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Critical behavior of a fully frustrated classical XYmodel in two dimensions
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We simulate, by the Monte Carlo method, a fully frustrated antiferromagnet of classical XY spins on a
square lattice in two dimensions, with nearest- and second-nearest-neighbor interactions (Jl and J2) for
Jl =J2. Rotations of all spins on one sublattice with respect to all spins on the other sublattice leave the
ground-state energy invariant. We first check, numerically, that the temperature does, as previously pre-
dicted, introduce an anisotropy that gives rise to an Ising-like broken symmetry in the ordered state at
T &0. Our results are consistent with one critical temperature, where both magnetization Auctuations
and fluctuations of the appropriate Ising-like order parameter diverge. Critical fluctuations of the mag-
netization seem to cross over from a Kosterlitz-Thouless-type behavior to S-t (v= 1) as g becomes
large enough (g) 10 lattice units) for auisotropy effects to become dominant. Values of several critical
indices are obtained. In addition, critical eft'ects produced by small amounts of impurities are studied.
We find that the reduced crossover temperature into the impurity-dominated regime is given by
t —5n ~, /=1. 7, where 5n is the impurity concentration. This result differs sharply from the predic-
tions of the Harris criterion.

I. INTRODUCTION

There has been some recent interest in frustrated sys-
tems of classical planar spins (XY model) in two-
dimensional (2D) lattices. ' Some of it has arisen out of
the possible connection between magnetism and high-
temperature superconductivity. Villain's odd model: a
system with ferromagnetic nearest-neighbor exchange in-
teractions everywhere on a square lattice except for every
other row (or column) where the exchange bonds are an-
tiferromagnetic, provides an example of a fully frustrated
XY (FFXY) model. It corresponds to an array of Joseph-
son junctions with an applied magnetic field. The anti-
ferromagnetic XY model on a triangular lattice, another
version of a FFXY model, has also been studied.

The critical behavior of FFXY models is not expected
to belong to the Kosterlitz-Thouless (KT) universality
class because more symmetries of the Hamiltonian are
broken in the ground state of FFXY models than in the
ground state af XY ferromagnets. Consider the model
Hamiltonian we study here:

H=+J, g S, S +J2 g S„S
&ij ) (pv)

where the sums are over all ij and all pv, first- and
second-nearest-neighbor pairs of sites an a square lattice,
respectively, s; is a two-component unit vector on site i,
and Jz& ~J, /2~. (We will refer to this fully frustrated
next-nearest-neighbor XY model as the FFNNXY mod-
el. ) The ground state is pictured in Fig. 1(a); it is easily

seen that its energy is independent of 0, but, as Henley
has shown, there is an anisotropy for nonvanishing tem-
peratures: spins on one sublattice [see Fig. 1(a)] tend to
be either parallel or antiparallel to spins on the other sub-
lattice. A reAectian of the lattice with respect to line DD
in Fig. 1(a) leaves H invariant, but it transforms one or-
dered state into the other degenerate ordered state.
These same two symmetries [Z2 and U(1)] are involved
in the transition of the other two FFXY systems men-
tioned above. ' Ising- and KT-like transitions might con-
sequently be expected at some temperatures TI and T~z,
respectively. Most, but not all, work done on the tri-
angular antiferromagnet and on Villain's model gives
T~=T~~. ' Ising-like domains and XY vortices may
very well interact giving rise to a universality class which
remains to be established. The critical behavior of the
FFNNXY model has not, as far as we know, been ex-
plored.

We do Monte Carlo (MC) simulations (Metropolis al-
gorithm) for systems of L XL spins for L =20, 30, 40, 60,
100, and 150 for diA'erent temperatures of the FFNNXY
antiferromagnet with J2=Ji =1. We find that, within
the accuracy of our results, there is only one critical tem-
perature, T, =(0.90+0.02). There also seems to be only
one critical correlation length g, both for magnetization
fluctuations and for fluctuations of an appropriate Ising-
like order parameter. The small anisotropy (which gen-
erates the Zz symmetry) in the model seems to drive the
system away from a Kosterlitz-Thouless (KT) behavior
when the correlation length becomes large enough. We
determine the values of several critical indices.

10 057 1991 The American Physical Society



10 058 FERNANDEZ, PUMA, AND ANGULO

~I'; = [(s;—s. )/2] [(sk —s )/2], (3)

The effect of some randomness on the critical behavior
of the XY antiferromagnet on a triangular lattice and on
the XY Villain model can be strong. However, no work
has been reported on the crossover behavior, from the
pure regime behavior, far away from the critical point,
into the impurity dominated regime near the critical
point. We study it here for the FFNNXY model. On the
basis of work done thus far on fully frustrated Ising mod-
els, ' we expect it to be interesting because, in contrast
with the case of ferromagnets, missing nearest-neighbor
bonds (or missing pairs of nearest-neighbor spins) break
the Zz symmetry in these systems. We find that the re-
duced crossover temperature is given by

~, -6n "&,
where 5n is the impurity concentration (e.g., fraction of
missing bonds), and P=y„which is radically different
from the value of /=a (the so-called Harris criterion),
where o; is the specific heat exponent, which holds for the
unfrustrated (e.g. , ferromagnetic) XYmodel.

In order to state the plan and main results of the paper
in greater detail we first de6ne some quantities. Let

where sites i, j, k, and m lie on the four corners of a pla-
quette, i diagonally across from j and k diagonally across
from m. We assign the index i to %' to indicate which
plaquette it is associated with. We further define

and

'y &(+;—&+;&)(+,—&+J &)&
E7J

(4)

(5)

(X,. + Y,. )
where N is the total number of sites, r;=( —1) ' ' s;,
X, and Y~ are the coordinates of site i (the nearest-
neighbor distance is one unit of length), and the sum in
Eq. (4) is over all i and j sites, whereas the first and
second sums in Eq. (5) are only over all points on the A
and 8 sublattices, respectively.

We next give the outline of the paper, and values found
for the critical indices. Details about the MC runs are
given on the first subsection in Sec. II. Monte Carlo re-
sults are shown in Sec. II B which support Henley's con-
clusion: that there is an Ising-type (Zz) broken symme-
try in the FFNNXY model at low T. Let
t =jT—T, /T, and

I(
&a&

IC and Q sublattices

Our MC results show that the transition temperature TI,
below which &iII&WO, and the transition temperature
Tz~, where Sz diverges, are equal within the accuracy
(2%) of our results (shown in Sec. II C). The critical index
values we have found, which we defined next, are given in
Sec. III. We find for P, defined by &'Il &

—t~, a value of
0. 15+0.05. We have found y i

= 1.6+0.2 (y i is defined
~ r2by yi —t '). S2 seems to diverge as X2-t ', and not

as in a Kosterlitz-Thouless transition. This point is dis-
cussed in Sec. V. We find y2=1.5+0.2. We obtain for
g&, defined by

&(+;—&+;&)(+ —&+ &) &
—

[ p[ —;/g (T)]]/;"',

FIG. 1. A ground-state spin configuration is shown in (a).
The circles denote sites on the A sublattice whereas the crosses
are on sites on the 8 sublattice. The angle 0 between spins on
the two sublattice is shown. The Hamiltonian is invariant with
respect to reflection about the DD axis. The ground state shown
transforms into another degenerate state upon such a reflection.
Four nearest neighbors to a spin (at the center) are shown in (b).
The four spins deviate slightly from the ground-state
configuration, and produce therefore a field 5Hi which is linear
in the angle of deviation and. a field 6Hjj quadratic in the angle
of deviation.

(7)
the value 0.4+0. 1. Assuming the same spatial depen-
dence for (r, r~ & one can similarly define gz and g2. We
obtain F2=0.35+0.08. Section IV deals with the ques-
tion of the effect of small amounts of impurities on the
critical behavior. As expected, on the basis of work pre-
viously done on the Ising model, the effect is much
stronger than that predicted by Harris for the ferromag-
net. We show that P=yi. Our numerical results give

/ =1.7+0.3, in agreement, within the given errors, with
the value found for y i.

II. MC RESULTS FOR ANISOTROPY AND
CRITICAL TEMPERATURES

A. The Monte Carlo runs

We have done Monte Carlo runs on systems of L XL
spins for L =20, 30, 40, 60, 100, and 150 for different
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temperatures. A11 temperatures are given in units of
~ J2~/kz, where kz is Boltzmann's constant. 3L sweeps
to equilibrate and 20L sweeps in equilibrium were made
in the neighborhood of the critical point (5X10 sweeps
were done in equilibrium on systems of 150X 150 spins).
Runs were shorter away from the critical point: 3L XL
sweeps to equilibrate and 6L XL sweeps in equilibrium.
The number of sweeps goes like L because the relaxation
time increases as L at the critical point. Most runs for
L ~ 100 were performed on a SUN sparc1 work station,
but an IBM 3090 computer was used for L = 150. 2 X 10
sweeps on a system of 100X 100 spins took about 30 h of
computer time on the SUN; 5X10 sweeps on a system of
150X 150 spins took about 50 h on an IBM 3090.

Averages are computed as usual. In particular, (~P ) is
computed as the average of ~ip~ over all states visited
after equilibration is achieved.

b f(8)—=0.08T(J, /J2) (1—cosz8)

for the free energy (per spin) variation with 8. In order to
check this equation we have obtained histograms of the
number of times n (8) that 8 takes a given value in a MC
run of a 40X40 spin system in equilibrium. Since the
probability density P(8) that takes a given value fulfills,
P (8) ~ exp[ hf—(8)N/T], it follows that a plot of
ln[n(8)/N] versus 8 should give bf(8—)/T up to a
constant. Figure 2 shows the data points obtained for
bf (8)/T (up to a constant). Both small T and 82 depen-
dences check out reasonably well [there is only a minor
discrepancy: the coefficient of Eq. (8) seems to be a factor
of about 2 too large].

B. Anisotropy

The purpose of this subsection is to exhibit the effect of
the Ising-type (Zz) broken symmetry in the FFNNXY
model at low temperature. Collinearity of spins on
different sublattices comes about, as Henley first ex-
plained, at TAO as spins try to follow the thermal Iluc-
tuations of their nearest neighbors. Consider the nearest
neighbors to a given spin. Small independent random an-
gular deviations ( -58) from their average directions pro-
duce an effective field on the spin considered with com-
ponents 5Hi -58 and 5Hl -58 [see Fig. 1(b)]. Being in-
itially nearly collinear (perpendicular) to its neighbors, a
spin can lower its energy by -58 (58 ), by adjusting its
direction by 50. Henley has obtained, for
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FIG. 2. Quantity hf/T (up to a cons—tant) is shown as a
function of 82, where f is the free energy and 8 is the angle
shown in Fig. 1. The 0 and T dependence shown in Eq. (8) seem
to be satisfied for small T. Error bars are about the size of the
data point symbols shown.

FIG. 3. (a) The order parameter defined in Eqs. (3) and (6) is
shown for systems for various sizes as functions of T. Error
bars are about the size of the data point symbols shown. (b) The
slope of (~p) vs T, obtained from cubic spline fits to the curves
shown in (b), is shown.
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C. Critical temperatures III. CRITICAL INDICES

TI —= Txr 0.90+0.02 . (9)

We will make no distinction between TI and T~~ from
here on and will just refer to either one as T, .

We next estimate TI, the temperature below which
(4)%0, (4), and d( '0) IdT are shown in Figs. 3(a) and
3(b), respectively, for systems of various sizes as functions
of T. We estimate TI as follows: let Tl(V, L) be defined
by d ( 0') /dT =0 for a system of L XL spins, that is by
the point where the order parameter decreases fastest; the
limit of TI(%',L) as 1/L~0 yields TI. In order to esti-
mate the error involved we define similarly TI (S„L)

and Ti[logio(St ),Lj, by the location of the maxima
of dS, /dT and of d log, o(Si ) IdT where Si
=N 'g(~p;qi ). The results are exhibited in Fig. 4.
Figure 5 shows the susceptibility-like quantity, y, for sys-
tems of various sizes. From the data shown in Figs. 4
and 5, we conclude that TI =0.89+0.01.

We follow a similar procedure to estimate the value of
Tx~, except that a nonvanishing order parameter does
not exist in this case. We define values of Tzr (L) by the
location of maxima of dS2IdT and of d [logic(Sz)]/dT.
These values and their 1/L~O extrapolation are also
shown in Fig. 4. Inspection of that figure shows that

~ Txi TI ~
is n—ot larger than the errors of either T~r or

TI. We conclude that

A. Order parameter

The order parameter ( 4 ) is shown in Fig. 3 as a func-
tion of T. In order to exhibit the critical behavior,
('P ) -t ~, data log, o(( 4 ) ) versus log, o( T, —T) are
shown in Fig. 6 for various values of I., using T, =0.9.
The best straight-line fit to the data in the range
0.82~ T ~0. 89 gives p=0. 15. Statistical errors in the
values of (4) lead to an error of about 0.03. Using the
smallest or largest values allowed for T„0.88 and 0.92,
respectively, one obtains plots which deviate very
markedly from straight-line behavior. Even the values
T, =0.89 or T, =0.91 lead to appreciable deviations.
Variations of T, within the 0.89 to 0.91 range give an er-
ror of about 0.04 in the value of P. Adding these two er-
rors incoherently, we obtain

P=O. 15+0.05 .

B. Susceptibilities

The critical behavior of the susceptibility-like quantity
gi, defined in Eq. (4), and exhibited in Fig. 5 is examined
next. It follows from Eqs. (4) and (7) that

(2—gl)xt-ki (11)

We first try gi —t '. Then

1.05 120

20

1OO —

40

80 ~ 60

0.95 100

60
150

0.90

0.85
0.02 0.04 0.06

40

20

g ~
R

D 0L CP

0
g6 g ~ ~

oooo&~ e
FIG. 4. The purpose of this figure is to exhibit how the criti-

cal temperatures TI and T» are estimated. Values of T where
the maxima of d(V)/dT occur are plotted versus 1/L as
crosses (+ ); similarly ( ) for dy &

/d T, ( o ) for
d [log, o(y, )]/dT, ( ~ ) for dS2/dT and (o ) for d [log, o(S2)]/dT.
Extrapolations to 1/L~O give the corresponding estimates of
TI and of T~y.
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FIG. 5. Data points are shown for y, as a function of temper-
ature for systems of L XL spins. The corresponding values of L
are shown in the upper left-hand corner.
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The critical behavior of the structure factor S2, defined
in Eq. (5), is examined next. Since (s;) =0, Sz is a sus-

ceptibility. If we assume g2-t ', then Sz-(2 ' leads
us to S2-t '. Figure 9 exhibits the critical behavior of
S2. Proceeding as for y&, we obtain

-0.3 y, =1.5+0.2 . (14)

A

V

-0.4

v2
Again, we try the KT expression (2-exp(b /t ').

Then, S2-exp(b'/r '). Figure 10 shows a plot of
log, &&[log,p(S2)] versus log, oiT —0.9i. The data points
also depart significantly from a straight line in this case;
this result is again fairly independent of the value of T,
chosen. This result is discussed in Sec. V.

Equation (11) becomes for finite systems, according to
finite-size scaling, '

-1.9 -1.7 -1.5 -1.3

log l0 (0 90 T)

FIG. 6. Data points are shown for the logarithm of the order
parameter (iP) as a function of the logarithm of (0.9—T) for
systems of L XL spins (0.9 is the value we have found for Ti)).
The corresponding values of the L are shown in the upper left-
hand corner. The slope of the straight line shown gives
P=0. 15. Error bars are in agreement with the scatter in the
data.

(15)
2 I]iwhere f is some function. y, ~L as T +T, . F—igure

ll shows our results in a log, o(y, ) versus log, o(L) for
various values of T. The best straight-line fit to the
T =0.9 data points gives 2 —g, =1.57. Inspection of the
figure shows that the error in 2 —g, is about 0.1. There-
fore,

(12)

where y, =v, (2 —g, ). A plot of log, o(y, ) versus
logio~ T 0.9~ of the d—ata is shown in Fig. 7. Not much
can be inferred from the data below T, (inset) as the criti-
cal region seems to be rather narrow there. A straight-
line fit to all the data points shown which are seemingly
free of finite-size effects above T, gives y, =1.6. Statisti-
cal errors in the data give an error of 0.1 at most. On the
other hand, using the smallest or largest values allowed
for T„0.88 and 0.92, respectively, one obtains plots
which deviate quite markedly from straight-line behavior.
Even the value T, =0.89 or T, =0.91 lead to appreciable
deviations. Variations of T, within the 0.89 to 0.91 range
give an error of about 0.15 in the value of y& ~ Adding
these two errors incoherently, we obtain
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ye=1.6+0.2 .

We now try the Kosterlitz-Thouless expression
gi-exp(b/t '). Equation (11) then becomes

gi -exp(b'/t '). Figure 8 shows a plot of
log, o[log, o(gi)] versus log, o~T —0.9i. The data points
depart significantly from a straight line. This result is
fairly independent of the value of T, chosen. The inset in
Fig. 8, which shows a plot of log, o[log, o(g, )] versus
log, o~ T —T, i, for T, =0.89, illustrates the point.

log iolT-0.9I

FICi. 7. Data points are shown for the logarithm of g&,
defined in Eq. (4} as a function of the logarithm of i T —0.9~ for
systems of L XL spins (0.9 is the value we have found both for
TI and for T»). The corresponding values of L are shown in
the upper right-hand corner. Error bars are about twice the size
of the data point symbols shown. The inset shows log&0(g, ) vs
logi0~0. 9 —Ti for T(TI The slope of the stra. ight line gives

y I
= 1.60.
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2 —F1=1.6+0. 1 .

We proceed similarly for S2. The data is shown in Fig.
12. We obtain

3.0
2 —g2= 1.65+0.08, (17)

at the critical point ( T =0.9).
Equations (13) and (14) plus Eqs. (16) and (17) together

with y/v=2 —il give v, =0.9+0.2 and v2=1.0+0.2.

C. Syeci6c heat

CV

CD

bQ0
O L=20

2.0 - 0

Figure 13 shows our results for the energy (E ) versus
T, near T„ for systems of various sizes. We have ob-
tained the specific heat C by fitting (E ) versus T, for
each system size, with cubic splines, and then taking their
derivatives. Now, from 6nite-size scaling, '

C-L ~ f(g/L), whence it follows that C(T=T, )

-L ~'. Figure 14 exhibits C(T=T, ) versus log, o(L).
One might be tempted to infer that C diverges at T, on
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FIG. 9. Data points are shown for the logarithm of S2,
defined in Eq. (5) as a function of the logarithm of ( T —0.9) for
systems of L XL spins (0.9 is the value we have found both for
TI and for T»). The corresponding values of L are shown in
the lower left-hand corner. Error bars are about the size of the
data point symbols shown. The slope of the straight line shown
gives @2=1.49.
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FIG. 8. The purpose of this figure is to contrast our results

with the Kosterlitz-Thouless-like behavior, g, -exp(b/t ).
Data points are shown for the double logarithm of g&, defined in

Eq. (4), as a function of the logarithm of ( T —0.9) for system of
L XL spins (0.9 is the value we have found for TI). The corre-
sponding values of L are shown in the upper right-hand corner.
The departure from straight-line behavior is fairly independent
of the value one chooses for the transition temperature TI, the
inset illustrates the point: it shows a plot of log, o[log, olg, l] vs

log«~ T —TI ~, for TI =0.89. Error bars are about the size of the

data point symbols shown.

logl0(T )

FIG. 10. The purpose of this figure is to contrast our results
with the Kosterlitz-Thouless-like behavior, S2 —exp(b/t ). The
straight line shown corresponds to v =

2 . Data points are
shown for the double logarithm of S2, defined in Eq. (5), as a
function of the logarithm of ( T —0.9) for systems of L XL spins
(0.9 is the value we have found for T»). The corresponding
values of L are shown in the lower left-hand corner. Error bars
are about the size of' the data point symbols shown.
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bQ
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that basis. However, it also follows from finite-size scal-
ing that C,„-L,where C,„ is the maximum value
of C versus T for each value of L [it follows from
setting dCldt=0, which implies df(u) /du =0, which
in turn implies g/L =const, whence follows that
C,„-L "f(const) j. Figure 14 also exhibits C,„
versus log&0(L). It is not clear whether there is a diver-
gence or not. Results for larger systems would help to
resolve this point. (Note however that computing times
increases as L, since the number of Monte Carlo steps
per spin must increase as L in the critical region. )

IV. CROSSOVER TO IMPURITY
DOMINATED CRITICAL BEHAVIOR
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log~o(L)
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This section is devoted to the effect of small amounts of
impurities on the critical behavior. Our purpose is limit-
ed to establish the size of the neighborhood

~
T„—T, ~

next to the critical point where impurities dominate criti-
cal behavior. Our result is summarized by Eq. (2), where
t, = ~T„T,~

IT—, . To arrive at that result we do not
simulate systems with impurities, rather, we extract our
conclusions from the behavior of pure systems by the

FIG. 11. Data points are shown for the logarithm of g&,
defined in Eq. (4), as a function of the logarithm of L for the
values of temperature shown at the upper left-hand corner. y&

diverges only at T& =0.90. The line is the best straight line fit to
the T=0.90 data points. Its slope gives y&/v= 1.60.
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FIG. 12. Data points are shown for the logarithm of S&,
defined in Eq. (5), as a function of the logarithm of L for the
values of temperature shown at the upper left-hand corner. Er-
ror bars are about the size of the data point symbols shown.
The line is the best straight-line fit to the T =0.90 data points.
Its slope gives y2/v= 1.65.

FIG. 13. Data points are shown for the mean energy per spin
as a function of temperature for systems of L XL spins for the
values of L shown at the upper left-hand corner. Error bars are
about the size of the data point symbols shown. The inset
shows the same quantity over a wider temperature range.
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FIG. 14. Data points e and 0 stand for the specific heat per
spin at the critical temperature and its maximum value, respec-
tively, as a function of the logarithm of L. The data points were
obtained by taking derivatives of cubic spline fits of the curves
shown in Fig. 13. Error bars are slightly larger than the size of
the data point symbols shown.

FIG. 15. Data points are shown for the logarithm of R,
defined in Eq. (23) as a function of the logarithm of (T—0.9) for
systems of L XL spins (0.9 is the value we have found both for
Tz and for Tz&). The corresponding values of L are shown in
the upper right-hand corner. Error bars are slightly larger than
the size of the data point symbols shown.

procedure described next.
Following Ref. 10 we let

H~&+ g 5JJS; SJ. , (18)

where H is the Hamiltonian for the pure system, the sum
is over all nearest-neighbor pairs ij, and 5J,j is an in-
dependent random variable. For simplicity's sake we will
only consider nearest-neighbor bond impurities, that is,
5J,,WO only if i and j are nearest neighbors. Further-
more, (5JJ ) =0 and (5JJ5Jk ) =5J (5;k5& +5; 51k).
A cumulant expansion of the free energy gives

pF= —pFO+p'(5J'—/2) y [&(s, s, P& —&(s, .s, ) &'],

(19)

F—t' f (5J'/rp), (20)

where f is some function. Then, expanding to order 5J
F-r' tf(0)+f'(0)5J'/tp] .

Comparing Eqs. (19) and (21) one gets

r'- -~-&(s,. s, )'& —(s,"s,&',

(21)

(22)

where i and j are nearest neighbors. We next examine
the critical behavior of the second term which is the most

to order 5J, where the sum is over all nearest-neighbor
pairs. On the other hand, assuming scaling, '

R =X (23)

where the sum is only over all sites i (but not over j), and
j is any first nearest neighbor to i. As shown in Ref. 10,
R —t&. Figure 15 shows log, o(R) versus log, o(T —0.9)
for systems of various sizes. Proceeding as for y1 and for
y2, a value of /=1. 7+0.3 is obtained, which agrees as
predicted, within the given errors, with the value ob-
tained for y, in Sec. III.

V. DrSCUSSIOX

We have obtained the values of the critical exponents,
p, y&, yz, g&, and g2 for the fully frustrated next and
next-nearest neighbor XF antiferromagnet. Our results
for the specific heat are inconclusive. It is not clear
whether it diverges or not.

The thermally induced anisotropy seems to drive the

singular one of the two. (S,.S ) is a sum of the order pa-
rameter (qI) and the energy corresponding to nearest-
neighbor bonds only, as follows from the definition of
( +) and from the homogeneity of the pure system. It
follows then that 2 —a —$=2p, since qI diverges more
strongly than the energy. If one lets the perturbing term
in Eq. (18) be 5h g, %;, one gets, proceeding along similar
lines as above, the familiar scaling relation 2 —a —y =2P.
It follows then that P =y, .

The relation P =y, can be checked numerically as fol-
lows. Let
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FFNNXY system away from a KT-like critical behavior
for t ~ 0. 1. However, a straight-line fit to the data points
shown in Fig. 10 for t ~0. 1 gives a slope of 0.5 approxi-
mately (in accordance with a KT-like behavior). That fits
with the following picture. The anisotropy is small in
this system; it can therefore become truly effective only
over long distances, driving the system away from KT be-
havior only for long enough correlation lengths. More
quantitatively, consider low temperatures where Eq. (8)
holds for the anisotropy. Then, walls between domains
are about 10/&T wide. For shorter distances, anisotro-
py effects are small. We therefore expect anisotropy
effects to become important only for g~ 10 in the critical
region (where T-1). Figures 7—10 exhibit finite-size
effects and can therefore be used to estimate g(t) Inde. ed,
we find g ~ 10 for t ~ 0. 1, in accordance with this picture.
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