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Vortex motion in two-dimensional arrays of small, underdamped Josephson junctions
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We report measurements on vortex motion in two-dimensional arrays of small, underdamped, super-
conducting tunnel junctions, having charging energies on the order of the Josephson coupling energy.
Our measurements are consistent with a simple model of the array as a periodic pinning potential, with
measured values of the depinning current and the barrier energy in general agreement with the predicted
values. Although the individual junctions are underdamped, the vortices move in an overdamped
manner, with a critical velocity. We report preliminary evidence for macroscopic quantum tunneling of
vortices.

Vortex motion in superconductors has been the subject
of much theoretical and experimental work. ' Two-
dimensional (2D) arrays of Josephson junctions provide
an excellent system for studying this motion, as the pin-
ning potential is theoretically known. ' Most of the ex-
isting work concentrates on arrays with classical, over-
damped junctions, where the charging energy E,
(=e /2C, C the junction capacitance) is negligible and
the McCumber parameter P, is less than 1. Modern
lithographic techniques allow one to fabricate arrays of
small S-I-S tunnel junctions which are underdamped
(P, ) 1) and have an appreciable charging energy. This
research studies the motion of vortices in arrays of under-
damped junctions and examines the e6'ect of nonzero
charging energies.

Each unit cell of a Josephson junction array is a pin-
ning site. Between adjacent sites there is an energy bar-
rier Eb, which is proportional to the Josephson coupling
energy E .. A pinned vortex can overcome the barrier by
thermal activation or by quantum mechanical tunneling.
In the presence of a bias current, a vortex can also be
forced over the barrier by a jX B force, its motion being
perpendicular to the current direction. In arrays of over-
damped junctions, the vortices move viscously and tun-
neling is negligible. With our arrays of underdamped
junctions, however, one might expect that the vortices
move with little damping, and that tunneling may be
measurable. We do see preliminary evidence of this tun-
neling of vortices. Our measurements indicate, however,
that despite the low damping environment vortices move
in an overdamped manner.

We have fabricated and measured two-dimensional ar-
rays of Sn-SnO„-Sn tunnel junctions. The data presented
here will focus on two arrays, each 50 columns by 70
rows, with individual junction area of 0.1 pm . The
current direction is along the columns, so that the
minimum number of junctions through which the current
must travel is 70. The arrays are made using electron-
beam lithography with a shadow evaporation technique.
The average normal resistances of the individual junc-
tions for samples A and B are, respectively, 24 and 201
kQ. The geometric capacitance of the individual junc-

tions for both arrays is roughly 2.5 fF, which corresponds
to a charging energy of E, /ks =350 mK. E is approxi-
mated by E = (h /8e )(b, /R„), where b, is the supercon-
ducting energy gap (2b, =1.2 meV for Sn), and R„ is the
normal-state resistance. E /kz for samples A and B are,
respectively, 910 and 110mK. In A, E is larger than E„
while in B this is reversed.

We measure the arrays in a dilution refrigerator at
temperatures down to 50 mK. To determine whether
self-heating prevents the sample from reaching these low
nominal temperatures, we measured the dN'erential resis-
tance of sample B in a magnetic field of about 50 G. At
this field, the resistance varies strongly over the entire
nominal temperature range of our measurements, a good
indication that sample heating is not a serious limitation
in reaching low temperatures. This test is limited to the
region where the current-voltage (I V) curves are co-n-
tinuous, roughly at powers below 100 fW, so we cannot
rule out self-heating at the larger powers used in the mea-
surements of Figs. 1 and 2. In Fig. 3, however, the mea-
surements of the low-voltage resistance Ro are all made
at powers below 100 fW, so that we believe the measured
temperature accurately rejects the sample temperature.

We measure I-V characteristics by a standard four-
probe technique. The leads coming from the sample are
attached to the measuring circuit through 5 kQ resistors,
nominally at the sample temperature. These resistors al-
low the sample to see cold Johnson noise and protect the
sample from any voltage spikes that occur. To minimize
external noise, we use a battery-powered current source,
analog amplifiers, and an X-Y chart recorder. All mea-
surements are made inside an electrically shielded room.
Cold microwave filters had not been installed for the
measurements on sample A. They were used with sample
B, however, and with another sample with a normal resis-
tance nearly equal to that of A. The measurements on
this third sample are very similar to those on A, allowing
us to use the much more extensive data for A with
confidence.

Vortices are introduced by applying an external mag-
netic field. The field strength is described by f, the num-
ber of Aux quanta, @0=bc/2e, per unit cell. We deter-

10 286 1991 The American Physical Society



VORTEX MOTION IN TWO-DIMENSIONAL ARRAYS OF. . . 10 287

100

) 50—

500
I (nA)

1000

100
f = 0.22

)~ 50

I I0 I I

0

0 50 100
I (nA)

FIG. 1. Current-voltage (I-V) characteristics for sample A at
90 mK. The array is 50 by 70 unit cells, with average individual
junction normal resistance of 24 kQ. The curve is hysteretic,
with the arrows indicating the direction of the sweeping
current. At this current and voltage scale, the shape of the
curve is largely independent of frustration.

mine f to within +0.01 by measuring the field depen-
dence of the I-V characteristics and interpolating be-
tween the integer values, which are readily identified by
sharp voltage minima. We do see evidence, discussed
below, for an energy barrier to introducing field-induced
vortices. As discussed by van der Zant, ' this effect is
due to the finite sample size, and dominates at very low
frustrations (at or below f=0.0009 for a sample with
similar dimensions to ours). The measurements present-
ed here are made at high enough frustrations (f )0.01)
such that this effect does not dominate, and vortices are
not prevented from entering the sample. For sample A,
thermally generated free vortices can be neglected be-
cause the data presented here are made below the
Kosterlitz-Thouless transition temperature, TKT. ' '"
The measurements to which we attribute vortex quantum
tunneling in sample 8 are made at a temperature also
below its TKT.

Figure 1 shows an I-V curve for sample A at a temper-
ature of 90 mK. The curve is hysteretic: increasing the
current from zero, no voltage (on this scale) appears
across the array until the critical current of the first step,
I„is reached. The voltage then jumps in many steps to
roughly 70 times the gap voltage. These steps result from
individual or multiple rows switching from a zero voltage
state to a gap voltage state, as has been previously report-
ed. ' Upon decreasing the current from this state, the
voltage does not drop down immediately, but remains
high until very near zero current (on the order of 10 pA).
Then, finally, the voltage drops back down to zero. This
drop occurs in discrete jumps, but only the last few are
discernible, and then only on an expanded current scale.
Sample B shows similar behavior.

The distribution of currents where jumps occur is most
likely due to variation in junction parameters. Tests on a
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FIG. 2. I- Vcharacteristics for sample A at 50 mK, before the
first step. The vertical scale has been expanded by roughly a
factor of 1000 over Fig. 1. The different curves are for different
values of frustration, f. In (a), f is increased uniformly from
roughly 0 to 0.22. In (b), these curves have been replotted with
different axes, showing a rough collapse into a common trend,
along with a curve (hollow circles) modeling the data, as de-
scribed in the text.

FIG. 3. Low-current (I(Id) resistance Rp vs inverse tem-
perature for sample A (filled symbols) and sample B (hollow
symbols). For A, two curves are shown for different frustra-
tions, f=0 and f=0.16. For B, the frustration was not deter-
mined. Neither curve for A, the lower resistance array, shows
any sign of leveling out at low temperatures. The higher resis-
tance array, B, does show a leveling out, however, which is evi-
dence for quantum tunneling of vortices.
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one-dimensional array of ten junctions, fabricated in the
same way, show a variation of critical currents of about
40%, and a standard deviation of 15% about the mean.
This fairly wide distribution possibly explains the spread
of steps in the 2D array.

Using higher voltage sensitivity to study the region be-
fore the first step, where all the rows are nominally in the
zero-voltage state, we see a small voltage. This voltage is
evidence for vortex motion, as the measured voltage is
proportional to the average vortex velocity. Figure 2(a)
shows these features, with the vertical scale of Fig. 1 ex-
panded by a factor of 1000. The I-V curves are depen-
dent on the frustration f: the sample develops little volt-
age for f=0, where few vortices are present, but the volt-
age develops much more rapidly for higher f, where
there are more vortices.

For all the values of frustration, no voltage develops
until a certain value of current is exceeded, the depinning
current, Id. This depinning current is a measure of the
pinning barrier, Eb. the vortices are pinned until forced
over the barrier by a sufficiently strong bias current [in
the absence of thermal activation, which we believe is
negligible at 50 mK (Ref. 13)]. For currents stronger
than Id, the system is in a flux flow regime, with damping
largely determining the vortex motion. Id for an isolated
vortex was calculated numerically by Lobb, Abraham,
and Tinkham (LAT) to be Id =0.1NI,o, where I,o is the
unfluctuated critical current of a single junction and X is
the number of columns. We estimate I,o by using the re-
sult I,OR„=rrh/2e (=9.1X10 V for Sn). For sample
A, this yields 0.11',O=190 nA. This value is most likely
an overestimate as it is derived for an array of identical
junctions, while samples A and B have a spread in junc-
tion parameters. (The R„we give is the measured value,
an average over all the junctions. ) Vortices will depin in
the weakest row first, at a current below the average de-
pinning current. To a first approximation, we can correct
for this by multiplying the I,o estimated for a uniform ar-
ray by the ratio of the measured I, of the first row to that
of the average measured I, . From Fig. 1 this ratio is
0.24, which gives 0.1NI,'0=46 nA, with I,'0 being the
corrected value.

At low values of frustration, the depinning current we
measure is somewhat dependent on f, which makes it
dificult to compare with that calculated by LAT. This
dependence is thought to be due to an energy barrier to
the introduction of field-induced vortices. ' For higher
fields, where this effect is smaller and where the depin-
ning current becomes independent of frustration, we mea-
sure Id =32 nA. Within the approximate method we use
to take account of inhomogeneities, this is in reasonable
agreement with the estimated value of 0.1NI,'o=46 nA.

In Fig. 2(a), f is increased from f=0 to f=0.22 in
steps of roughly 0.035. We see a regular increase with f
in the developed voltage. If the independent vortex ap-
proximation held true for all frustrations, the curves in
Fig. 2(a) should scale with f. To a large extent they do,
except that the depinning current is dependent on f. In
Fig. 2(b), we take this into account in a simple way by
plotting V/f vs (I Id )/Id. This is a reasonable —choice

as in the "flux flow" regime, the voltage due to vortex ve-
locity is proportional to the number of vortices multi-
plied by (I Id—)R„, with R„ inversely proportional to I,o
and hence Id. All the curves collapse into a common
trend, except the curve at the smallest frustration, where
the uncertainties in f and Id are the largest.

By taking explicit account of junction inhomogeneities,
we can improve our earlier simple approximation. Treat-
ing the rows as separate, the measured voltage is the sum
of voltages from each row, each being linear in (I Id ),—
where Id is the depinning current for the mth row.
Taking the distribution of critical currents of the rows
from Fig. 1, one can compute this sum. However, as it
appears this distribution is approximately uniform, we
can analytically determine this sum in a continuum limit.
The resulting curve is given by the hollow circles in Fig.
2(b) with one free parameter, the vortex viscosity.
Though only a crude approximation, this model indicates
that the upward curvature of the data curves has a simple
explanation.

As all the individual junctions are underdamped, we
might expect the vortex motion to be underdamped. This
can be seen by an argument of Rzchowski et al. which
makes a direct analogy between the motion of a vortex
and the dynamics of an individual junction. He showed
that the equation of motion for a single vortex in an array
is theoretically given by

d 2+x 1 d 2mx

a RC dt a

Sk . 2m.x
ae &. sin

8E, I =0,
Ae

Equating 2mx/a with 8, these two equations are identi-
cal, apart from numerical prefactors of order 1. Effects
of the leads, which change the damping term in Eq. (2)
for measurements on individual junctions, ' are thought
not to be important for junctions in an array, as they are
shielded from the environment by the other junctions.

In this analogy to the "washboard" model of single
junctions, which Eq. (2) describes, we might expect that
once the vortex initially escaped its well, it would contin-
ue to run freely. In this case we would see a hysteretic
voltage jump at the depinning current, similar to the hys-
teretic jump at the critical current for a single junction.
However, we do not see a jump in voltage or any hys-
teresis at Id, and the motion appears to be overdamped.
The vortex motion in sample B also appears overdamped.
Numerical simulations' ' of arrays of underdamped
Josephson junctions found that the junctions near a mov-
ing vortex are caused to oscillate. Thus a moving vortex

where x is the vortex position along a line passing
through cell centers, a is the lattice spacing along a
column, I is the bias current, and k is defined by
Eb=kE. . A similar equation describing the phase dy-
namics of a single junction is

d'0 1 dO 8
2

+ + 2E,EJ. sinO — I =0 .
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loses energy to its "wake, " which possibly provides the
damping mechanism which keeps vortices from running
freely after initially being depinned.

The numerical work of Nakajima and Sawada' (NS)
also showed a maximum vortex velocity. %'hen the fre-
quency of phase slips due to a moving vortex reaches
roughly half the plasma frequency of the individual junc-
tion, the simple description of vortex motion fails (a suc-
cession of vortex-antivortex pairs is created behind the
initial vortex). In our measurements this corresponds to
a row switching from the zero-voltage state to the gap
voltage state. In Fig. 2(b) we observe evidence for such a
critical velocity, namely, a constant value of V/f where
the first row switches. (As the measured voltage per vor-
tex is proportional to vortex velocity, this maximum volt-
age per vortex suggests a critical vortex velocity. } Using
the maximum value of V/f from Fig. 2(b), 360 pV, this
corresponds to a frequency of phase slips equaling
1.5 X 10' rad/s. As this value is computed for an array
with homogeneous junctions, it likely underestimates the
actual value for the frequency in the active rows. The
same approximation used to model the curves of Fig. 2(b)
gives 2.0X 10" rad/s for vortices in the fastest moving
rows. Within our simple approximations, this roughly
agrees with the estimated value of NS of
0.5' =1.0X10"rad/s.

So far we have concentrated on vortex motion for
currents larger than the depinning current. However, for
currents less than Id, a vortex can still move from well to
well via two mechanisms. It can hop over the barrier by
thermal activation, and it can tunnel through it quantum
mechanically. At high temperatures, thermal activation
dominates. Making our direct analogy to the washboard
model for a single junction, the measured voltage will just
be proportional to the rate of hopping along the direction
of force (preferred) minus the rate of hopping against the
direction of force (not preferred). Experimentally we find
that this voltage is proportional to the bias current, al-
lowing us to define a resistance Ro. For temperatures
where thermal activation dominates, this resistance is
predicted to be' '

%COO Eb
Ro ~

2 exp (3)
4e2 k~T k~T

where coo=(1/A)(8E, E&)'~ is the classical frequency of
oscillations of the vortex in the bottom of the well. While
initially used to describe single junctions, this Ro should
apply to vortex motion as well under the direct analogy
between the two. Including a factor of frustration times
the number of active rows turns Eq. (3) into an approxi-
mate equality. This does not take into account vortices
jumping multiple wells, which was shown to be important
in the prefactor of Eq. (3) by Martinis and Kautz.
However, because we are mostly interested in the energy
barrier Eb, given approximately by the slope of in(Ro T)
vs 1/T, we will not take multiple jumps into account.

The vortex also can tunnel through the barrier quan-
tum mechanically. The charging energy E„plays an im-
portant role in tunneling. Increasing E, over E& in-
creases the probability for tunneling. This is true until

E, &&E& when the vortices become completely delocal-
ized and the vortex description of the system is inap-
propriate. The maximum value of E, /Ej where the vor-
tex description still has meaning has been estimated to be
about 5. ' Thus, both samples A and B, with Ep/Ej 0 3
and 3, respectively, fall within this limit.

Quantum tunneling is expected to dominate at low
temperatures, when thermal activation becomes negligi-
ble. Ro, a measure of vortex motion, will have then two
regions: at higher temperatures thermal activation dom-
inates and Ro will decrease exponentially with tempera-
ture. Below some crossover temperature T„, quantum
tunneling will dominate and Ro will become temperature
independent. In analogy to the single-junction problem,
T„ is roughly given by k~ T„=A~o/2m.

The measurements shown in Fig. 2 for sample A were
made at T=50 mK, where Ro is zero to within our
measuring limits. At higher temperatures, the I-V curves
look very much as in Fig. 2, with the exception that Ro is
measurable, and can even become large.

Figure 3 shows Ro vs temperature for samples A and
B. For Sample A, two different sets of data are shown,
for f=0 and f=0.16. The general trend is for Ro to in-
crease as the temperature increases, which rejects the in-
creasing thermal activation of vortices. The values for
Ro at f=0 are much less than those for f=0.16 simply
because of the far smaller number of vortices present.
We cannot measure Ro for the lower temperatures be-
cause it falls below our noise level, about 1 Q.

From the slope of these curves, we determine the ener-
gy barrier for the f=0.16 case for sample A. We mea-
sure Eb=1.0E, higher than that predicted by LAT,
E&=0.2E-. The barrier is stronger than expected by a
factor of 5, but in line with measurements by other
groups which have found barriers anywhere from 0.34E
to 2Ej Taking into account sample inhomogeneity,
which suggests that vortices first move in the rows with
weaker barriers, 1.0E possibly is a measure of these
weaker barriers, so that the average barrier height is
larger, being further away from the estimated value.
LAT does neglect extrinsic pinning by local inhomo-
geneities and charging effects, however, both of which
may be important. For sample B, it is not possible to
determine Eb in this way, as there is no real linear region
in ln(RoT) vs 1/T.

In sample A, we do not see evidence of quantum tun-
neling. There is no region at low temperatures where Ro
levels off. The estimated crossover temperature for A is
within the range T„=100—250 mK, so it is reasonable
that the leveling off occurs below our noise level. In sam-
ple B, however, the ratio of charging energy to Josephson
energy is larger than that for sample A, and we might ex-
pect to see a larger amount of tunneling, with a measur-
able value of Ro as T approaches zero. This is the case,
as seen in Fig. 3. Ro for sample B becomes temperature
independent for T &100 mK, evidence for the quantum
tunneling of vortices. Here, the estimated value of T„ is
within the range 40—100 mK. In Fig. 3 the temperature
at which Ro begins to level off is roughly 100 rnK, con-
sistent with the estimated value. This evidence, however,



10 290 T. S. TIGHE, A. T. JOHNSON, AND M. TINKHAM

is preliminary, as the value of the frustration was not
determined before an unknown event degraded sample B.

In conclusion, we have studied vortex motion in 2D ar-
rays of underdamped Josephson junctions. The vortices
are pinned in potential wells for small bias currents, but
at a depinning current Id, they overcome the barrier be-
tween the wells and start fiowing. Despite the junctions
in the array being underdamped, vortices move in an
overdamped manner. One possible explanation is that
vortices lose energy to junctions in their "wake, "by caus-
ing them to oscillate at the plasma frequency. We mea-
sure a maximum vortex velocity, beyond which rows in
the array start switching to the gap voltage state. No
vortex tunneling was observed for the lower resistance ar-
ray, but preliminary evidence for tunneling was found in

the higher resistance array. These higher resistance ar-
rays will be the focus of further research, searching for
more conclusive evidence on quantum tunneling of vor-
tices.

Near completion of this manuscript, we learned of re-
cent work which reports similar results. "
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