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We present a measurement of the Hall coefficient Ry for an untwinned single crystal of YBa,Cu;0;_,.
The crystal was produced by a method that does not involve thermomechanical detwinning, and has a
resistivity along the copper-oxide chains of only 29 u{) cm at 100 K, indicating high sample quality. The
in-plane resistivity and 1/Ry become linear in temperature as 7 rises significantly above 7,.. Near T, we
observe deviation from this linearity, and we interpret it as indicating thermodynamic fluctuations in a
layered superconductor. Fits of this model to both the resistivity and Hall-effect data yield physically
reasonable values for the fitting parameters. Evidence is obtained that the two copper-oxide planes in
each unit cell are tightly coupled, acting as one superconducting layer. Surprisingly, the best fits indicate
that the Hall-effect fluctuations are dominated by the Maki-Thompson process rather than the

Aslamazov-Larkin process.

I. INTRODUCTION

Effects of superconducting fluctuations have been seen
in various properties of high-T, superconductors, includ-
ing electrical conductivity,"? specific heat,> magnetic sus-
ceptibility,* magnetoresistance,” and Hall effect.® In the
case of the Hall data, the fluctuation effect in
YBa,Cu;0,_, above T, is a prominent deviation from
the 1/T normal-state dependence of the Hall coefficient
Ry for a magnetic field H perpendicular to the copper-
oxide planes.

Theoretical models for fluctuation effects often involve
several parameters, making it difficult to test the theories,
since very good fits of the same data to several different
models can be obtained if enough parameters are adjust-
ed. In this paper we attempt to reduce the impact of this
difficulty by simultaneously measuring two independent
quantities, the electrical and Hall conductivities, and
comparing them both to the predictions of the same mod-
el using the same parameters. Sample quality and homo-
geneity are of paramount importance in the investigation
of fluctuation effects, and so we have performed the ex-
periment on one of the cleanest available high-T, sam-
ples: a thin untwinned single crystal produced by a
method not requiring applied stress. Crystals produced
by this method have given clean results in several other
experiments, including specific heat,® Raman effect,’ tor-
sional oscillator experiments,® and conductivity.’

II. CRYSTAL PREPARATION

The untwinned YBa,Cu;0,_, crystal investigated in
this study was produced by a method described else-
where.!® It was cleaved from a parent crystal into a bar
shape suitable for Hall-effect measurements,'! with di-
mensions 190X 820X 12 ym3 along the a, b, and ¢ axes,
respectively. The copper-oxide planes of YBa,Cu;0,_,
lie in the a-b plane, and the copper-oxide chains run

4

along the b axis. The current flowed in the b direction.
We choose (a,b,c) to be a left-handed coordinate system,
so the conductivity matrix element o, is positive for
hole conduction.

A five-probe contact arrangement was used. Two
current contacts were made by evaporating gold onto
both of the 190X 12-um? a-c edges. Three voltage con-
tacts 20X 12 um? in size were made by evaporating gold
onto the b-c edges through a thin slit placed against the
crystal. Two of these contacts were on one b-c edge, and
the third was on the opposite b-c edge. Thus the unifor-
mity of the current density in the planes is essentially un-
disturbed. We used the two voltage contacts on the same
edge to determine a voltage drop along the current direc-
tion. We refer to this as the longitudinal voltage. For
Hall-effect measurements, a high-resistance potentiome-
ter was connected across the two contacts on the com-
mon edge, and we measured the voltage between the
wiper of the potentiometer and the third contact. We
refer to this as the transverse voltage. It was nulled by
adjusting the potentiometer at zero field.

In order to decrease the contact resistance and help the
contacts stick, the crystal with its gold contacts was an-
nealed at 400 °C for 48 h in flowing O,. The contact resis-
tance after this procedure was less than 1 . The crystal
remained untwinned during this procedure. A
secondary-ion-mass spectroscopy (SIMS) depth profile
performed on a similarly prepared twinned -crystal
demonstrated that the depth of gold diffusion after such a
heat treatment was less than 0.2 um along the c axis.’
Thus the effects of contacts are expected to be
insignificant.

After annealing the contacts, the crystal was mounted
on a single-crystal MgO substrate, onto which a five-wire
gold pattern had been evaporated. Silver paste (Du Pont
conductor composition 4929N) was used to make electri-
cal contact between the gold contact pads on the crystal
and the gold pattern on the substrate. These silver paste
connections also anchored the crystal to the substrate.
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Since the coefficient of thermal expansion of MgO is simi-
lar to that of YBa,Cu;0,_, differential thermal contrac-
tion was minimized. Using GE 7031 varnish, the MgO
substrate was then mounted on a copper plate on the bot-
tom of a cryogenic insert.

III. MEASUREMENTS

A calibrated platinum resistance thermometer was
mounted on the copper plate holding the substrate, and
data were taken only after achieving thermal equilibrium.
The measurements were carried out with the sample in a
superconducting magnet, and the field was determined by
measuring the current through the (previously calibrated)
magnet. The magnetic field H was applied along the ¢
axis of the crystal, perpendicular to the copper-oxide
planes of YBa,Cu;0,_,.

Computer-controlled instrumentation was used
throughout the experiment. A constant-amplitude ac
current of 10 mA rms at 37.8 Hz was supplied to the
sample from the reference channel of a lock-in amplifier.
The rms current density was 440 A/cm?. The in-phase
longitudinal and transverse voltages were measured with
lock-in amplifiers. Current-voltage measurements up to
10 mA rms showed ohmic behavior throughout the tem-
perature region reported here.

In an initial temperature sweep at zero field, the resis-
tivity showed a well-defined superconducting transition
with an onset at 94.9 K, midpoint at 94.5 K, zero resis-
tivity (to within the noise level) at 93 K, and a 10-90 %
transition width of 0.2 K.

We used magnetic-field sweeps at fixed temperatures.
The temperature was stable to within 15 mK during each
field sweep. Measurements of the longitudinal and trans-
verse resistivities were made over a temperature range
from 82 to 280 K and in fields from O to 7 T. At each
field the longitudinal and transverse resistivities were
measured, one immediately after the other.

IV. RESULTS

In this paper we concentrate on the data above T,.
The temperature dependence of p,,, the longitudinal
resistivity along the b axis, is shown in Fig. 1. These data
were taken at 1 T; data taken at other fields ranging from
0 to 7 T lie on top of these data points, since the magne-
toresistance of YBa,Cu3;O,_, is small above T,. The
resistivity was 29 uQ cm at 100 K and 96 uQ cm at 300
K. These are among the lowest values of resistivity re-
ported so far for YBa,Cu;O,_, and attest to the high
quality of the sample.

The contact arrangement that we used did not allow us
to measure p,,, the resistivity along the a axis, on this
particular sample. However, in other YBa,Cu;0,_,
crystals, produced by us with the same method, the
temperature-dependent ratio p,, /p,, has been measured
and found to be reproducible.” Using this temperature-
dependent anisotropy ratio, we calculated the p,, data
shown in Fig. 1 from our p,, data. That there is a factor
of about 2.2 between the a and b resistivities indicates the
importance of using untwinned crystals for measurements
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FIG. 1. a and b resistivities of the crystal as a function of
temperature. The data were taken with a field of 1 T applied
along the c axis.

of resistivity and Hall effect in YBa,Cu;0,_,.

The apparent transverse resistivity p,.., had a linear
field dependence up to 7 T for all temperatures greater
than 96.70 K. At lower temperatures, p,,, took on a
nonlinear field dependence, which we do not present or
discuss in this paper. The slope of each p,,,-vs-H curve
gives the Hall coefficient Ry. We concentrate only on
the data above 96.70 K, where the Hall coefficient is in-
dependent of field. Zero-field values of p,.,, reflect a
small component of contact misalignment voltage that
was not precisely nulled by the potentiometer, and are
not physically significant. At each temperature these
zero-field values were subtracted from the in-field values
of p,., to yield values of the Hall resistivity, —pg,,
shown in Fig. 2 for Hall field along a, current density
along b, and magnetic field along c¢. In Fig. 3 —p,, is
shown for each field as a function of temperature. In the
inset of Fig. 4 we plot the temperature dependence of the
reciprocal of the Hall coefficient, scaled to indicate car-
riers per unit cell. In agreement with other authors,% %13
working with twinned samples, we find that the carriers
in the a-b plane are holes and that their density increases
from about 0.8 carriers per unit cell near 100 K to about
2 carriers per unit cell at room temperature. We caution
that this carrier density determined from Hall-effect mea-
surements is not necessarily the true carrier density of the
material, because of the use of the one-band model. The
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FIG. 2. Hall resistivity as a function of field at various
representative temperatures, showing linear behavior.
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FIG. 3. Hall resistivity as a function of temperature at vari-
ous fields, showing the 1/7 dependence in the normal state and
the dramatic rounding just above T, resulting from supercon-
ducting fluctuations.
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upturn just above T, will be interpreted as showing su-
perconducting fluctuations.

V. ANALYSIS

We have measured elements of the resistivity tensor:
Paa and py, are the diagonal resistivities, while the off-
diagonal elements p,;, and p,, represent the Hall resistivi-
ty arllii are related to each other through the Onsager rela-
tion

pas(H)=py(—H) . )

For comparison with theoretical expressions, we invert
the resistivity tensor to obtain the elements of the con-
ductivity tensor. The Hall conductivity o, is given by

=—¢—zRHHUMUbb . (2)
PaaPbb — PabPba
Since the maximum Hall angle measured in this experi-
ment is less than 2°, the approximation of neglecting the
product p,,p;, in the denominator is good to within 1
part in 1000. For the same reason, o, and o,, are al-
most exactly the reciprocals of p,, and p,,, respectively.
We interpret the data in terms of a model of supercon-
ducting fluctuations above T, in a layered superconduc-
tor.!>1® This model assumes that the crystal is made up
of layers of superconducting planes, presumably the
copper-oxide planes in YBa,Cu;0,_,, spaced by a uni-
form distance which we denote as s. The model ignores
the copper-oxide chains and assumes that the supercon-
ducting planes are isotropic. However, the in-plane con-
ductivity is anisotropic in YBa,Cu;0,_,.° For compar-
ison to the model we therefore use an isotropic mean con-
ductivity o ,,,,,, defined by

Oab

Umm=%(0aa+abb) . (3)

Thus two independent quantities o,,,, and o, are com-
pared with theory as a function of temperature.

Above T, there are normal-state and fluctuation con-
tributions to the conductivity, denoted by o, and
Aco,,,,, respectively:

O am =00 + AT - (4)
Similarly, for the Hall conductivity,
=00 +A0,, . (5)

The resistivity is very linear in temperature over a range
from 120 to 180 K (Fig. 1). The reciprocal of the Hall
coefficient is also linear in temperature over this range
and actually has a zero intercept (Fig. 4). We assume
that these forms hold for the normal-state contribution to
the resistivity and Hall coefficient over the entire temper-
ature range from 95 to 180 K:

1
0 R
Tmm = T +b ©
o 1
=L 7
RH T ’ ( )
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where a, b, and ¢ are constants. We determine c by fitting
Eq. (7) to the Ry data over a temperature range from 141
to 178 K. We find ¢ =7.624X10* T/(QcmK). This is
an excellent fit, as is shown in Fig. 4. The normal-state
Hall conductivity is then expressed in a way consistent
with Egs. (2)-(7) by

___Z__R H
(149)? il (O P

where ¥ is the temperature-dependent a-b resistivity an-
isotropy ratio measured by Friedmann et al.:’

) ®)

C"ab

Paa — O bb
Pbb Oaq

Y= 9)
We consider two contributions to the fluctuation conduc-
tivity above T, the Aslamazov-Larkin!” (AL) term and
the Maki-Thompson!® (MT) term. The AL contribution
results directly from the superconducting fluctuations,
whereas the MT contribution results from the interaction
of normal excitations with the superconducting fluctua-

tions. In the three-dimensional (3D) and two-
dimensional (2D) limits, these are
2
Ao3D)= e —12 4 12y 10
o oo 32h§(0)(4n n ) (10a)
14 —
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FIG. 4. Reciprocal of the Hall coefficient Ry. The line is a
fit of a range of the data to Eq. (7), giving ¢ =7.624%10*
T/(QcmK). Inset: The carrier concentration determined from
the Hall coefficient. Here V is the unit-cell volume. The line is
the same fit as above.
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Here 7 is the reduced temperature defined by
T—T,
T

c

=in |-
T

c

(1mn

~

£(0) is the zero-temperature value of the Ginzburg-
Landau coherence length, s is the film thickness (which
becomes the layer spacing in the layered-structure mod-
el), and & is the Maki-Thompson pair-breaking parame-
ter. The first term in the square brackets in Egs. (10a)
and (10b) is the MT term; the second is the AL term.
Fukuyama, Ebisawa, and Tsuzuki!® studied the effect of
the AL and MT processes on the Hall conductivity and
derived the 3D and 2D forms:?°

0

2 o,
(3D)___€ —12y 1T —3p 12
Aoa” = TerE0) o0 |17 36 7 ] , (122)
o0
(2D) _ Fab |2 7|4 -2 12b
Ao = S P et M

where a is a dimensionless parameter which depends
upon the microscopic details. Again, the first term in the
square brackets is the MT term, and the second is the AL
contribution. Since a can, in general, be positive or nega-
tive,!° the fluctuation Hall conductivity can be positive or
negative.

The temperature-dependent Ginzburg-Landau coher-
ence length is expected to increase from its zero-
temperature value as 7, is approached from above or
below. Far above T,, where £.(T) is small compared to
the layer spacing s, the superconducting layers are decou-
pled, and 2D behavior is approached. Just above T,,
where £.(7T) becomes larger than s, the layers become
coupled, and 3D behavior is approached. To quantify
these two limits, we define a dimensionless parameter d
by

S
2€.(0)

The 2D limit is when d?7>>1, and the 3D limit is when
d?*n<<1. We analyzed data in the 3D limit previously?!
according to Egs. (10) and (12) and found reasonable
agreement over a limited temperature range (96.7—-101.5
K) just above T,. We found that the fluctuation Hall
conductivity was positive and the value of a coming of
the analysis (—0.04) was small, indicating that the MT
process dominates the AL process. In the present paper
we extend the analysis to cover the entire temperature
range (96.7-178 K) by comparing to layered-structure
forms for Ao, and Ao,. The form of the layered-
structure AL term of Ao ,,,, was calculated by Lawrence
and Doniach?? (LD) as

d=

(13)

AoLD = mﬁsfw(" (14)

where



10 162

=172

1+—— . (15)

FP)=x"" e

The form of the layered-structure MT term of Ao ,,,, was
recently calculated by Maki and Thompson'® and in-
dependently by Hikami and Larkin!® as

2
MT _ _¢€ MT
== 1
AG =74 () (16)
where
1724 172 2.41/72
M= Lo 771 2+’71/2(1+1/d271)1/2 an
n—38 812+8"2(1+1/d%)
The total fluctuation conductivity is thus
2
__¢© MT LD
= . 1
Ao, 16ﬁs[4f (p)+f-"(n)] (18)

Equation (18) reduces to Egs. (10a) and (10b) in the 3D
and 2D limits if, in the 3D limit, one also assumes that
8 <<.

We now turn to Ao ,,. Ullah and Dorsey?* (UD) have
recently calculated the temperature dependence of the
AL term of Ao, for the layered-structure model. In the
low-field limit [ H /H_,(0) <<7], they find

_ 143d*p+2d%?
- 173/2(1+d217)5/2

Supplying the needed coefficient to obtain the tempera-
ture dependence of the AL term in Ao ,;,, we see that

F9P(x) (19)

Tra
36

e2
16%€,(0)

O'Ob
AoIP= 00" FYP(y) . (20)

mm

(see Note added in proof). We know of no theoretical cal-
culation giving the temperature dependence of the MT
term of Ao, for a layered structure. However, by com-
parison of Egs. (10) and (12) we see that the MT terms of
Ao, and Ao, have the same dependence on 7 and 8 in
both the 2D and 3D limits. Based on this, we assume
that the 7 and 8 dependences of the MT term of Ao, in
the layered-structure model are the same as those of
Ao,,,, namely, fMT(n). With this ansatz the form for
the fluctuation Hall conductivity in the layered-structure
model is

0
Aoy =2 Tab |y emr f TT oy | o)
@ 8fis o0, 36

The coefficients of the MT and AL terms here were
chosen so that Eq. (21) reduces to Eq. (12a) in the 3D lim-
it. The MT term reduces to that of Eq. (12b) in the 2D
limit, but the AL terms of Egs. (21) and (12b) disagree in
the 2D limit by a factor of 14. This discrepancy between
the UD form and the form of Fukuyama, Ebisawa, and
Tsuzuki may be important from a theoretical point of
view, but as we will see below, the MT term dominates
the AL term when Eq. (21) is fitted to the Hall conduc-
tivity data, since a turns out to be near zero. Also, the
data do not extend fully into the 2D regime. These two
factors have the effect of reducing the overall theoretical
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FIG. 5. Fluctuation contribution to the conductivity and
Hall conductivity as a function of reduced temperature
n=In(T/T,) with theoretical curves determined by fitting to
the Hall conductivity.

discrepancy in Ao, to less than 2% on the high-
temperature end of the scale. On the low-temperature
end, the AL term has a stronger divergence than the MT
term as T, is approached, and so the overall theoretical
discrepancy rises to about 10%.

We compared the data to the predicted forms for both
the conductivity and Hall conductivity. The conductivi-
ty 0, is described by Eq. (4) using Eq. (6) for 02, and
Eq. (18) for Aco,,,. The Hall conductivity o, is de-
scribed by Eq. (5) using Eq. (8) for ¢, and Eq. (21) for
Ao ,,. There are seven adjustable parameters: a, b, T, s,
£.(0), 8, and a. We first fit the Hall conductivity by
varying all seven parameters, using a Levenberg-
Marquardt-based nonlinear least-squares fitting routine.?*
We then performed the fit again, using a simulated-
annealing fitting routine.”” Both routines gave the same
results, suggesting that the resulting parameters provide
the best global fit in our parameter space. We obtained
an excellent fit to the Hall conductivity data, as shown in
Fig. 5. These same parameters were used to calculate the
conductivity, which is also shown in Fig. 5. For this pro-
cedure, the Hall conductivity is fit much better than the
conductivity. The resulting parameters are listed in
Table I (see Note added in proof).

We then tried the opposite procedure: We fit the con-
ductivity by varying the parameters and obtained the fit
shown in Fig. 6. Again, both routines gave the same fit.
The same parameters were then used to calculate the Hall
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TABLE 1. Values of parameters giving the fits in Figs. 5-7.

a b T. s £.(0)

(uQ cm/K) (uQ cm) (K) (A) (A) 8 a
Figure 5 0.4645 2.072 90.69 11.80 1.30 0.0013 —0.076
Figure 6 0.4696 1.100 94.35 9.50 2.40 0.0101 0.017
Figure 7 0.4607 1.546 89.21 11.86 1.67 0.0103 0.081

conductivity which is also shown in Fig. 6. For this pro-
cedure the conductivity is fit much better than the Hall
conductivity, and the parameters used are again shown in
Table I.

We then tried a third procedure: We fit both the con-
ductivity and Hall conductivity simultaneously, in an at-
tempt to get equally good fits for both quantities. To
achieve the simultaneous fit, we used a version of the
simulated annealing algorithm in which steps were taken
in parameter space only if they gave a better fit for both
Ao, and Ao,,,,. This fit is shown in Fig. 7, and the pa-
rameters are listed in Table I.

Referring to Table I, we see that the fits yield physical-
ly reasonable values for the adjustable parameters. In
agreement with the results of other investigators,>?® we
find that the zero-temperature Ginzburg-Landau coher-
ence length along the c¢ axis is about 1.5 A. The layer
spacing s is near to that of the c-axis lattice parameter
11.68 A. This indicates that the two copper-oxide planes
in YBa,Cu;0,_,, which are spaced by 3.2 A, are tightly

100 v T

10000

1000

Ao, (1/Qcm)
Ao, . (1/9cm)

L 100
0.03 0.05 0.1 0.3 0.5

n

FIG. 6. Fluctuation contribution to the conductivity and
Hall conductivity as a function of 7, with theoretical curves
determined by fitting to the conductivity.

coupled, acting as one superconducting layer. This is in
contrast to an earlier result of Friedmann et al.,? where
lower values of s and £.(0) were found, presumably be-
cause Friedmann et al. used a layered-structure model
which only included the AL term, ignoring the MT term.

From the MT pair-breaking parameter 8, we calculate
the phase-relaxation time 7, according to

h

Tg= o - 22

¢ 8kpT8 @2
The values at T=100 K from each of our fits are on the
order of a few picoseconds, which is 10—100 times longer
than that of 0.1 ps from Ref. 5 or 26. This might reflect
the fact that the resistivity of our sample is lower than
the samples used in those studies.

In Fig. 8 we show the Ao, fit of Fig. 5 on a semiloga-
rithmic plot to display the relative proportions of the MT
and AL terms. The Al term gives a negative contribution
for this fit, since a is negative. Note the dominance of
the MT term, especially on the high-temperature end of
the scale. In Fig. 9 we plot the Ao ,,,, fit of Fig. 6 on a
semilogarithmic plot, again showing the relative propor-
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> z
Z 10t qro00 o
3 o
3 2
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0.05 0.1 0.3 0.5 1

n

FIG. 7. Fluctuation contribution of the conductivity and
Hall conductivity as a function of 7, with theoretical curves
determined by simultaneously fitting to both data sets.
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FIG. 8. Semilogarithmic plot of the fluctuation Hall conduc-
tivity of Fig. 5, showing the relative proportions of the two
terms, labeled as MT and AL.
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FIG. 9. Semilogarithmic plot of the fluctuation conductivity
of Fig. 6, showing the relative proportions of the two terms, la-
beled as MT and AL.
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tions of the MT and AL terms.

In Fig. 10 we plot the cotangent of the Hall angle
versus T2, This shows that the tangent of the Hall angle,
Pab/Poys Vvaries approximately as 1/7? in the normal
state, which is consistent with the observation that the
resistivity and 1/Ry are approximately proportional to
T. The inset of Fig. 10 shows the fluctuation-induced de-
viation away from this behavior just above T,.

VI. CONCLUSIONS

We have presented Hall-effect data and resistivity data
measured on an untwinned single crystal of
YBa,Cu;0;_,. The normal-state in-plane resistivity is
linear in temperature with a small, positive, zero-
temperature intercept b. The reciprocal of the normal-
state Hall coefficient is linear in temperature with a zero
intercept. The deviations from linearity just above T,
can be interpreted within a model of thermodynamic fluc-
tuations in a layered superconductor. Introducing an
ansatz, we have extended this layered-structure model to
include the effect of the Maki-Thompson process on the
fluctuation Hall conductivity. We obtain fairly good fits
of this model to our data, with physically reasonable pa-

1800 LA L | T T T T T
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1200 | . -

B 1000 | . .
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600 | g - .

400 | 4 o .
+ / 240 /."’
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72 (10* K?)

FIG. 10. The cotangent of the Hall angle plotted as a func-
tion of T2 These data are for H along c, J along b. Inset: Ex-
panded view of the region just above T, showing the effect of
fluctuations.
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rameters. The fits could be better, indicating that the
model does not include all of the significant features of
the system.

The fits to our data yield values of £.(0) between 1.3
and 2.4 A, indicating that YBa,Cu;0,_, behaves in a
nearly two-dimensional way, except near T,. The value
of s, the distance between superconducting layers, is ap-
proximately equal to the c-axis lattice parameter. This
implies that the two copper-oxide planes in the unit cell
are tightly coupled, acting as one superconducting layer.

We obtain a value of the phase-relaxation time 74 of a
few picoseconds, and as a result, the Hall-effect fluctua-
tions are dominated by the Maki-Thompson process rath-
er than the Aslamazov-Larkin process. Our data indicate
that Ao, is positive above T, in the low-field limit
[H/H,(0)<<7n], in contrast to the results of Iye,
Nakamura, and Tamegai6 for a twinned thin film of
ErBa,Cu;0,_,. Since the MT term can only be positive,
Iye, Nakamura, and Tamegai concluded that o is nega-
tive and that its magnitude is large enough so that the
AL term dominates, thus giving the negative value that
they observed. According to the original theory of
Fukuyama, Ebisawa, and Tsuzuki,'® « is proportional to
the energy derivative of the density of states at the Fermi
level and can be either positive or negative, depending
upon the material. The microscopic interpretation of o
within the layered-structure model used here is not as
clear. We conclude, however, that o has a small magni-
tude, and so the Maki-Thompson process dominates the
fluctuation Hall conductivity for untwinned
YBa,Cu;0,_,.

The parameter « is proportional to the particle-hole
asymmetry parameter A, ! discussed by Ullah and Dor-
sey.? This parameter must be nonzero for the Hall effect
even to exist in a material, and the fact that it turns out
to be small in our experiment makes one suspicious that
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there might be a certain degree of symmetry between
electrons and holes in YBa,Cu;0,_,. It is interesting
that the 1/T dependence of Ry in this material can also
be explained if one assumes a certain degree of symmetry
between electrons and holes.?’

Note added in proof.- In a private communication, A.
T. Dorsey has alerted us to problems with some of the
theoretical papers. In Eq. (4.2) of Ullah and Dorsey (Ref.
23), the denominator appearing in square brackets should
be raised to the 4 power. This does not affect our discus-
sion or conclusions, however. Of greater importance for
us is that, also in Ref. 23, the right-hand side of Eq. (4.13)
needs to be divided by 2¢,. It then agrees in the 2D limit
with Eq. (2.33) of Ref. 19, but a disagreement remains in
the 3D limit between the theory of Refs. 19 and 23,
which Dorsey has traced to the derivation of Eq. (2.32) in
Ref. 19. When this is corrected, one finds a result that
agrees with Ref. 23. As a result of these corrections, a in
our Egs. (12a), (20), and (21) should be replaced by a/14.
This removes the discrepancy that we remarked on fol-
lowing Eq. (21), and the values of « listed by us in Table I
must all be multiplied by 14. In another recent calcula-
tion, Dorsey has verified our ansatz that the 7 and &
dependences of the MT term in Ao, in the layered-
structure model are the same as those of the MT term in
Ao,
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