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Vortex lattice of highly anisotropic layered superconductors in strong, parallel magnetic fields
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The equations for the gauge-invariant phases obtained in the framework of the Lawrence-Doniach
model are used to study the vortex lattice in layered superconductors in strong, parallel magnetic fields

H. As H changes, a sequence of first-order phase transitions occurs between the 1attices with di6'erent

periods. The largest jumps in magnetization, of order H„, occur at fields of order Ho =Polys, where $0
is the Aux quantum, s is the interlayer spacing, and y is the anisotropy (y =1,, /A, ,b, where k, and A,,& are
the penetration depths for currents perpendicular and parallel to the layers, respectively). The asymp-
totic dependence of the magnetization M at high fields H »Ho is M ~ H

I. INTRODUCTION

We consider the vortex lattice in superconductors with
Josephson coupling of the layers' in the presence of a
strong magnetic field parallel to the layers. For such an
orientation, supercurrents should Aow between the layers;
these are limited by the Josephson character of interlayer
coupling. In this case the properties of the vortex lattice
may be quite different from those obtained in the frame-
work of the three-dimensional (3D) anisotropic London
or Ginzburg-Landau approach. We show that in strong
magnetic fields of order Ho=go/ys we do have a new
phenomenon: first-order phase transitions occur between
the lattices with different periods l =2ks in the direction
perpendicular to the layers. Here k = 1,2, . . . , s is the in-
terlayer spacing, y =A,, /A, ,b is the anisotropy ratio, A., is
the penetration depth for currents along the c axis (per-
pendicular to the layers), and A,,b is the penetration depth
for currents in the ab plane (parallel to the layers). These
jumps in the lattice structure are caused by the discrete
layer structure of the crystal and the Josephson nature of
layer coupling. We show also that the magnetization
drops with field more rapidly than is predicted by the 3D
anisotropic London theory.

In the following we use the mean-field approach,
I

neglecting fluctuations. Thus the obtained results are
valid at temperatures far below the vortex lattice melting
temperature. The structure of a single vortex parallel
to the layers has been studied previously in the frame-
work of such an approach. It was shown that such a
vortex has, instead of a normal core, a nonlinear Joseph-
son core with major axis ys in the ab direction parallel to
the layers and minor axis s in the c direction perpendicu-
lar to the layers. Outside the nonlinear core the vortex is
described accurately by the anisotropic London theory.
At magnetic fields of order Ho=golys, however, the
nonlinear Josephson cores of vortices overlap strongly,
and the behavior of the vortex lattice is determined com-
pletely by the Josephson nature of the layer coupling.

The London 3D anisotropic theory is not appropriate
in this situation. In the following we study the vortex lat-
tice structure in the fields H of order of or larger than
Ho.

II. BASIC EQUATIONS

We first present the equations that describe the Joseph-
son behavior in layered superconductors.

In the framework of the Lawrence-Doniach model' the
free energy functional is

H, s 2~ 1g fdr 4'~~(T)l —i
&

+ A (ln) O'
I I+ I

+
n 0

+p I+, I'+I+, +il —+„+„*+ie
' "'" ' —+„*+„+,e' ""+' h2

+fdrJdz
(, n +1)s

Aii=(A, A ), A, dz, h=curl A .
ns

Here %'„(r)= 'P„(r)lexp[i@„(r)] is the order parameter
in layer n, r=(x,y) and the z axis is perpendicular to the
layers, H, is the bulk thermodynamic critical field, Al(n)
is the parallel component of the vector potential at z =ns,

and the parameter p «1 characterizes the weak Joseph-
son coupling between layers. The superconducting layers
are assumed to have negligible thickness.

For a magnetic field parallel to the layers, the ampli-
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tude ~%„~ of the order parameter can be assumed to be
independent of x, y, and n. Then the free-energy func-
tional with respect to the phases N„ is:

FI~]sXf r 'g'(T) "+
4~ ~~ ()r (1

Ajo+ [1—cos(N„—N„+1

Thus the free energy can be calculated using (2) to deter-
mine the period of the vortex lattice at given external
field H. For a periodic vortex array, the magnetic induc-
tion between layers n and n + 1 is given by the relation:

(s )
'$0 'V+I

l
, .a

27Ts Bx

where the angular brackets mean the average value over
the period of the vortex lattice along the x axis. The
magnetization M can be found using the relation:

—X...+1)] (2)
M= B

4m.

BFO

BB
where jo=cspH, /go=cga/Sn sA, , is the Josephson in-
terlayer critical current density.

We choose the orientation of magnetic field to be along
the y axis. Then A =0; the phases N„depend on n and
x; and 3 and A, depend on x and z. We introduce the
gauge-invariant differences of phases between the neigh-
boring layers n and n +1,

(n +1)s
q)„„+,(x)=@„(x)—N„+,(x)— dz A, (x,z) .

0 ns

where Fo is the minimal value of F given by (1).
In the case of a dense vortex lattice with distances be-

tween the vortices along the x axis of order A,J or smaller,
the last term on the left-hand side of (4) can be omitted.
Then the gauge-invariant phases q)„(x) for the layers n
can be used to describe the system.

These can be determined as the solutions of the equa-
tions

1 [sin((p„—q)„+, ) —sin(q)„, —q)„)]=0,
kJ

(S)

~ q n, n+1

Bx

1
(2 sinq)„„+,—sinq)„+, „+2—sinq)„, „)

Ar J

Using the functional (2) we obtain the following equations
for q „„+,(x): such that the phase differences y„„+1=y„—y„+1 obey

Eq. (4) (without the last term on the left-hand side).
Comparing (5) with (S) we see that now the currents
j „(x)are given by the expression:

1
2 Sinyn n+, =0, (4) Jxn

= c 4'o

8m iE,I,

Blp„
n (9)

~jxn Jo+ (sinq)„„+1—sinq)„1 „)=0 .
Bx s

(5)

where A&=ps. The periodic solutions q)„„+,(x) in x and
n determine the vortex lattice. They give the Josephson
currents between the layers, and the currents along the
layers j„„(x) = c(t)o( dsIs„ /—dx +2~ 2„/$0) /8 m', ,b can.
be found using the current continuity equation:

where constants Cn are independent of x. We note that
q)„(r) is not equal to

[@„( )r+(2 /1' )of"' Aii(r)]

but their derivatives with respect to x coincide. The free
energy functional with respect to the gauge-invariant
phases cp„ is

F[q)„]= g fdr
2

2—C„+ [1—cos(q)„—q)„+,)] (10)

where the constants Cn should be determined by minim-
izing the free energy.

The obtained equations generalize the corresponding
expressions for a single junction' to a multilayer system.

III. HIGH-FIELD BEHAVIOR

We now study the vortex lattice in very high fields,
H &&Ho. In this field range the centers of vortices are ar-
ranged in a triangular lattice as sketched in Fig. 1, where
the period of the lattice in the c direction is I=2s and
along the x axis is a, where a &&A,J. The area of the unit
cell is as, and 8 =$0/sa for this vortex lattice. (It can be

shown that the rectangular lattice has a higher energy. )

Due to the periodicity of the system we obtain

q)2„2„+,(x) =2mx /a +f (x),
q)2„+, 2„+2(x)=21rx/a +sr+f(x +a /2),
(p2„= C2„x +b (x),

q 2„+1=C2„+1x +b (x +a /2)

where f (x +a) =f (x), b (x +a) =b (x), and (f (x) )
=(b(x)) =0. From the symmetry of the lattice we get
b (x +a /2) = b(x). Ta—king into account the relations
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FIG. 1. The vortex lattice with period l =2s in the c direction
for a strong magnetic field parallel to the layers. Arrows show
the direction of currents.

FIG. 2. The vortex lattice with period l =4s in the c direc-
tion.

in the field range H, &
«H «H, 2 is given by the expres-

sion'

'p2n 2n+1(x) (C2n C2n+i )x +b (x) b (x +a/2)
(12)

02n+1, 2n+2(x) ( 2n+i 2n+2)x
M(H) = — ln

4o &H2

ab c
(18)

+b (x +a/2) b(x), —

we see that f(x)= f (x+a/2)—=2b(x). Using (4) and
(11)we obtain the equation for f (x):

8 4
sin

ax2
=

A2

2&x
(13)

2

+ 2 . 2mx . f +yd Bs
8m

(14)

The free energy functional for one layer of this lattice is
given by the expression

af 2dr
32 'X' 4 ~ A,

'

where the numerical parameter P is of the order unity.
Note that in the regime where the Josephson cores over-
lap [Eq. (17)], the magnetization decreases with field
more rapidly than that given in Eq. (18).

As the magnetic field decreases down to the values of
order H0, the period a of the lattice in the x direction
grows, while the period l in the c direction remains the
same. Then at some value H& of order Ho the lattice
with period 4s in the c direction starts to be more favor-
able than the lattice with l =2s. As H further diminishes,
the transition to the lattice with period l =6s occurs, and
so on. The jumps in l are accompanied by the jumps in
period a because of the relation B=2$o/la. At fields H
much smaller than Ho we approach the London limit, for
which the ratio a /l is y /&3. '

In the limit a/A, J « 1 we can use perturbation theory to
obtain f (x). To second order in a /A, z we obtain 1/s

—1/4
/

af (x)= — sin
m2k2J

The free energy per unit volume at given a is

6.0

2 2
0o 4o

g~~ 2a 2 )6~3g2 g2

$2a 2

6477 Xab XJ
(16)

4.0

2.0

4'o

32& k~b
(17)

Using this expression and (7), we obtain for H ))Ho the
asymptotic behavior of the magnetization:

3
H0M(H)=-
H

0.0
10 15 20 Ho/H

Such a dependence is valid for high magnetic fields ex-
cept those close to the upper critical field H, 2, which is
determined by the paramagnetic e6'ect for the parallel
orientation. "'

We note that in the London model the magnetization

FIG. 3. The schematical dependence of the lattice periods
l/s (lines l) and a/XJ (lines a) on the inverse magnetic field
parallel to the layers in Lawrence-Doniach model (solid lines,
left scale) and 3 ' l/s and 3' a/A, z in the London model
(dashed line, right scale).
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yz„z„+i(x) =2nx /a +f i (x),
'Pzn + 1, 2n + 2(X ) 0 2n +3, 2n +4(X } f2 (X} r

+2 2 +3(x)=2trx /a + tr+f, (x +a/2)

(19)

where (f,(x)) =(fz(x)) =0. For phases inside the lay-
ers we obtain yz„(x)= —yz„+i(x)=f i(x}/2 and

The vortex lattice with l =4s is shown in Fig. 2. In this
lattice the magnetic induction is determined by the rela-
tion B =go/2sa and the phases diff'erences are described
by two periodic functions f i (x),fz(x):

8 Q 2
sinU cos

Bx

27TX +Q +s1nQ
a

8 U 2 . 2ITx
2 2

S1n +Q COSU
a

The free energy functional (for one layer) with respect to
the functions u (x), U (x }is

q&2„+2(x)= —yz +3(x)=fz(x)/2 taking into account the
symmetry of the lattice. The equations for
tt =(fi+fz)j»nd U =(fi —fz)/2 a«

i.„
128m' A, b

2 '2
BQ BU

BX

4 2 ITX B s+ 4—2cosQ+sin +Q sinU + dr
kJ a 8m

(21)

Comparison of the free energy of the lattice l =2s with
the lattice I =4s gives the magnetic field H& for the first
transition.

Using the same procedure for lattices with periods
l =2sk and a =A&Ho/kB . along the z and z axes such that
B=go jksa, we can determine the critical fields H& for
the all sequence of transitions. The mean density of the
free energy for the vortex lattice with period l =2ks can
be written in the form

curate values of the critical fields and magnetization
jumps can be found using equations presented above).
The dependences of l ls and a jA,z on Ho/H are shown
schematically in Fig. 3.

We note that similar but weaker commensuration
effects were observed for vortex lattice in modulated
structures with periodically varying concentration of im-
purities' and they were analyzed in the standard London
model. 5

4'o Ho
Fk(B)=

3 2 2
1 —Gk

16& kgbkJ
+ B

8m
(22)

where the functions Gk(Ho/kB) are dimensionless. Now
the magnetic induction Bk at the transition
1=2ks~l =2(k +1)s is determined by the equation:

Gk (Ho /kB ) =Gk ~ i ( H'o /( k + 1 )B ) . (23)

According to (7), (22), and (23) in the range of magnetic
field under interest the magnetic induction B differs from
the magnetic field H by the term which is as small as
s /A, ,b and thus with the same accuracy the values Hk
depend on the single parameter Ho=go/ys, i.e., on y.
As a result the phase transitions in temperature at fixed
parallel magnetic field are absent if anisotropy y is in-
dependent of temperature. The most interesting are the
first several transtions, because the jump in magnetiza-
tion drops rapidly with growth of k. We note that in the
London theory, ' for which a /l =y /&3, we have
l /s =&3a /A J= ( Ho~23 /H)' . So at least at large
Ho/H, the value of k is given by the integer part of
(&3Ho /2H)'~ . Assuming that the same is valid for
k =1,2 we can estimate H, =Ho/3 and Hz =Ho/8 (ac-

IV. DISCUSSION

In conclusion, we have obtained the magnetization
[Eq. (17)] of highly anisotropic layered superconductors
in strong, parallel magnetic fields, H »Ho, where
Ho=go/ys . A sequence of first-order phase transitions
in a vortex lattice in a parallel magnetic fields is also
found, the scale of the corresponding critical fields being
of order Ho. The maximum jump of the magnetization
(scale set by H, i) occurs approximately at the field Ho/3.
This field can be estimated as 3T in T12Sr2CaCu208
[s = 10A and y =200 (Ref. 17)] and 12T in
BizSrzCaCuzOs [y =55 (Ref. 18)].
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