from tlze Bogolinbov pairing
theory and from the HNC, using the experimental structure
factor of Ref. 10.
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tive mass of 2.335ms from Eq. (8) and the experimental
mass. Since the excitation energies from the Feynman-
Bijl relation are not in quantitative agreement with their
experimental spectrum, the question arises what is the
effect of using the experimental boson frequencies in the
calculation of the He effective mass. If the internal con-
sistency of the Bogoliubov pairing model is thus relaxed
by violating the Feynman-Bijl relation, a He effective
mass of 4.3968m~ is obtained. The effective mass is thus
quite sensitive to the details and the internal consistency
of the model, and the pairing theory seems not appropri-
ate for an accurate quantitative calculation of the effec-
tive mass.

As discussed above, the interatomi. c potential from the
HNC approximation provides a quantitatively more accu-
rate framework for the description of superfluid He and
of He in He. This is also confirmed by the calculation
of the He effective mass from the polaron model which
we propose in this paper. Using the interatomic potential
UHNC(q) of Eq. (4) in the matrix elements V(q) [see Eq.
(2)j of the interaction term between the sHe atom and
the boson field in the Frohlich Hamiltonian, we obtain a

He effective mass of 2.3121rna, to be compared with the
experimental effective mass of 2.3rn3.

The main result of this paper is the derivation of a
polaronlike model for the accurate description of a He
atom in superfluid 4He. The matrix elements V(q) for the
interaction between the 3He atom and the superfluid ex-

citations require the knowledge of the interatomic inter-
action potential V(q) between the atoms in the mixture.
It is important that the interatomic potential adequately
describes both the experimental structure factor and the
experimental excitation spectrum of superfluid 4He in
the long wavelength limit, like, e.g. , in the HNC ap-
proach. Qualitative agreement —as with the Bogoliubov
pairing theory —is not sufficient. Second-order perturba-
tion theory is inappropriate for calculating the 3He effec-
tive mass, as is also recognized in the HNC approach, s

where one should use a wave function which at least
involves three-particle correlations. These higher-order
correlations are variationally included by applying Feyn-
man's path-integral treatment of the polaron model (gen-
eralized for frequency-dependent boson excitations), as is
confirmed by the very satisfactory calculation of the He
effective mass in superfluid 4He.

The authors thank J. Ruvalds for a number of stimulat-
ing discussions, held in the earlier stages of the research
project, and Morrel H. Cohen for valuable suggestions.
Also 3. Witters is acknowledged for his assistance with
some numerical procedures. We thank also A. T. A. M.
de Waele and H. M. Gijsman for their current interest
in this investigation. Part of this research has been per-
formed in the framework of the IUAP-11 projects of the
Belgian Government and of Project No. 4.0002.83 of the
Belgian National Fund for Scientific Research (NFWO).

N. N. Bogoliubov, J. Phys. (Moscow) ll, 23 (1947).
R. P. Feynman and M. Cohen, Phys. Rev. 5, 1189 (1956).
J. C. Owen, Phys. Rev. Lett. 47, 586 (1981).
C. E. Campbell, in Progress in Iiquid Physics, edited by C.
A. Croxton (Wiley, New York, 1978).
J. C. Owen, Phys. Rev. B 23, 5815 (1981).
Polarons in Ionic Crystals and Polar Semiconductors,
edited by J. T. Devreese (North-Holland, Amsterdam,
1972); Polarons and Excitons, edited by G. G. I&uper and
G. D. Whitfield (Olive and Boyd, Edinburgh, 1963); F. M.
Peeters and J. T. Devreese, Solid State Phys. 38, 81 (1984).

"3. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156, 207
(1969).
V. J. Emery, Phys. Rev. 161, 194 (1964).
N. R. Brubaker, D. O. Edwards, R. E. Sarwinski, P. Selig-
man, and R. A. Sherlock, Phys. Rev. Lett. 25, 715 (1970).
B. Moser, L. A. Degraaf, and B. Le Heindre, Phys. Rev. A
9, 449 (1974).

'T. Pang, Phys. Rev. Lett. 61, 849 (1988).
V. Elser and P. M. Platzman, Phys. Rev. Lett. 61, 177
(1988).
R. P. Feynman, Phys. Rev. 97, 660 (1955).


