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Magnetic-fiux profiles of high-T, superconducting granules:
Three-dimensional critical-state-model approximation
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Magnetic-flux penetration of high-T, superconducting (HTS) granules in three dimensions is modeled
using spheres and spheroids within the critical-state theory. Numerical approximations for the simplest
Bean-London model overlap analytic results in the limits of small and full penetration. Examples for
flux contours, initial magnetization, and magnetic hysteresis loops are calculated for the complete range
of flux penetration. These results are compared with the solutions for slabs and cylinders so far used in
the study of HTS materials. The differences in the flux profiles found for oblate spheroids indicate the
inaccuracy of using other geometries in the analysis of HTS flakelike grains.

I. INTRODUCTION

Recently, we analyzed the magnetic-Aux penetration in
high-T, superconducting (HTS) powders and ceramics
for fields lower than H„.' This was done within the
framework of effective-medium theories properly adapted
to study a superconducting sphere (or spheroid) compos-
ite. This effort was one step in the description of how the
magnetic field wraps around the grains constituting HTS
ceramic materials, which will enable the derivation of
other magnetic properties such as the average values of
the intergranular fields. Indeed, H &H,

&
is a field range

of relatively low interest because H, &
& H & H, z in most

applications.
Attempts to describe the magnetic properties of HTS

materials for H )H, &
has renewed interest in models suc-

cessfully used during the 1960s (Ref. 3 —5) to study hard
superconductors. In spite of Aux creep in HTS, there
remains a wide range of temperature and fields in which
the Aux vortex lattice is sufficiently pinned to allow
critical-state models to be used ' with remarkable qual-
itative success.

Recently, reported implementations of critical-state
models deal with (i) different field dependencies ' or a
generalization of the critical current J,(M), (ii) specific
shapes to match experimental geometries of bulk sam-
ples' ' or their anisotropy, ' (iii) modifications to de-
scribe the intergranular medium' ' or the inclusions of
nonsuperconducting regions inside the grains, ' and (iv)
extensions to include the essential features of the reversi-
ble magnetization near T, . ' However, such studies used
either one-dimensional geometries (cylinders or slabs
with parallel field) or geometries which reduce the
critical-state equation within the grain volume

V XH=+J, (H),
to a one-parameter differential equation. Such analyses,
using infinite geometries, are unable to describe how the
magnetic Aux wraps around the grains. ' Notwithstand-
ing, the solution for an isolated object is applied to the
whole material, which greatly simplifies the problem, but

hardly describes the finite shapes of HTS grains.
In the limits of strong and weak magnetic fields, (1)

may be solved in more than one dimension. Carr' has
used such results to build up a continuous, macroscopic
electromagnetic description of multifilamentary wires
with field components both transverse and longitudinal to
a twisted bundle of filaments. This leads to expressions
for the average magnetic permeability and electric permi-
tivity and conductivity. In this limit Campbell and
Evetts also report results for cylinders and spheres.

The difficulties of solving (1) together with the serendi-
pity that many relevant physical phenomena already
occur in one dimension, directly or as a limiting case,
may explain the scarcity of studies in three dimensions.
The solutions of (1) in two dimensions ' for the mag-
netization and hysteresis losses in composite
multifilamentary wires exposed to transverse and rotating
fields were a guide for the methods used here.

Bhagwat and Chaddah claim an exact solution of the
Bean-London model '" (BLM) for superconducting
spheres. As will be shown here, this claim is inaccurate.
To fit the data of a HTS single crystal, Krasnov, Larkin,
and Ryazanov have more recently extended BLM to
three dimensions. They assumed, arbitrarily, an ellip-
soidal shape for the shielded volume together with some
simple rules to deduce its change with the applied field.
The inaccuracy of this will also be discussed below.

Modeling HTS ceramics as weakly coupled, strongly
superconducting grains has been widely used for
H &H, &.

' ' Indeed, it is for H)H,
&

that the physical
basis for such modeling is emphasized. There, the
analysis of powders and ceramics as a composite of super-
conducting grains in a nonmagnetic matrix' seems to be
the natural way to understand their magnetic properties.
Moreover, the applicability of the ideas underlying
effective-medium theories adds further interest to the
three-dimensional solution of the problem.

To this end we consider here first the magnetic-field
penetration of an isolated sphere using BLM. ' Rota-
tional symmetry reduces the problem to two dimensions,
and both analytic results for the full-penetration case and
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numerical solutions for arbitrary applied fields are ob-
tained. After that, initial magnetization and hysteresis
loops are calculated from the magnetic-Aux profiles.
Moreover, we generalize the analytic results to prolate
and oblate spheroids with fields parallel and perpendicu-
lar to the symmetry axis. Also, numerical methods are
employed to calculate the penetration for various
strengths of parallel magnetic field. For two representa-
tive eccentricities the Aux profile and magnetic properties
are derived and compared with those of spheres,
cylinders, and slabs.

II. BEAN-LONDON MODEL FOR SPHERES

For simplicity we focus on the BLM approach, which
assumes a field-independent critical-current density J, .
Although BLM is the simplest case, some of its con-
clusions have general validity and others may be extend-
ed to allow the numerical solution of more complex
J,(H) dependencies using iterative procedures similar to
the ones performed for Aat disks.

A. Exact results

Consider a sphere of radius a in an applied field H,
pointing in the z direction. The rotational syrnrnetry im-
plies that the current will Aow in circles, i.e., J, = J,y.
Moreover, for fields 0(H, (H' there is a volume (which
we will call the core) with zero magnetic field due to
shielding by the outside shell of current. By definition
H* is the minimum field for which the core has zero
volume.

The core is bounded by a closed surface rk(O, H, ),
which has the rotational symmetry of the system and de-
pends on the magnitude H, and azimuth angle 0. The
existence of reAection symmetry through a plane perpen-
dicular to the z axis in the sphere center further reduces
the degrees of freedom. Obviously, r (8k, H, ) = rk (2m

+O, H, ) and rk may be expanded in a Fourier series
of periodicity 2m. Furthermore, as rk(O, H, )=rk(~
—O, H, ), the following expansion holds:

the sphere and J, is the only nonzero component of the
surface-current density J, . In (3) and (4) we assumed the
absence of surface barriers for magnetic-Aux entry or
exit, and so the external field H, acts at the boundary.
Otherwise, following Clem, H, should be replaced by
the appropriate entry or exit field at points on the bound-
ary but inside the superconductor. In the following
analysis we do not consider such effects, which could be
included by introducing a surface-current density.

From (3) and (4) we find that at the surface of the
sphere H, =0 and H& = ——', H, sinO. Thus the Aux begins
to penetrate at O=vr/2 when h, )—', K, i. Because H„ in

many HTS materials is negligible (H, ))H„), we take
H I

=0 which results in Aux penetration at every 0.
It is simple to deduce the penetration depth 6 of the

critical current for small fields because J, =J,5. The
core's surface is then

3H,
rk(O, H, ) =a — sinO .

2J,

For convenience we will hereafter use reduced units, with
the radial variable normalized to the radius a of the
sphere (r'=r/a) and fields in aJ, /2~ units
(h =2vrH/aJ, ) such that (5) may be written as

3h,
rk(O, h, ) =1— sinO,

4m

where now 0 ~ rk & + 1. Indeed, this result fits the
Fourier-series expansion (2) and permits derivation of the
magnetization in reduced units (M'=2mM/aJ3),

M'= ——', h, (l —
—,",, h, )+O(h, ),

where 0 (h") stands for terms of order h" and higher.
The limit of full magnetic penetration also permits the

derivation of some exact results. It is simple to calculate
h, the maximum shielding field, because it is the field
found at the center of the sphere when a current
J= —J,y fiows at all points. Then rk(O, h*)=0, and the
limits of the volume integral are trivial,

rk(O, H, )= g Iaz„cos(2nO)+bz„+, sin[(2n+1)8]] .
n=0

(2)

h*= ——' dv'= — k,2 I3 2r

Exact results for r (Ok, H, ) may be found for small
penetration of the magnetic field. In this limit the field
for points outside of the sphere is'

2CI
H(r) = H, + cosOr

r 3

where r' is the position vector of the volume element du'
referred to the center. The derived h* value agrees with
the bounds of Campbell and Evetts, 4m/3 & h * & 2m.

Furthermore, in the same limit the magnetic moments
induced in the sphere, m'(m'=2m. m/aJ, ) are easily de-
rived by evaluating

CI+ —H + sin08, r ~a,
r

and the boundary conditions of B and H at r =a give

pH„~„,=0, C, = aH, /2, —

Hz~„, =J, &, J, += —
—,'H, sinO,

(3)

(4)

m'= ——f (r'Xy)du' .
a

M'= —3m /16 . (10)

The highest value of the magnetization M' =m '/ V
(V=sphere volume) is reached for fields h )h*. In this
case the current density will be J, = —J,y at all the
points of the sphere and

where p is the permeability of the medium surrounding Note that this value differs from an earlier estimate,
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M'= —~/2, but agrees with the more recent one of
Krasnov, Larkin, and Ryazanov.

The difference between the exact results derived here
for the core at small fields (6), the maximum shielded field
(8) and magnetization at saturation (10), and the values
derived by Bhagwat and Chaddah shows that their ap-
proach is not exact, as claimed, for the full range of fields.

B. Numerical implementation

For arbitrary fields in the range 0 ~ h ~ h ', there are
no analytical solutions of (1), and different approxima-
tions have been used. In an analogous case —the BLM
solution for superconducting cylinders in a transversal
field —Kato ' assumed a priori an ellipsoidal cylindrical
shape for the core. With this boundary usual integral
procedures of electromagnetism allow derivation of the
field at any point. However, numerical methods,
which are accurate and require no arbitrary assumptions,
have revealed the inaccuracy of the approach of Kato,
Hanawaka, and Yamafuji. The same procedure in three
dimensions has been followed by Krasnow, Larkin, and
Ryazanov, assuming an ellipsoidal shape of fixed length
along the direction of the applied field. Certainly the ex-
act result for small fields (6) is not an ellipsoid, and as we
prove later, this procedure has the same shortcomings as
the result of Kato, Hamanaka, and Yamafuji ' mentioned
above. For our particular geometry we use numerical
procedures based on Ashkin's ideas and Frankel's pro-
cedures.

By definition the critical current inside the core is zero
and Maxwell's equations reduce to VXh=0 and Vh=0.
In such cases h may be derived from a scalar potential N,
h= —V@, such that V +=0. Using Green's identities
over the volume of the core Vk(h, ), we have

f VC& dU'= f„~s„~(4V&b) ds'
k

= —2m f (@h„)p'dl',
0=0

where ds'=nds' refers to the surface rk(g, h, ) bounding
the core, n denotes the normal component, p'=p/a is a
normalized cylindrical coordinate, and dl is the length
element of the contour defined by the intersection of the
surface r/(O, h, ) and the plane p=0. Thus, if the projec-
tion of the total field h„becomes zero on the above line,
it is also zero in the volume Vk.

To derive rk(g, h, ) we employ, following Ashkin, an
error function of the type

where h „(r ', 8 ) is the field created by the shielding
currents evaluated on a discrete set of N points at the
core, r '

= rk(g, h, ), and h, „ is the normal component of
the external field. Minimizing the function f„, for any
field h, enables us to determine the shielded volume.

To minimize f„,we follow two optimizing procedures.
The first takes advantage of the Fourier expansion (2)
containing a set of unknown parameters

(a2„,bi„+, , n =0, 1, . . . , ), which are obtained minimiz-
ing f„,. However, for H )0.5 we need many coefficients
to describe ri', (O, h, ) and the convergence is poor. The
second uses directly a polygon formed by N points r'. , 0,
which changes until a minimum in f„, is reached. To
speed up the process we use only the greater component
of h, (z projection) in the function f„,.

For any given contour rk (8,h, ) the z component of the
field created by the induced current is

h, (r,', 8 )=F(r~', 8, ; a, P), (12)

where a=rk(g, h, ), P= 1, and

F(r, g; a,P)= —f dg'f r'f, (r, g; r', 8')dr', (l3)
0 r'=a

which takes advantage of the rotational symmetry, and
where

f, (r, g; r', 8)

=R 'E(k)+R 'R:
X[(r'sing') —(r sinO)

(r co—sg —r'cosg') ]E(k),
R+ = [(r sing+r' sing') +(r cosg —r' cosg') ]'~

E(k) and E(k) are complete elliptic integrals of the first
and second kind, respectively,

(1—k sin y)'~

E(k)= f (1—k sin y)'~ dy,
0

and k =4r'rR+ sin6I'sinO.

In the evaluation of (13) we used Gauss quadrature
with different orders for the 0' and r' integrals. More-
over, for the elliptic integrals we used polynomial approx-
imations. Because of proximity, errors appear in the in-
tegral evaluation when the discrete loops used in the nu-
merical Gauss quadrature formula and the points at the
boundary become too close. To minimize such errors the
core contour used in the construction of f„,was scaled.
After different trials a uniform reduction factor 0.9 was
chosen.

A grid of N equally spaced 0 values was used in the
polygonal r', O. allowing free changes in r' ((1)to mini-.
mize f„,. Two N values were used, N =21 and 41
[which, by symmetry, reduces to (N+ 1)/2 independent
parameters], but most results were derived with the lower
value. The degree of the Gauss quadrature formula was
always high enough ( )N) to avoid oscillations on the
contour. Furthermore, between two adjoining points a
linear interpolation was made in the r', B plane.

In optimizing f„, for small applied fields, we used as
an initial guess a polygon obtained with the analytic ex-
pression (6). For higher fields the polygon obtained in the
previous lower field was used as initial trial after being
scaled. To avoid (or detect) convergence to a relative
minimum of f„„several runs with different trial func-
tions were made. For values ~/4 & 0 & ~/2 the r' conver-
gence is fast and unambiguous, and for 0=m/2 the es-
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timated accuracy is better than 1 per 1000. However, for
8 & m/10 both convergence and accuracy are reduced, be-
ing lowest for 0=0, but always better than 1%.

Because we used only the z component of the field in
the error function (11),we checked the results by also cal-
culating h (r~', OJ. ) at the core's surface. In the worst case
(for very snmll field), h remains three orders of magni-
tude lower than h, (i.e. , within the numerical error
h =0). Moreover, both h, and h were calculated for
points inside the core and showed the same characteris-
tics as at the surface.

C. Characteristics of the core surfaces

The results derived for rk(O, h, ) are depicted in Fig. 1

for different applied fields 0&h, &h*. Up to h, =0.75
the core's apex almost coincides with the sphere's pole
and, for higher fields, goes deeply inside the sphere. The
shape remains elongated until it disappears at h, =h*.
The results for small fields (h, =0.05) overlap the exact
expressions (6) within the estimated error. Furthermore,
in the limit of almost full penetration, the calculated
shape agrees with the analytic results obtained with
a Taylor-series expansion around the origin, which
gives h, (p=O, z) —h, (0,0)-z, whereas h, (p, z =0)
—h, (0,0) —p.

The derivation of other physical magnitudes of interest
is greatly facilitated by using two main properties of the
rk (8,h ) surfaces.

(i) By construction, if current of the same density and
direction J=J,qr fiows at all points, rk(O, h) &r'&1, but
the current is zero for r' rk(O, h); then inside this core a
constant field h is created parallel to the z axis. For
points of the sphere outside the core, h changes with po-
sition, although it has only a z component.

(ii) All the surfaces r/, (O, h) for 0 & h & h * have a sharp
apex and fill the sphere in a uniform and unique way (i.e.,
any r', 0 corresponds to only one h except for the points
r' = 1, (8=0,vr)

Comparison of these self-consistent solutions of the
core shape for spheres with the starting hypothesis of
Krasnov, Larkin and Ryazanov reveals the rough ap-
proximation of their assumed ellipsoidal core. An impor-
tant characteristic is common: The field inside the super-
conductor has only a z component and is uniform at satu-
ration. However, even at small fields, where an analytic
solution exits, the shielded volume is not ellipsoidal, but
exhibits sharp apexes which coincide with the poles only
in a limited range of applied fields. This discontinuity at
the core surface is possible only at points where the total
field is zero.

D. Magnetic shielding

It is simple to derive the z component of the Aux profile
using the results for r/, (O, h, ). Representing the radial
and azimuthal dependencies of the fiux profile as h, (r', 8),
for h, & h, the points of the core are such that

h, (r', 8)=0, r' & r/, (O, h, ) . (14)

h, (r', 8)=h, —h'+F(r', 8; r/, (h, ), r/, (h')),
O~h'~h, .

For h, ) h * there is no core and the Aux profile is

(15)

Outside, the profile is obtained by noting that for the field
.h, on the surface rk(O, h') there is a field —h' created by
the outside [r'~ r/, (O, h')] induced currents and another
contribution due to the inside [r/, (O, h, ) r'

r/, (O, h')] ones, which, with the help of (13), is written
as

'1 .0

h, (r', 8) =h, —h'+F(r', 8; O, rk(h')),
0(A'(A* . (16)

0.8

0.6

0.4

0.2

The expressions (14)—(16) are valid only for increasing
fields. For more complex magnetic histories the deriva-
tion of the Aux profile follows the same simple principles.
In the next section, and as an example, we will consider
the case in which, after reaching a value ho by monotonic
increase, the field is reduced (also continuously) to anoth-
er value h, & ho. There are two possibilities.

(i) For ho &h* the fiux profile created by ho remains
for points inside a surface rk(O, hz), hz=(ho —h, )/2. In
this way the field remains zero for r'& rk(O, ho), whereas
for rk(8, ho ) & r™r/, (O, h~ ) it takes the values

h, (r', 8) =ho —h'+F(r', 8; rk(ho), hI', (h')),
0 ~ 0

0.0 0.2 0.4
r/a

0.6 0.8 1.0

FIG. 1. First quadrant of the magnetically shielded volume
(core) for a sphere in diFerent external fields. The curves are la-
beled with the value of h =2+II/aJ„and the coordinates are
scaled to the radius.

h ~h'~ho .

For points outside rk(O, h ) the fiux profile is

h, (r', 8)=h, +h'+F(r', 8; rk(ho), r/, (hz ))

F(r ', 8; rk (h ), rk (h ') ),—
O~h'~h

(17)
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(ii) For ho ) h ' and ~h~ ~
& h *, (17) and (18) are valid,

but with new bounds h & h ' & h * for (17). However, if
~ h~ ~

) h *, then the fiux profile will be

h, (r', 8)=h, +h '+F(r', 8; O, rk(h ') ),
0&h'&h*.

M,'(h, }= ——f [2rk (8, h }

r—
k (O, ho)]sin OdO (21)

E. Magnetization and hysteresis loops

In deriving the magnetization we used the relation for
magnetic moments. The initial magnetization is obtained
from (9), recognizing that for r &rk(O, h, ) there is no
current. Thus the direct integral for 0 & h, & h gives

M,'(h, )= f rk (O, h, )sin OdO —— (20)

whereas M,' = —3~ /16 for h, & h *.
More complex magnetic histories are worked out in the

same way. If after reaching a field ho & h * we decrease it
to h„

The complex form of rk(O, h, ) gives a nonlinear
penetration that depends on the angle 0, as seen in Fig. 2,
where we have depicted the Aux profile for an applied
field of h*. This variation differs from that in one-
dimensional geometries, which in the BLM gives linear
profiles. It should be noted that the field takes different
values at the surface of the sphere. For h, =h* at
O=m. /2, h, =l. lib„whereas for 8~m. /4, Ii, &h, at
0=0, it reaches a minimum value of h, =0.577h, . This
distribution of field should be compared with the corre-
sponding one for Meissner state (4) for which h, =—,'h, at
8=sr/2 and h, =0 at 8=0. From this extreme increasing
the field decreases the ratio h, /h, at 8=sr/2 and in-
creases it at 0=0; it becomes unity at both locations for
h, »h . Thus the core changes in size and shape with
the field, thereby precluding any convenient resort to
field-independent demagnetizing factors.

if ho & h *, the magnetization should be

M'(h )= ——f 2r' (O, h )sin OdOz a 8 2 k ~ P (22)

In Fig. 3 we show the initial magnetization and hys-
teresis loop for three difFerent fields: h*/4, h'/2, and

III. GENERALIZATION TO OTHER GEOMETRIES

As explained in the Introduction, the numerical
method used in the BLM solution takes advantage of the
rotational symmetry, reducing the problem of solving (1)
to two dimensions. Thus it may be applied to any system
with such characteristics. In particular, its implementa-
tion for prolate or oblate spheroids is straightforward
when the applied field is parallel to the symmetry axis be-
cause in these cases there are only components of the field
parallel to this axis inside the spheroid. For both cases
all the arguments used to derive the Fourier expansions
of the core (2) are valid and will be used here.

Using the physical arguments and procedures of Sec.
II A, we first derive analytic results for spheroids in both
limits of small and full penetration. This will determine
the bounds of the problems and be a guide to the numeri-
cal procedures.

A. Prolate-spheroid analytic results

Prolate spheroids (a )b =c) are characterized by the
eccentricity e=(1 b /a )'~ w—ith the bounds (spheres)
0& e & 1 (cylinders). We use the same normalization for

O

0

CU

0.0 0.2 0.4
r/a

0.6 0.8 1.0
I I I I

—5 —4 —3 —2 —1 0 1 2 3 4 5
2vrH/a J,

FIG. 2. Flux profile h, (r, O) for different azimuth angles 0
and applied field h *=4.9348.

FIG. 3. Initial magnetizations M, and hysteresis loops for
different applied fields (a) h,„=h*/4, (b) h /2, and (c) h



MAGNETIC-FLUX PROFILES OF HIGH-T, . . . 10 151

3 2
M' = — (1 —e )'i

II 16
(24)

which for e~0 coincides with the results of (10) and
agrees with previous results. However, it should be not-
ed that the derived un-normalized magnetization

M~~ =3~J,b/32 or, directly, (24) in the limit e —+I gives

M~~ /H~~ =3~/32, whereas the correct result for cylinders
is M(~ /H~~

=
—,'. ' This discrepancy is due to the fact that

the ratio of the maximum magnetization of a finite
cylinder of the same radius and length 2a, M=J, b/3,
and that of a prolate spheroid of the same characteristics
is M,~h/M, »=9~/32, which remains constant in the
limit e ~1.

For small penetration the use of prolate-spheroidal
coordinates (u, v, y) following the same steps (3)—(7) en-
ables us to derive the shape of the core for both parallel-
and perpendicular-field incidence. These coordinates are
related to cylindrical (p, z, y) by '

2 2 2 2

u2 u2 —j2 I2 v2

where 2l is the focal distance of the spheroid. For
difFerent u values we obtain a series of confocal prolate
spheroids, whereas for constant v values a family of con-
focal rotational hyperboloids orthogonal to the spheroids
is obtained.

Close to the spheroid the magnetic field may be derived
from a potential @(u,v, y) such that H= —VC&. ' For
parallel incidence this is

the field and distances as for spheres, but now with the
elongated semiaxis distance a.

In the limit of full penetration it is easy to derive the
minimum parallel field for which the core's volume be-
comes zero, because the solution of (8) for spheroids is
straightforward, giving

h
~~

=2ir(1 —e')' '[(1—e ')K(e)+e 'E(e)], (23)

where K(e) and E(e) are elliptic integrals. Indeed, for
e~O, (23) reproduces the results for spheres, and when
e 1, the results for cylinders [h*=2ir(1 —e )'~, i.e.,
H =J,b ]. Moreover, in the same limit the evaluation of
(9) gives the magnetization at saturation, reached when
h, h)(,

the boundary conditions at the surface are B„=pH„=O,
H, = —J, , and H =J, „with J, and J, , being the
components of the surface supercurrent. This implies
that the field is maximum at the surface with values of
H„=H, /[1 —

g~~(e)] in the equatorial plane (v =0) for
parallel incidence, whereas it is H, =H, /[1 —gi(e)] in
the meridian plane (y=m/2) for the perpendicular ones,
where

1 —e 2 1+e
ln

1 e
2e

( 1 —e2)i~2
(

2 i2)1/2
uk (v', h, )=1-

2ire [ I —g~~(e)] 1 —v'

h, (1 —e )'
uI i (v', h, ) =1-

2m.e [1—gi(e) ]

X [e (1—v' +cos y(v' —e )]'
1 —v

(26a)

(26b)

Using the solution for the core, the analytical evalua-
tion of the integral (9) between u'=uk p and u'=1 yields
the magnetization for small fields,

h,
Mp= — +O(h2) .

1 —gp(e)
(27)

Indeed, (26) and (27) in the e~O limit reproduce the
results for spheres [Eqs. (6) and (7)].

and gi(e)=[1—g~~(e)]/2 are characteristic shape fac-
tors, ' which for spheres (e =0) reduce to
gJ(0)=g~)(0)= —,', and for e~1 become g~~(0)=0 aild

gi(0) =
—,'.

The penetration depth 5 is related to the modulus J, by
J, =J,5. The core's surface is then uk &=a —5/g„„,
where P refers to the parallel or perpendicular orientation
of the field and g„„ is a metric tensor element:

g =[(u —v )/(u —1 )]'

FL evaluated at u =a. Using reduced coordinates
(u'=u/a, v'=v/a, with —e ~ v'~e), the core's surface
is

@=H,uvl ' —AvQ, (ul '), (25a) B.Prolate spheroid, numerical results

—AQ', (ul ')](1 —v )'i cosy, (25b)

where Q&(z) =(z/2)ln[(z +1)/(z —1)]—1 is a Legendre
function of the second kind and

Q', (z) =(z —1)'~ [z/(z —1)——,'ln[(z + 1)/(z —1)]]
is an associated one.

In these coordinates the spheroid is determined by its
longest semiaxis u =a. Moreover, for small penetration

whereas, for perpendicular incidence (field pointing in the
x axis direction),

e= [ H, l '[(u —1 )—]'

Estimates of the fiux penetration for parallel fields in
the complete range of fields 0 ~ h, ~ h

~~

are derived using
the same numerical procedures described in Sec. IIB,
and so here we will note only the difFerences. The deter-
mination of the core's shape was made using polygonal
r, 0 variables, but increasing the number of points
(N =27—31). However, instead of an equally spaced 0
grid, the mesh was adapted to the particular eccentricity.
The numerical quadrature procedure was also adapted to
follow the grid of the polygon. In all cases the mesh was
smallest near 0=0.

The analytic results for the core [Eq. (26a)] were used
as an initial guess for the polygon. For small fields
h, (0.01, the X-point polygon cannot satisfactorily
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N

1.0

0.8

0.6

0.4

0.2

0.0
0.00 0.25

r/a
0.50

and with the correction for the eccentricity, the Aux
penetration for a given azimuth follows closely the curves
of Fig. 2.

Figure 5 shows the same result for a more extreme ec-
centricity a/6 =10 (e=0.994987, h~~

=0.62136). To
emphasize the similarities with the lower eccentricity, a
5X expanded scale is used for the horizontal axis. Note,
however, that the fiux profile at m. /2 is almost linear in h.

Using the core's surface for a given field, the magneti-
zation is derived using (9), taking account that the
spheroid surface is now

r,'(8)=[(l—e )/(1 —e cos 8)]'~

For example, the initial magnetization for 0 ~ h, ~ h ~~,
us-

ing V=4rra (1—e )/3, is given by

MI~(h, )= J [rk"(O, h, ) —r,
' (8)] sin Od0 .

8(1—e ) e=o

FIG. 4. Contours of the prolate spheroid and magnetically
shielded volumes when a/b =2 (h~~ =2.81456) for diA'erent

external fields, h =2~H/aJ„applied in the direction of the
symmetry axis. The cylindrical coordinates are scaled to the
longest length.

(28)

In Figs. 6 and 7 are shown the initial magnetizations
and hysteresis loops for the above two cases. With in-
creasing eccentricity the curves decrease their slopes as
well as the values of the magnetization at saturation.

reproduce the core shape except for very high X. Thus,
instead of a numerica1 estimate of the core, we used
directly the analytical expression (26a). As in the case of
spheres, good agreement between the numerical results
and those estimates are found for a range of small fields.
To optimize f„, for spheroids we used only the simplest
downhill-type minimization method.

Figure 4 shows the core's shape for a prolate spheroid
with a/b =2 (e =0.86603, h

~~

=2.814 56). As expected,
there are many similarities with the shielding volumes
found for spheres: The core shapes are almost the same,

C. Oblate syheroids, analytic results

h
~~

=2'(e*) (1—e )' [K(e*) E(e*)], —(29)

which for e*~0 also reproduces the results for spheres,
whereas for e' 1, h~~

=0.

We apply the same procedures to oblate spheroids
(a =b )c). First, we derive analytic results in the limit-
ing cases. We use the parameter e *= (1 —c a )'~ such
that (spheres) 0 ~ e* ~ 1 (disks), which is related to the ec-
centricity by e'=e*(1—e* ) '~ . Normalizing to the
longest axis a, we obtain

1.0
1,0

0.8

0.6
0.5—

N

0.4

0.2 —0.5—

0.0
0.00 0.05

r/a
0. 1 0 —1.0

—1 0
2vrH/a J.

FICx. 5. First quadrant of the magnetically shielded volume
for a prolate spheroid when a/b =10 (h~~ =0.62136). The
same criteria as in Fig. 4 are used.

FICx. 6. Initial magnetizations M~~ and hysteresis loops for a
prolate spheroid with a/b =2 (h

I~

=2.814 56) for (a)
h,„=h

~~

/4, (b) h
~~

/2, and (c) h
~~

.
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0.20

0.10—

0.00—

h (1 —e" )'
uf (u', h, )=1-

21re'[I —g~~(e')] 1 —u'

h (1 ez)iiz

2vre'[1 —gi(e') ]

le' (1—u'
) —v' cos qol'

X
1 —v

(31a)

(31b)

—0.10—

where u'=u/a and u'=via are normalized oblate coor-
dinates (

—e* + u' + e*) and

1+e
g~~(e') =, (e' —arctane'),

—0.20
—0.70 —0.35 0.00

27TH/a J.
0.35 0.70

FIG. 7. Initial magnetizations Mll (in aJ, /2m units) and hys-
teresis loops for a prolate spheroid with a /6 = 10
(h(l =0.62136) for (a) h, „=hll 4, (b) hll /2, and(c h

together with gi(e')=[I —g~~~(e')]/2 are characteristic
shape factors of the oblate spheroids.

Moreover, using (31), we derive the initial magnetiza-
tion for small fields, which coincides with (27), but with
the actual g&(e') factors. In the limit e'~0 (e*~0),
g~~(0) =gj (0)=—,

' and (31) reduces to the result for
spheres. Furthermore, for e' —+~ (e* 1), g~~(~)=1,
gi( oo ) =0, and MI~ diverges.

The value at saturation of M ll, which is obtained when
the volume of the core becomes zero, is now equal to (10),
independent of the e* parameter. The same indepen-
dence from the eccentricity is also obtained for prolate
spheroids (24) if the normalization is made to the radius b
instead of a.

To obtain predictions in the small-penetration limit, we
use here oblate-spheroidal coordinates ( u, u, y ), ' which
are related to the cylindrical ones by

22 p2
2
+

2 1~ Q PP~
Q Pp Q

2 2
P2+

Pp V V

N = [—H, po(u —po)' —Af(u /po) ](po —v )'

(30a)

whereas for perpendicular incidence,

where 2po is the focal distance and po = (a —c )
' . Now

the surfaces of constant u and v are confocal oblate
spheroids and confocal rotational hyperboloids, respec-
tively. For small penetration and parallel field, the poten-
tial is '

D. Oblate spheroids, numerical results

Using the numerical procedures of Sec. IIB, we find
the shielded volumes for arbitrary parallel applied fields
0 ~ h, h

ll
in oblate-spheroidal geometry. A variable po-

lygonal line (r/, 8 ) with N ranging from 21 to 33 is deter-
mined by minimizing f„,. The shape changes of the core
with h, make it difficult to mesh the polygon, and so an
equally spaced grid is used for small eccentricities. For
greater eccentricities an adapted mesh with smaller inter-
vals around 8=m. /2 is used.

In Figs. 8 and 9 are shown the shielded volumes for
two difFerent eccentricities. For a/c =2, h

~~

=3.96033
(Fig. 8), the core's surface is onionlike and only at higher
penetrations resembles the result for spheres. In the
0=m/2 plane the field easily penetrates at lower fields,
whereas at fields close to h* penetration this becomes
more difficult. The core's apex coincides with the pole in

0.50

0.40

@=[ H, —Af, (u Ipo—)] cosy,
Pp

(30b)
0.30

where

f (z) =1—(z —I )'~ arcsin(1/z)

N

0.20

0.10

f, (z) =z arcsin(1/z) —(z —1)' Iz 0.00
0.0 0.2 0.4 0.6 0.8

are functions related to associated Legendre functions of
the second kind. In an analogous fashion to Sec. III A,
the use of the boundary conditions at u =a, now
B„=pH„=O, J, y =H„, and J, , = —H, enables the
derivation of the core shapes for small penetrations:

FIG. 8. Contours of the oblate spheroid and magnetically
shielded cores when a/c =2 (h

ll

=3.960 33) at different applied
fields h =2+H/aJ, (labels on the curves).
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where H
~~

=J,d /2 and d is the slab width.
For cylinders with the field H, HII parallel to the

axis,

MII H, 1 H,
H* H* H 3 H*

II . II

H,

where now H
II

=J,a, with a being the cylinder radius.
There are no analytical solutions' for perpendicu-

lar field except in the two limits. For full penetration,
Hi =2J,a/m, ' and the maximum value of the magneti-
zation is Mj /H ~

= ——', . For small penetration,
Mi/Hi = 2H, —/Hi Zen. kevich, Zheltov, and Roman-
yuk and Pang, Campbell, and McLaren give simple
approximate formulas for Mi/Hi. We use in this dis-
cussion the results of Pang, Campbell, and McLaren,
which are not exact, but for H, (H~ are claimed to fol-
low the numerical results within 10%%uo.

M~ =2
H*

H, H,—2H* H*
H, 3

The slope at the origin of MII/HII for cylinders and
slabs is —1. This should be compared with the result
1/(1 —

g&) for spheres and spheroids, following (27). For
prolate spheroids and small fields, both MII and M~
change continuously with the eccentricity from the value
for spheres —', [g&(0)= —,

'
] to that for cylinders [g~~(1)=0,

gi/(1)= —,']. This is due to the continuity for the core
(26) which changes between those limits giving for
spheres the expression (6) and

rI', i =1—3h, /4'(1 —cos csin 8)'

and giving for cylinders, pk
~~

=a ( 1 H, /J, a ) and-
pk i=a(1 2H, /J, a sing).—

Moreover, for oblate spheroids M~ changes with eccen-
tricity from the result for spheres to that for slabs

[g~~ ( ~ ) = 1, gi( ~ ) =0]. With the usual definition of rela-
tive directions, M~ in oblate spheroids has the limit MII in
slabs.

It should be noted that the M/H slopes for the Meiss™
ner state are the same as (27). Then there is no discon-
tinuity when H, reaches the superheating field value
H, h =H„[1—g&(e)] and the fiux starts to penetrate.
Only at higher fields would deviations from linearity be
observed.

The values of the magnetization at saturation
H /H* 1) ar
cylinders, and ——,'for spheres (10). Note that the sphere
value is intermediate between cylinders and slabs. How-
ever, the value of M~/H~ for spheres is higher than for
cylinders.

For any field the absolute value of MII/HII for spheres
is always higher than the corresponding one for
cylinders, but it crosses the predictions for slabs. A simi-
lar behavior is observed for prolate spheroids when
a/b =2. The slope at the origin —1.210 is lower than
that for cylinders, but before saturation MII crosses over
the values corresponding to cylinders. For a /b = 10 the
slope at the origin is already —1.021 and the difference
with the result for cylinders is negligible. However, at

saturation the slope almost reaches the limiting value
M„/H, ',

= =2~/32
For oblate spheroids the results again show continuity

with the behavior of spheres. Moreover, for a/c =2 the
slope at the origin is —2. 115 and MII is always lower. In
the scale of Fig. 12, M~~/H~~ diverges as H~~ goes to zero
with increasing e* (already for a/c =10 the slope is
7.179).

From the above comparisons it can be concluded that
for elongated shapes the use of the BLM solutions for
cylinders may give an appropriate description of the ini-
tial flux profile and its related properties, whereas at satu-
ration there are differences, although small.

Furthermore, for flat shapes our results prove that the
approximation of slabs may be used to describe the
characteristics only at small penetration and when the
field is parallel to the surface. For perpendicular in-
cidence shape effects become very important because the
field easily penetrates in the equatorial plane, whereas it
hardly does so at the poles. This greatly affects the mag-
netization, which shows steeper slopes than in other
geometries. This behavior has no analog in the previous
results for slabs and cylinders and discloses the failure of
these geometries to capture the magnetic characteristics
of platelike geometries.

It is worthwhile to remember at this point the platelike
shapes observed in most HTS granular material. Certain-
ly, for oriented materials, when the field is parallel to the
crystallographic c axis, the above results indicate the ina-
bility of slab or cylinder results to match the main
characteristics of the grain-flux profile. In this case the
above analysis using oblate spheroids gives a more ap-
propriate description.

Previous studies on classic type-II superconductors
and HTS (Refs. 33 and 34) disks in a transverse field show
many of the characteristics derived for oblate spheroids
when the field is parallel to its axis. Some of the con-
clusions of such studies that nicely match our theoretical
results are the following: (i) Small fields easily penetrate
at the edge of the disks, but attempts to fit the experimen-
tal data within critical-state models using a planar set of
current loops need an azimuthal component of the
current density throughout the surface. (ii) The critical
field is reached at the faces of the disks, and the flux
trapped (or shielded) in the center depends more on the
thickness than on the disk radius. (iii) As the fiux
penetrates, the slope of M vs H decreases.

Although the results derived for oblate spheroids will
be accurate enough for very flat disks, the methods
developed here may be implemented for finite-cylinder
geometries. For external fields parallel to the axis, the
system also has rotational symmetry, but now the field in-
side the cylinder is not parallel to the axis (i.e. , both H,
and H exist) and the field in the neighborhood of the
cylinder must show octopolar and higher-order odd-
multipolar terms in addition to the dipolar terms.

V. CONCLUSIONS

The penetration of magnetic flux in HTS ceramics and
powders has been modeled with three-dimensional BLM
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solutions. ' As the model assumes strong pinning and
fields H & H, &, the validity of the derived expressions ex-
tends to the irreversibility line.

To achieve this we analyzed in a self-consistent way
three finite geometries of the grains: spheres, prolate
spheroids, and oblate spheroids within critical-state mod-
els.

For spheres we reproduced and completed the few
analytical results obtained in the limits of small and full
penetration. Moreover, we implemented numerical pro-
cedures which allow the determination of the full-
penetration range, as well as the derivation of the initial
magnetization and hysteresis loops.

For both prolate and oblate spheroids, we derived ana-
lytic results in the small-penetration limit for both paral-
lel and perpendicular fields. In addition, for parallel
fields we derived the magnetization at saturation and
developed numerical procedures for the full-penetration
range. In each case we found the fiux penetration, initial
magnetization, and hysteresis loops for two eccentricities
corresponding to aspect ratios of 2 and 10.

Further, we compared these results mutually and with
the analytic results for slabs and cylinders. The main con-
clusions are the following.

(i) Flux penetration in spheres and spheroids is non-
linear with the penetration depth and depends on the az-
imuth angle. In prolate spheroids the nonlinearity in the
equatorial plane decreases with eccentricity, whereas for
oblate spheroids it increases.

(ii) The slope at the origin of the initial magnetization

M~~ for spheres is steeper than for slabs and cylinders.
For prolate spheroids a smooth variation of the behavior
with the eccentricity interpolates between the results of
spheres and cylinders for both parallel and perpendicular
fields. For oblate spheroids and perpendicular incidence
there is a continuous variation from spheres to slabs, but
for parallel fields a new and different behavior was found.

(iii) The value of Ml /H
1

at saturation for spheres is in-
termediate between those for slabs and cylinders and is
lower than M~/H~ for cylinders. In the case of prolate
spheroids, M~~ /H

~~

changes from the value for spheres to
a slightly higher value than for cylinders. MI~ /H

~~

in ob-
late spheroids is not bounded at higher eccentricity.

The nonlinearity in the Aux profile as well as the
characteristics found for parallel incidence in oblate
spheroids reveal the inability of other simple geometries
to mimic the properties of platelike HTS grains.

Our results provide a more coherent basis for the
analysis of the experimental results on superconducting
disks. ' lt also may allow a better understanding of
HTS single-crystal properties.
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