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We investigate the relative contribution of ladder and ring diagrams to the single-particle self-energy
in fully-spin-polarized liquid He ( He~). Ladder diagrams are summed to all orders of the bare He- He
interaction using the Galitskii-Feynman-Hartree-Fock (GFHF) analysis. Previous studies of He, using
GFHF analysis, have neglected the part of the GFHF self-energy coming from the correlation potential,
V, . These calculations produced ground-state energies in fair agreement with values obtained from
variational Monte Carlo (VMC) calculations. However, properties such as Landau parameters, which
are directly related to long-range correlations, tend to differ considerably from known values. In the
present work we have evaluated V„and found it to have an appreciable effect on the single-particle exci-
tation energies, c(k) and the ground-state energy: Including V„significantly reduces the ground-state
energy. As a further refinement over previous GFHF calculations, we have used a more accurate
center-of-mass momentum, P, dependence for the Galitskii-Feynman t matrix in the self-energy calcula-
tion. Again we find an undesirably large decrease in the ground-state energy. Finally, upon including a
contribution from a summation of ring diagrams, we find a ground-state energy that is once again in fair
agreement with the VMC values. The ring diagrams are driven by a local particle-hole interaction ob-
tained by the method of correlated basis functions (CBF}. Ring diagrams are then summed within a
random-phase approximation. Our final c(k) is used to calculate the particle-hole irreducible interac-
tion I~ z. In the long-wavelength limit we find that our I~ h is in much better agreement with the CBF
Ip Q when our c( k ) includes contributions from V„,X&, and the refined self-energy calculation.

I. INTRODUCTION

The important role that many-body correlations have
in determining the properties of quantum Auids, such as
liquid He, has long been recognized. A standard means
for obtaining a proper theoretical description of He, that
deals directly with these correlations, begins by evaluat-
ing the single-particle self-energy, X(k, to). From X(k, co)
the single-particle excitation energies, spectral functions,
momentum distribution, effective mass, and binding ener-

gy can be derived. ' For a highly correlated quantum sys-
tem, such as He, the calculation of X(k, co) requires an
appropriately defined "effective" interaction. Various
methods have been employed to determine a suitable
effective interaction. These methods may be semiempiri-
cal as in the case of polarization potential theories and
induced-interaction models or based on first principles
alone. First-principles calculations restrict the input of
the theory to the bare He- He interaction and the bare
He mass. Variational Euler-Lagrange, correlated basis

function (CBF), coupled cluster, and Green's-function
perturbation methods' are all examples of first-
principles approaches. In these theories, the effective in-
teraction is obtained by a proper renormalization of the
bare interaction. The mechanisms responsible for renor-
malizing the bare interaction are the statistical and
dynamical correlations. In CBF and Green's function

perturbation approaches these correlations are represent-
ed by scattering processes involving particles (p) and
holes (h ).

Independent of the method from which it is deter-
mined, the effective interaction should have the correct
short- and long-range behavior before certain elementary
properties of the system can be described. It has become
conventional to speak of the interaction as being ap-
propriately short- and long-ranged screened.

Short-range screening is necessary to renormalize the
steeply repulsive core of the bare interaction. In varia-
tional Euler-Lagrange and CBF approaches the repulsive
core is handled by choosing an appropriate trial wave
function. The most successfu1 choice is the well-known
(properly symmetrized) Feenberg wave function. In
Green's-function perturbation theory, short-range screen-
ing is accomplished by summing ladder diagrams to all
orders of the bare interaction. ' In terms of a scattering
process, the 1adders represent multiple scattering of a
pair of particles (p-p) or a pair of holes (h-h). For
scattering processes involving large momentum transfers
Q, where long-range correlations are negligible, the
ladder sum completely determines the systems dynamics
as is manifested in the dynamic structure function
S(Q, to).

Long-range screening is necessary to ensure that the
appropriate behavior will be obtained in the Landau limit

10 239 1991 The American Physical Society



10 240 B. E. CLEMENTS, C. W. GREEFF, AND H. R. GLYDE

(Q —+0). This leads to the correct long-wavelength be-
havior for quantities such as the static structure function
S(Q), Landau parameters, and the zero-sound dispersion
curve. Fermi-surface properties such as the quasiparticle
strength, zk, which is the discontinuity in the momen-

F
turn distribution at kF, are strongly influenced by the
long-range correlations. This was observed to be the case
in nuclear matter by Poggioli and Jackson. In Green's-
function perturbation theory long-range screening is ac-
complished by summing particle-hole (p-h ) ring dia-
grams. The ring diagram summation is usually done
within a random-phase approximation (RPA). ' In CBF
theory this is done using a correlated version of the RPA
(CRPA). "

In spite of the rather complete conceptual understand-
ing of the correlations important in He, far fewer at-
tempts have been made for a full numerical evaluation of
the ladder and ring summations. In the present work we
use standard Green's-function perturbation theory, where
ladder and ring diagrams appear explicitly and naturally.
The problem, of course, remains of how to evaluate the
ladders and rings. In principle, one could follow the par-
quet formalism. ' For practical matters this formalism,
albeit certainly appealing, has always been simplified by
introducing local approximations for the four-point ver-
tex functions. These approximations are necessary, since
the goal of parquet is to treat ladders and rings on equal
footing: Ladder vertex functions drive the ring series and
vice versa. Unfortunately, it presently appears to be
prohibitively difficult to introduce nonlocal interactions
back into the parquet while maintaining this goal.

The present work represents a more modest but tract-
able calculation. Rather than attempting to sum large
classes of diagrams consistently, we use a nearly complete
calculation of the ladder diagrams that has recently been
used to study the ground-state and dynamical properties
of spin-polarized liquid deuterium. ' This study is based
on the Galitskii-Feynman t matrix. ' Galitskii-Feynman-
Hartree-Fock (GFHF) theory is reviewed in Sec. II. The
GFHF self-energy XJ is calculated directly from the t
matrix. Introducing local approximations for the t ma-
trix are unnecessary in this calculation. The calculation
of X& described in Ref. 13 supersedes that of previous
calculations by including the so-called correlation poten-
tial V„. V„ involves scattering to intermediate two-
hole, one-particle states (2h-lp). Further discussion of
V„ is given in Sec. II. GFHF theory is itself a first-
principles theory, and one can define a single-particle ex-
citation energy e(k) from the GFHF self-energy:

ks(k)= +ReXr((k, E(k)) . (1)
2m

Recent calculations' of spectral functions and the
momentum distribution for fully-spin-polarized liquid
He have shown that both V„and an accurate center-

of-mass momenta dependence for the t matrix are neces-
sary to achieve qualitatively correct values for those
quantities. Consequently, part of Sec. II is devoted to an
explanation of a refined treatment of the center-of-mass
momenta of the t matrix in the evaluation of Xz.

The analysis necessary to evaluate the ring diagram

contribution to the self-energy Xz is given in Sec. III.
The ring diagrams are summed within a RPA. Xz has
the same form as that used by Blaizot and Friman' in
nuclear-matter calculations. This same expression has
been used by Krotscheck, " and Friman and
Krotscheck' for normal He, by Krotscheck, Clark, and
Jackson' for spin-polarized He, and recently by Dave,
Clark, and Panoff' for spin-polarized deuterium. The
evaluation of X~ requires a driving interaction and a
single-particle excitation energy. In the present work, we
use the local particle-hole interaction of Ref. 18, and the
excitation energy comes from our self-consistent GFHF
calculation [cf. Eq. (1)j. Proceeding in this way intro-
duces a certain amount of "overcounting" of distinct dia-
grams. We comment on this in Sec. III. Adding the two
self-energies results in our final expression for E(k),

ks(k)= +ReXr (k, E(k))+ReX&(k, E(k)) . (2)
2m

Here, we consider an X-particle system of fully spin-
polarized liquid He ( Het). We choose this system both
for its intrinsic interest and also to avoid unnecessary
complications due to state-dependent effects. We are in-
terested in assessing the role that ring and ladder dia-
grams have in determining, for example, e(k). As is well
known, E(k) is a quantity of fundamental interest. For
on-shell calculations, it directly contains information
about the effective mass and the binding energy. It is also
primary input to four-point vertex functions such as the t
matrix and the particle-hole irreducible interaction Ip &.
I & is the interaction that drives the dynamic structure
function. Further, a local approximation to I z is used
to evaluate X~ as described above. For Q less than the
Fermi momentum kz, I & should provide a good indica-
tion for the importance of long-range screening. Conse-
quently, in Sec. IV we review the analysis necessary to
calculate Ip &.

In Sec. V we present and discuss our results. The E(k)
are compared for the various cases: ladder contributions
without V„, ladder contributions including V„, and
ladder contributions including V„plus ring contribu-
tions. In He~ we find that including V„requires that a
ring contribution be included as well. That is, the full
contribution of the ladders tends to reduce substantially
the binding of the system. Including the rings largely
cancels this effect. The need for adding a ring contribu-
tion was not as evident in the deuterium study of Ref. 13.
Our Ip Q

is compared to the CBF calculation of Ref. 18.
This comparison is made for ladder contributions only
and then ladder plus ring contributions. The full evalua-
tion of the ladders with the rings greatly improves the
agreement with the CBF result for small momentum
transfer.

Before proceeding to the discussion of GFHF analysis,
we mention that this work should be regarded as some-
what preliminary in the sense that the the final form for
the excitation energy is no longer self-consistent. To go
beyond the present calculation would require substantial
numerical effort, however. Nevertheless, our experience
with this formalism makes us confident that a self-
consistent calculation will produce the same qualitative
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results observed for the excitations and I h. This point
will be discussed further in Sec. VI.

II. LADDER DIAGRAM CONTRIBUTION
TO THE SELF-ENERGY

In this section we provide a brief review of GFHF
theory with emphasis on the self-energy, self-consistency,

the center-of-mass momentum dependence of the t matrix
and the self-energy, and the application to spin-polarized
He~. Further discussion can be found in Refs. 13 and

14. The primary interaction in GFHF theory is the
Galitskii-Feynman t matrix. It is obtained by summing
ladder diagrams to all orders of the bare He- He interac-
tion V(r). This summation leads to the Bethe-Salpeter
equation for the t matrix:

d4k,
T(k„k~,k3, k4)= V(k, —k3)+i f 4 V(k, —k5)G(k5)G(k, +k2 —k5)T(k~, k, +k~ —k~, k3, k4),(2'�)' (3)

where V(k) is the Fourier transform of V(r). In the present work V(r) is the potential of Aziz et al. ' (Note that we
have adopted the notation that all vectors are four-vectors unless otherwise specified).

The single-particle Green's function G (k, co) is taken to have the form

1 n(k—) n (k)
co —e(k)+i g co —e(k) —ig

where n(k)—:8(kF —k ) is single-particle momentum distribution and e(k) is the single-particle excitation energy:

ke(k)= +ReX~(k, e(k)) .
2&l

(4)

Here m is the bare mass and ReX(k, e(k) ) is the real part of the (on-shell) CiFHF self-energy. For an instantaneous pair
potential, T depends on the frequency only through E =co&+ co& and the frequency integral in (3) can be performed:

d k5 (1 n5)(—1 n, +2 ~)—
T(k„k„k,,k„E)=v(k, —k, )+f, v(k, —k, )

(277) —e5 —8 1+2 5+ l 'g

X T(k~, k, +k2 —ks, k3, k4, E),

n5nl+2 —5

E e5 ei+2 —5

where n~ =n(k~ )
—and similarly for e~.

The GFHF self-energy XL (k, co) is a generalization of the Hartree-Fock self-energy in which the bare interaction is
replaced by the exchange symmetrized t matrix T':

T'"(k„k2,k3, k~)= T(k„k2, k3, k~) —T(k, , k~, k4, k3) .

Explicitly,

d4k,
XL, (k), co()= t f —

q
T'"(k(,k2, k), k2)G(k2) .

(2m )

Equations (3)—(8) form a closed set of equations, which must be iterated until self-consistent. The co& dependence may
be integrated out of (8). This is done by invoking the analytical properties of the t matrix and G(k, co). We simply state
the result. ' '

d k2 p„dE ImT'"(k), k~, k„k2,E)
ReXL(k„co,)=f ReT'~(k„k2, k„k2, co, +s(k2))n(k2) —P f "

(2m ) —ao 1T co)+e kp E

d k2
ImXL (k&, co& ) =f —

3
Im T' (k~, k2, k&, k2, co&+ e(k2) )[8(p —e(k2) —0(2p —

co&
—e(k2) )],

(2m. )

(9)

where p=e(kF ) is the chemical potential.
The first and second terms of ReXL are referred to as

the Brueckner-Hartree-Fock (BHF) term, and the corre-
lation potential V„, respectively. V, involves intermedi-
ate scattering processes to two-hole one-particle (2h-lp)
states. Previous calculations' using GFHF theory,
done in normal and spin-polarized He, have dropped

V, , although both terms in ImXL were retained. On the
basis of the hole-line expansion it was logical to assume
that V„should contribute substantially less than the
BHF term in (9), which has a strong component coming
from 2p-1h states. Nevertheless, V, has been included
in recent calculations done on liquid atomic deuterium'
and, while qualitatively the hole-line argument seems to
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T( k „k2, k 3, k ~ ) = T(kk , P'~, ,E ) . (12)

We refer the reader to Refs. 14 and 24 for discussions of
this approximation.

The angle-averaged approximation is likely to work
best for on-shell energy calculations. An important ex-
ample is the BHF term in (9) when the self-energy is eval-
uated on-shell, Xr (k„s(k, )). This observation is easily
explained. In the on-shell BHF calculation one may ar-
gue that a relatively simple evaluation of the t matrix is
sufhcient. In that case, the frequency dependence for the
t matrix is simply E =s(k

&
)+s( kz ). Transforming to rel-

ative and center-of-mass momenta, the total energy be-
comes E =s(P/2+k)+s(P/2 —k) and the energy
denominator in (6) for the t matrix is
s(P/2+k)+s(P/2 —k) —s(P/2+k") —s(P/2 —k" )+i g,
where k"—=P/2 —k~ is a momentum corresponding an in-
termediate state. For s(k) with quadratic momentum
dependence there is a cancellation of P from the energy
denominator. Since interacting Fermi liquids have s(k)
with approximately this property, the role of P is not ex-
pected to be too important in the energy denominator of
the t matrix. Parenthetically, shifting the spectrum by a
constant amount will leave the on-shell t matrix un-
changed. ' In principle, angle averaging is then required
only in the remaining dependence of T on P through the
occupation numbers in (6). For this reason it was found'
that even taking P =0 is a reasonable approximation for
BHF ground-state energy calculations.

On the other hand, when considering V„, even for on-
shell self-energies, the above arguments no longer hold,
and the role of the P in V„can be expected to be impor-
tant. The work in Ref. 15 has demonstrated that main-
taining the angle-averaged P dependence in (9) and (10) is
sufFicient to obtain the correct qualitative behavior of
ImXL near the Fermi surface. For example, we know
from Luttinger that

be correct, it was found that V„ is significant. This is
also found to be true for He~.

An exact solution of the t matrix for general momenta
is not technically feasible, and an angle-averaged approxi-
mation for the center-of-mass momentum is often used. '

The angle average approximation is made in the solution
of the Bethe-Salpeter equation (6) for the t matrix. Con-
servation of momentum reduces the number of indepen-
dent momenta in T to a relative incoming k, relative out-
going k', and center-of-mass momentum P. The transfor-
mation equations are

k= —,'(k, —k~),
k'=

—,'(k, —k~'),

P =ki+k~=k3+k4,

E=6)
~
+c02 =co3 +c04,

where for completeness we included a statement of ener-

gy conservation. To reduce the number of variables in T
to a tractable number we assume that T depends only on
the magnitude of P, while the direction cosines defined by
P and the relative momenta are angle averaged. In this
approximation the t matrix reduces to

The integration is then done over P and cosO~ k . In ad-

dition to giving the correct behavior of ImXL, removing
the P=O approximation also results in a substantial posi-
tive shift in the single-particle energies, as we discuss in
Sec. V.

III. RING DIAGRAM CONTRIBUTION
TO THE SELF-ENERGY

In this section we develop the necessary formalism to
include contributions to the self-energy, which build in
long-range screening. There are two issues for which we
will be primarily concerned. The first issue deals with the
choice of the interaction used to drive the ring diagrams.
The second issue deals with the problem of overcounting
of distinct diagrams.

As in Refs. 11 and 17—19, we choose the driving in-
teraction in the ring diagram series to be the particle-hole
irreducible interaction I„&. In fact, the spirit of the
present calculation is very similar to that of those refer-
ences: The full self-energy consists of a generalized
Hartree-Fock term pius a ring contribution, which is
driven by I &. The diagrammatic representation of the
p-h ring series is displayed in Fig. 1. Replacing the four-
point interaction I & with a local interaction is
equivalent to summing the ring series in an RPA.
Krotscheck, Clark, and Jackson' have used CBF theory
to calculate a local approximation to I

&
in He . With

this approximation for the interaction we may algebrai-
cally sum the ring series. The result for the self-energy is

d4
X„(k,co)=i J I h(Q)y(Q, co&)G(k —Q, m —co&),

(2m )

(14)

where the RPA expression for the dynamic susceptibility
X(Q ~~) is

(15)
1 —

&~ h(Q)y (Q)

In this equation g is a generalized Lindhard function:

d4py'(Q)= if,G—(p+g)G(p) .
(2 )

(16)

In these expressions, G(k, ~) is the full single-particle
Green's function given by (4). Consequently, single-
particle excitation energies are needed to evaluate (14)
and (16). In our calculation we take these from our self-
consistent GFHF theory [cf. Eq. (5)].

The co& can be integrated from (14) with the result:

ImX(k, co) =(co—p) sgn(p —co)

as co~p. For this reason„we have done the calculation
in which the dependence of T on P is retained in the self-
energy calculation. More explicitly, the relative momen-
tum and k2 in (9) and (10) can be expressed in terms of
P, k, and the cosine of the angle between them, cosO~ k ..

k = [k, + (P/2) k, P—cos8~ q ]'
(13)

k2=(k, +P 2k,—P cos&p k
)'
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ReX(k, ro)= f 3
I h(Q) Reg(Q, co —E(k —Q))n(k —Q) —&fd'Q dE Imp(Q, E )

(2m) o m co —ek — E—

d'
2ImX(k, co) = f I I, (Q)lmy(Q, co —E(k —Q) )[0(E(kF )

—E(k —Q) ) —0(co—E(k —Q)) j .
(2'�)

(17)

(18)

R

Ip-h I
p —h I p-h I p-h

FIG. 1. Diagrammatic representation of Xz . I~ z is the
particle-hole irreducible interaction, and 6 is the single-particle
Green's function.

As mentioned in Sec. I, this expression has been used ex-
tensively in nuclear matter, ' liquid-helium, "' ' and
liquid-deuterium calculations. '

We now return to the issues mentioned above. Rather
than using I I, in the ring diagrams we could have
chosen a local approximation to the t matrix. I h ap-
pears to be the better choice for several reasons. First, a
diagrammatic analysis shows that I h contains many
diagrams that are not contained in the t matrix. One ex-
ample of the diagrams missed would be those with p-h
rings in the rungs of the ladders. This type of diagram
can be expected to be important, since it has a direct
screening effect on the bare interaction. Secondly, I z is
considerably more repulsive than the t matrix for low
values of momentum. It is well established' ' ' that a
repulsive interaction in (15) is necessary to effectively
push the zero-sound mode up out of the particle-hole
band in He . I I, is sufficiently repulsive to achieve this,
while the t matrix is not. Consequently, for collective
effects to be included in the self-energy, (15) must be
driven by I I, . This does not preclude using the t matrix
for the two vertex functions Aanking the y in Fig. 1 and
accounting for the I h in (14). We settled this issued by
performing a numerical calculation and comparing the
results. The result of that study showed that the t matrix
gave substantially inferior results for spectra e(k), com-
pared to those obtained by using 1~ I, .

We now discuss the over counting introduced by add-
ing (14) to the GFHF self-energy. We refer to the terms
in Fig. 1 that are second order in I h by Xz'. It is clear
that keeping Xz ' introduces over counting even at second
order in V(k). This is immediately obvious by noting
that one set of diagrams in I & are the ladder diagrams.
The T approximation for I h, discussed in the next sec-
tion, is an example. One can choose to eliminate Xz' al-
together, but this introduces problems. First, eliminating
Xz' would remove unique diagrams that are not con-
tained in Xl . Further, this approach produces erroneous
results. The important point is that I~ &gI~ & uses a fully
long- and short-range screened interaction in the
"crossed" particle-hole channel and is fully long-range
screened (because of y) in the "direct" particle-hole chan-
nel. A term with the g appearing explicitly, for exam-
ple, I I, g I h is only short-range screened in the direct

particle-hole channel. Subtracting these terms destroys
the long-range screening, which we are trying to build
into our effective interaction in the first place. Conse-
quently, and this was verified numerically, it is far better
to keep the over counting of diagrams than to reintro-
duce an unscreened quantity. This general behavior is
common in many-body theory. The most famous exam-
ple is that of the logarithmic divergences encountered in
dielectric studies in the degenerate electron gas." Be-
cause of the singular nature of the Coulomb potential, in-
dividual terms in the ring series yield energy contribu-
tions that diverge at every order. However, when
summed to all orders, the ring series produces a physical-
ly meaningful contribution to the energy. While in the
present work we do not encounter divergences, exposing
single unscreened terms leads to spectra with nonphysical
properties. Finally, it should be mentioned that a
strength of the parquet method over the present work is
that it avoids overcounting problems.

IV. THE PARTICLE-HOLE
IRREDUCIBLE INTERACTION

In the preceding section, it was shown that the calcula-
tion of y( Q, co ) and Xz require I„h as input. A
knowledge of I I, is also important because of the well-
known relation that exists between y(Q, co) and the exper-
imentally measured dynamic structure function S(Q, co):

S(Q, co)= — Imp(Q, co),
1

n~
(19)

where n is the particle number density.
In Green's-function perturbation theory I & can be

determined from a method proposed by Baym and Ka-
danoff. Given an approximation to the actual self-
energy and the corresponding single-particle Green's
function, an approximate I & that conserves particle
number, energy, and momentum can be obtained as fol-
lows:

r, (1,2, 3,4) =i
56(4, 2)

where 1=(x„t„o,). The nonlocal nature . of I~ h is clear
from this expression.

The Baym-Kadanoff method has recently been used in
conjunction with CxFHF analysis to study the dynami-
cal properties of normal and spin-polarized He. Apply-
ing (20) to XI results in the "T approximation" for Iz h.
The analysis necessary to reduce I I, to a local approxi-
mation is rather lengthy, and we refer the reader to Ref.
28 for the details. We simply state the results. The T ap-
proximation, expressed in a momentum space representa-
tion, is
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Iq i, (pi+Q, p2, p),p2+Q)=T(p)+Q, p2, pi, p2+Q)+i 4 T p)+Q, p ——,p2+Q, p+ —G p+-d p q q q
(2ir )

2' '
2 2

XG p T p+,p2,p, p) (21)

We have introduced the vector q=p, —p2. In (21) the first and second terms are referred to as the direct and induced
terms, respectively. Our local approximation for I I, is obtained by closing the four-vertices of I h with single-particle
Green's functions and integrating the internal momentum p, and p2.

d p) d p2
Ip ~(Q, co)—=

o 2 f 4 J ~ G(p))G(p)+Q)Ip i, (pi+Q, p2, p),p2+Q)G(p2+Q)G(p2) .
y (Q, co) (2m. ) (2m. )

(22)

As discussed in Ref. 28, up to the T approximation, this
local approximation to I h makes y(Q, co) exact to first
order in I z. Equations (21) and (22) are our approxi-
mate 1 & studied in this work. We consider the static
limit (co=0) only. Our I i, is compared to the CBF I i,

in the next section, where further comments about the T
approximation are made.

V. RESULTS

We now present our results for the single-particle spec-
tra e(k), ground-state energies, and the particle-hole irre-
ducible interaction I„h(Q) in Het. Figure 2 shows our
spectra as a function of k at a density n =0.0172 A
(V=35. 1 cm /mol). The Fermi momentum at this den-
sity is kF =1.005 A. The totally self-consistent spectra c,
and e~ are solutions of (5). E2 has the V„ term in the
self-energy (9), while e& does not. E2 represents the full
GFHF approximation, while c., is essentially the BHF
E(k). In both cases the center-of-mass momentum P is
set equal to zero. c.3 is obtained by keeping the V„con-
tribution and also using the P dependence of the t matrix
in the evaluation of (9) and (10). Once again, within the
GFHF analysis, c.3 is fully self-consistent. Finally, c4 is
the solution of (2), i.e., it has a ring contribution in the
self-energy. It is no longer fully self-consistent, as will be
discussed in Sec. VI.

Contrasting c, and c.2, we find that including V„ in-
creases e(k) significantly for 0.4 A ' &k & 1.8A '. This
increase is similar to that observed in liquid deuterium. '

An increase in the low-momentum values of E(k) leads to
a reduction in the binding of the system as is apparent
from the independent-particle approximation' ' ' ' for
the ground-state energy:

kF—=—EF+ f dk k ReX(k, e(k)) . (23)
2kF~

The observed increase in E(k) is undesirable, since the
ground-state energy calculated using E, (without V„) was
already in fair agreement with the variational Monte Car-
lo values of Lhuillier and Levesque. In Fig. 3 the
ground-state energies as a function of the molar volume
are shown for various cases: E& is the ground-state ener-

gy when V„ is not included. At V=35. 1 cm /mol it is
the ground-state energy obtained by evaluating (23) using

m*(k)=k "'"'
dk

(24)

In Table I values of m*(kF)/m are given. For compar-
ison, we have included a CBF on-shell effective mass'
and one taken from an induced-interaction model calcula-
tion. ' (Both are extrapolations from other densities. )

Next consider c3. From Fig. 2 it is obvious that the P
dependence of the t matrix- and self-energy is extremely
important when V„ is added. Recall from the discussion

62

V = 35.1 cm3/mol

0.0 0.5 1.0

k(Ai)
1.5

FIG. 2. Single-particle excitation energies: c&, c2, c.„and c4
in He~ at 0.0172A ' (V=35. 1 cm'/mol). c, , and c, are the
GFHF excitation energies obtained without and with V„, re-
spectively. c3 is simlar to c2 but is calculated with an improved
evaluation of the center-of-mass momenta dependence of the t
matrix in the self-energy calculation. c4 is the full GFHF plus
the ring diagram term.

c.
&

as input. Similarly, E2 is the ground-state energy
when V„ is included. In both cases, the P=O approxi-
mation was always invoked. The variational Monte Car-
lo (VMC) values of Ref. 32 are also shown. It is immedi-
ately obvious that V„decreases the binding in the sys-
tem, while shifting the zero pressure state to higher
volumes. In Table I numerical values for the ground-
state energy are given for V=35. 1 cm3/mol.

Another effect caused by including V„ is a decrease in
the effective mass at kF. Recall that the effective mass is
related to the reciprocal of the slope:
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1.0

0.0

—0.5

15

1.0

0.5

0.0

TABLE I. Ground-state energies and effective-mass ratios in
'He~ at n =0.0172 A (V=35. 1 cm'/mol). Ground-state en-
ergies are calculated from Eq. (23) using the spectra c, through
c4 from Fig. 2 as input. The effective-mass ratios are calculated
from Eq. (24) from these spectra. VMC is the ground-state en-
ergy obtained from a variational Monte Carlo calculation (Ref.
32). KCJ and BQ are the effective-mass ratios obtained from
CBF (Ref 18) and induced-interaction model (Ref. 33) calcula-
tions. Both are extrapolations from other densities.

—1.0 —1.0 Ground-state energy (K) m *(kF)/I
—1.5 —1.5

20

I I, j I, , 2 0
30 40 50 60 70 80
Molar Volume (crn )

FIG. 3. Ground-state energies in 'He~. E& (E2) is calculated
from self-consistent GFHF theory and omits (includes) the V„
contribution to the self-energy. In both cases the center-of-mass
momentum in the t matrix is set equal to zero. VMC is the vari-
ational Monte Carlo ground-state energy from Ref. 32.

k
+ReXL (k, E(k) )+ReXz (k, E(k) ),2m

(25)

where XL is calculated with V„ included
(E4 E3+ReXz ). This spectrum is displayed in Fig. 2. It
is immediately obvious that the full V„and Xz nearly
cancel near kz. Consequently, including Xz and V„pro-
duces only a modest reduction in the ground-state energy
from E, (cf. Table I).

The effective-mass ratio m *(kF )/m calculated from E4
is enhanced over that calculated from c2, and c.3 and is in
reasonable agreement with c&. As can be seen from Table
I, this value of m*(kz)/m is also in agreement with that

in See. II that earlier work, ' which kept only the BHF
term in (9), found the role of P for on-shell calculations to
be much less important. The ground-state energy and
effective mass ratio differ substantially from the VMC
and CBF calculations (cf. Table I). Nevertheless, from
the point of view of satisfying certain fundamental prop-
erties' of the full off-shell self-energy, c3 is superior to c,
and Ep.

As we now discuss, the contribution from the full V„
(including the P dependence) is largely canceled by the
ring contributions. To calculate Xz, we used the local
approximation to I & obtained from CBF calculations
(cf. Fig. 4). (This I h was actually calculated at
n =0.0166 A and not n =0.0172 A, but for the
present calculation the difference is negligible. ) I~ &is
used as input in both (14) and (15). To evaluate the gen-
eralized Lindhard function a spectrum is needed as input.
The generalized Lindhard function is rather insensitive to
the spectrum, since the spectrum appears only through
an energy difference [E(p+Q) —s(p) j. Consequently, e&

and c,2 yield similar values for g . The important point is
that the final spectrum, including ring contributions, is
given by

C)

E,2

E3

K4

VMC
KCJ
BQ

—1.16
0.229
2.73

—0.86
—1.5

0.82
0.75
0.61
0.87

0.8
0.82

30

KCJ (CBF) 3He

(3 )0

-10
0 0.5

FIG. 4. Particle-hole interaction, I~ h, in 'He at 0.0172 A
I~ z(L} is the direct plus induced term calculated in the T ap-
proximation (Ref. 28) using the GFHF ladder (L) self-energy,
XL. For this case, T is the direct term only (dashed line).
I~ z(L+R) is calculated in the T approximation using the
present ladder plus ring (R) self-energy X=XI +X&. KCJ is
the CBF result of Kotscheck, Clark, and Jackson (Ref. 18). The
KCJ density is 0.0166 A

calculated in CBF theory' and calculations based on the
induced interaction model. An enhancement in m* is

0
obtained from c4 near k =1.6 A '. This is caused by a
coupling to the collective excitations (zero-sound mode)
observed in our theoretical calculations. A further dis-
cussion of this enhancement can be found in Ref. 17.

We now turn to I h given by (21) and (22). In Fig. 4,
I~ I, as a function of momentum transfer Q, is displayed
for the same density as above. The CBF result of
Krotscheck, Clark, and Jackson' is widely accepted as a
good local approximation to I &. The curve labeled
Iz h(L) is Iz & calculated in the T approximation dis-
cussed in Sec. IV using the spectrum c,. For complete-
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ness, we have included a plot of the direct term contribu-
tion to I~ &(L) (curve T in Fig. 4). Recall that the direct
term is essentially a local approximation for the t matrix
and is given by the first term in (21). I~ & (L +R) is I„ t, in
the T approximation calculated using E4. When E4(k) is
used in the T approximation we find a new I &, which
lies much closer to the CBF result. The Landau limit
corresponds to the small-Q limit. ' It is seen in Fig. 4
that including Xz with the full calculation of V„has the
largest effect in the Landau limit. This is in complete
agreement with the discussion given in Sec. I.

We conclude this section with a discussion of the T ap-
proximation. According to the Baym-Kadanoff scheme,
the approximate I & calculated depends on the approxi-
mation used for the self-energy. When XL is used in (20)
the result is the T approximation. If, for example,
Xl +X~ is used in (20), then a higher-order expression
for Ip I, will result. In principle, then, we should calcu-
late a new expression for I I, . However, based on the
work of Ref. 28, we know that, while the T approxima-
tion is only semiquantitatively correct, including
higher-order diagrams in the "cross channel" will pro-
duce only a moderate change in I I, for He . We are
confident that truncating I & at the level of the T ap-
proximation is completely sufficient for the present work,
where our goal is to determine the effects of ring dia-
grams on the long-wavelength limit of I I, .

VI. CONCLUSIONS

In this work we have investigated the role of ladder
and ring diagrams in the self-energy for liquid He~.
Ladder diagrams were summed to all orders of the bare
He- He interaction by using GFHF analysis. The

present calculation includes the part of the GFHF self-
energy coming from the correlation potential V„. When
V„ is added, we found that the center-of-mass momen-
tum dependence of the t matrix has an important effect in
the ladder self-energy. Similar to recent findings for
liquid deuterium, V„makes a significant contribution to
the self-consistent single-particle spectra. We found that
a full evaluation of the ladder contribution to the self-
energy including V„reduced the binding energy in He~

by an undesirable amount.

To evaluate Xz we have used a local interaction ob-
tained by CBF theory. We found a substantial cancella-
tion of the full V„and X~ . Including X„ largely
corrects the unbinding of the system discussed above and
yields an effective-mass ratio in good agreement with oth-
er calculations. We then used the resulting E(k) to evalu-
ate the T approximation to I &. We found that our I I,

is in much better agreement with the CBF result in the
Landau limit, when our E(k) includes the effects of both
V„and X~.

We conclude that we have shown that it is possible for
a first-principles calculation, based on Green's-function
perturbation theory, to obtain a qualitatively reasonable
value for the ground-state energy and effective mass. We
also find a reasonable behavior for the particle-hole irre-
ducible interaction in the limit of small momentum
transfer. In spite of this success, we regard this work as a
preliminary but necessary step for future calculations.
One would like to achieve a completely self-consistent
theory. At the present, this calculation is self-consistent
only at the level of the GFHF theory. The close agree-
ment of our I t, and the CBF I t, (Fig. 4) is strongly sug-
gestive that the T approximation to I & can be used as
input in the next iteration in the evaluation of (14). This
represents a substantial numerical calculation as one
would first need to extend our local approximation to I &

to large values of momentum. At the present, our T ap-
proximation developed in Ref. 28 gives meaningful re-
sults for momentum not exceeding 2kF. Secondly, one
would like to extend these calculations to the entire range
molar volumes of interest. In this way the density depen-
dence of the ground-state energy and effective masses
could be studied. Again, this represents a substantial nu-
merical task. The present work is meant to stimulate fur-
ther research in these areas.
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