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In this paper we apply the Landau-Ginzburg model to a uniaxial ferromagnet including the possibility
of magnetic inhomogeneities in the sample. The effects of external magnetic fields on the various homo-
geneous and inhomogeneous magnetic structures that minimize the free energy are studied. Using exact
methods of nonlinear analysis, space-dependent solutions of the equation of state are found, and their
mean magnetizations are calculated. A combination of analytical and numerical methods is then em-

ployed in the study of their energies. Finally, the role of various magnetization patterns is investigated
in the Arrott plots for magnetization processes.

I. INTRODUCTION F= ff (M, VM)d x . (1.2)

The free-energy density f for uniaxial ferromagnets
close to their critical temperature T, can be usually writ-
ten in the Landau-Ginzburg form

f =f + 'AM + ,'BM— +D~V—M~

where M is the relative magnetization with respect to the
saturation magnetization, measured along the easy mag-
netization axis. The coe%cient A is typically assumed to
vary linearly with reduced temperature as A =a ( T —T, )

while B and D are virtually constant in the neighborhood
of T, . It is also expected here that the anisotropy of the
magnet in this regime is so strong that reorientation pro-
cesses of the easy magnetization axis are excluded and
consequently the remaining components of the magneti-
zation vector need not be explicitly included in the mod-
el. Equation (1.1) is either postulated in a phenomenolog-
ical Landau-Ginzburg model' or derived from micro-
scopic considerations ' for spin-lattice models which
cover both short- and long-range interactions, and where
transition to continuum limit is warranted. The addition
of the Ginzburg term D~VM~ rejects the presence of in-
homogeneities in the system which may be of special im-
portance in ferromagnetic materials, and in particular in
dilute and amorphous alloys. ' The physical origin of
this term may also be found in the nearest-neighbor in-
teractions so that D )0 corresponds to ferromagnetic
while D & 0 to antiferromagnetic interactions.

In a recent paper" the inhomogeneous equation of state
for the order parameter M(x) was derived minimizing
the free-energy functional

(1.3)

was reduced to a number of ordinary differential equa-
tions (ODE's) corresponding to different boundary and
initial conditions. In Eq. (1.3) V denotes the three-
dimensional Laplacian operator. Subsequently,
numerous exact solutions to Eq. (1.3) were found together
with the energies required for their formation.

In the present paper we extend the results of the previ-
ous study to a different physical situation, namely one in
which an external magnetic 6eld 0 applied along the easy
magnetization axis interacts with the magnetization or-
der parameter M via the Zeeman term —MH. Thus, the
free-energy density is now given by

fH=f MH— (1.4)

with f as in (1.1). The steady-state equation of state is
found by minimizing the functional F corresponding to
(1.4) and is

+2M — + M + M3
2D 2D 2D

(1.5)

where DAO and BAO. The field H may take both posi-
tive and negative values depending on whether it is paral-
lel or antiparallel to M, respectively.

Equation (1.5) for HWO and BWO is invariant only un-
der the Euclidean group E(3) of three-dimensional real

Using the method of symmetry reduction this nonlinear
partial differential equation (PDE)
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Euclidean space (x„xz,x3). The Lie algebra of this
group has a basis consisting of three translations P; =—8„
and three rotations L; =——e;JkxjB, where E''jk is theJ Xk&

Levi-Civita symbol. There are precisely three subgroups,
providing reductions to ODE's. They are generated by
IL3,P„Pz], IL3,P3], and IL„Lz,L3I and lead to the
equation

/2M k dM
dg 2D B B (1.6)

corresponding to k =0, 1, and 2, respectively.
Our intention in this paper is to analyze as completely

as possible the case of translationally invariant solutions,
i.e., k =0 corresponding to the case of a long sample, for
which the magnetization varies negligibly. The two
remaining symmetry choices, cylindrical and spherical,
are much more complicated and will be investigated sepa-
rately in the future. In Sec. II we obtain the general solu-
tions of Eq. (1.6) for k =0 for all possible types of initial
conditions that can be imposed on a (boundary) plane.
Particular attention is paid to the dependence of these
solutions on the field H. Then, in Sec. III we calculate
the mean magnetizations of these solutions. Sec. IV is
concerned with the energies of solutions and here we em-
ploy a combination of analytical and numerical methods
of calculation. Finally, in Sec. V we focus on the form of
Arrott plots produced by each of the solutions in order to
elucidate the question of the experimentally observed
curvature.

II. TRANSLATIONALLY INVARIANT SOLUTIONS

with k =0,1,2, respectively. Here, M =M(g) and g' is a
so-called symmetry variable which may take one of the
following three forms:

g =x g =(x +x }' or g =(x +x +x )'

(1.7)

M4=M3=M2

M4=M3

M2 Mg I

M4=M3 M2/~M
~~r

~ ~~ ~ ~
M3=M2

M)

M

the equation of state obtained in our earlier publication
when H =0. The assumption inherent in Eq. (1.4} is that
the magnetic field is relatively weak. We can thus assume
that when the magnetic field is switched off (H~O), the
coefficients A, B, C, and D in Eq. (2.1) are not drastically
affected, in particular, that 6=8/4D does not change its
sign.

The procedure adopted here will be to integrate Eq.
(2.1) explicitly and exactly for HAO in a manner compa-
tible with the H~O limit. We subsequently take this
limit and then compare with the results found earlier for
H =0. In the following we shall restrict ourselves to a
study of real nonsingular solutions. To illustrate the ori-
gin of the various types of solutions, in Fig. 1 we present
the diagrams of M as a function of M, corresponding to
Eq. (2.1) for HAO which cover all possible relations be-
tween the roots of the polynomial R (M). Multiple roots
are marked by open circles on the M axis. Real non-
singular solutions correspond to the solid curve sections,
complex solutions to dotted sections, and singular solu-
tions to dashed sections. Isolated circles (not connected
by solid lines) correspond to constant solutions [see Figs.
1(c) and 1(h)]. Circles connected to solid lines are asymp-

Imposing boundary conditions for Eq. (1.5) on a plane
leads to solutions given by M(g) where g=e (x—xo);
~e~ =1 so that e is a unit vector normal to the boundary
plane. The ODE satisfied by M is Eq. (1.6) with k =0.
This equation, for (dM/dg)%0, can be integrated once
to the form

2
dM 8 4 A 2 4H
dg 4D B B

~ ~

~ ~".' M~ M

I
'M4 M3 M~

=h(M —M i )(M M2 )(M —M3 )(M——Mq )

=R (M), (2.1)

)( lVI2

M2=M)

where C is an integration constant, b, =B/4D, and M„—
M2 M3 and M4 are the four roots of the quartic polyno-
mial on the right-hand side of the equation above. They
depend on A, B, C, and H in an obvious way. Depending
on the values of the four roots M&, M2, M3, and M4 and
the sign of 6 we find different functional forms of the
solutions M(g'). Our main aim in this section is to estab-
lish how the magnetic field H influences the solutions of

:M2 ~ ~

O~O P

2FIG. 1. The diagrams of M as a function of M, correspond-
ing to real finite solutions in the presence of a magnetic field H.
The dashed parts of the curves correspond to singular solutions,
the dotted ones to complex ones. Each diagram has its comple-
ment in the form of the mirror image in the M =0 axis.
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M =M2 1— 4
1 46M(—

(2.2)

and it has the form of an algebraic solitary wave satisfy-
ing M —+M& as g~+~ and M=M, for /=0. This is a
bump for M1)0 and a well for M, (0. In the limit
H~O, we have M2 —+0 and M1~0, hence also C —+0
and A ~0. Thus, M~O as H~O is the only possible
limit and this solution approaches the disordered phase.
For HWO, Eq. (2.2) describes a nucleation center of mag-
netic order.

totic values of nonconstant solutions (for g~+ ~ ).
Thus, solid line sections connecting two circles are kinks
(which occur for H~0), those connecting a circle and a
simple root are solitary waves (bumps or wells). Solid
lines connecting two simple roots correspond to periodic
solutions. If the diagram has no circles (no multiple
roots) solutions are obtained in terms of Jacobi elliptic
functions, otherwise in terms of elementary functions. To
save space we drop the diagrams that are mirror images
in the M axis of curves that are presented. Below, each
situation described by a diagram in Fig. 1 is discussed
and exact formulas for M(g) are provided.

(i) One triple root. 5&0, M2=M3=M4 &M &M„and
M, = —3Mz,' M; (1&i &4) are real [see Fig. 1(a)], or
M 1 (M (M2 M3 M4 The solution here is

(ii) One double root, tiao single ones.
(a) M4=M3 &M&M2 &Mi, b, &0 [Fig. 1(b)]. The

real finite solution in this case has the form

4(M2 —M3)E
M =M3+

[E +(m+1) ][E +(m —1) ]

where we have denoted

(2.3)

m =(M2 —M3)/(M, —M3);

E =2exp —[b(M, —M3)(M2 —M3)]'

with e=+1. This describes a "bump" for Fig. 1(b) while
for its mirror image in the M axis, the formula is the
same but M represents a "well. " As g~+~, M~M3
while for /=0, M=M2. Interestingly enough, in the
limit H —+0, M2 M1 and M3~ —M„so that the soli-
tary wave of Eq. (2.3) becomes the kink found in the pre-
vious paper, i.e.,

—eM& tanh(&bMig). If, on the other
hand, in the limiting procedure we also have A —+0 and
C~O, then M, ~O and the disordered phase solution
M=O is approached. We conclude that Eq. (2.3) again
represents a nucleation center of magnetic order.

(b) M, =M, & M, & M & M, and b. & 0 [Fig. 1(c)]. The
real finite solution in this case can be written as

M =M3+
2(M —M )(M —M )1 3 2 3

Mi+Mq —2M3+(Mi M2) cos[ —b(Mi ——M3)(Mq —M3)]'i g
(2.4)

Thus, for HWO M oscillates between Mz and M3. In the limit H~O, M2~Mi and the magnetization profile ap-

proaches zero, i.e., M~0 as H~0, where in general we have M, WO. In conclusion, Eq. (2.4) represents either fer-

romagnetic or antiferromagnetic spin waves depending on whether the signs of M, and M2 are the same or difTerent.

(c) M4 (M3 =M2 & M & M, and b, & 0 or M& & M & M3 =M2 (M i [Fig. 1(d)]. The solution here is a solitary wave

that can be written as

M =M2+
(M —M )(M —M )1 2 2 4

2M2+e(M, +M2) cosh[ —b(M, —M2)(M2 —M4)]'i g
(2.5)

where e=+1. For e=+I Eq. (2.5) describes a bump
such that M~M2 as g~+~ and M=M, &M2 for
g'=0. For e= —1, on the other hand, Eq. (2.5) describes
a well with M~M2 as g~+~ and M =M~(Mz for
/=0. For H~O we have M&~0, and M4 —+ —Mi re-

sulting in a pair of symmetric solitary waves:
M —+eM, sech(+ —b,M, g), exactly in the form found ear-
lier. " Thus, it is concluded that Eq. (2.5) again represents
a nucleation center.

(iii) I'our distinct real roots In this case s.olutions will
always be periodic and may be physically interpreted as
one-dimensional classical analogs of ferromagnetic or an-
tiferromagnetic spin waves. There are several distinct
possibilities within this category which are discussed
below.

(a) M4 &M3 &M &M2 (M, , b &0, M; (1 &i &4) are
real [Fig. 1(e)]. In order to be able to take the limit of
H~O in an appropriate manner, we integrate Eq. (2.1)

directly applying a fractional linear transformation

(2.6)

a = (2M, —M2 —M3 )R —(M2 —M3 ),
p=M, (M2 —M3)+ [2M2M3 —M, (M~+M3)]R,

y=2M, —M2 —M3 —(M~ —M3)R,

6=M, (M2 —M3)R +2M~M3 —M, (M2+M3),

while the parameter R is found to be

(2.7)

and choose the constant coefficients a, P, y, 5 convenient-
ly, so that M =(M4, M3, M2, M, ) goes into
W = (

—R, —1, 1,R ), respectively, with R & 1. This yields
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R =[(Mi —M~)(M~ —Ms)]

X [
—2M i M4 —2M2Mi + (M) +Mq )(Mq+M3 )

As a result, Eq. (2.1) reduces to a standard equation for a
Jacobi elliptic function' and we obtain two different
types of solutions. First,

+2[(M, —M2)(Mi —M3)(M2 —M4)

X(M3 —M4)]'i ] .

5 sn(QEKOR g, k ) —P
M(g) =

a —
y sn(+bKORg, k)

where k =R ' is the Jacobi modulus and

(2.9)

K = [(M, —M )(M —M )(R —1)—2(M, —M )(M —M ) ]/2(R —1)& 0 . (2.10)

In the limit H~O, (2.9) becomes one of the solutions
found previously in the absence of external fields, namely
Mz sn(V bM, J,Mz/Mi ). However, if in the limit we
also have M2~0, then M ~0. If, on the other hand, we
have M2 ~M

&
for H =0, then a tanh kink is found.

(b} M4 &M &M3 &Mz &M, and b, &0, or
M& & M3 & Mz & M & M, and b, & 0 [Fig. 1(f)]. This solu-
tion is given by

e5R dn(Q —b,KoRg, k) —PM=
a —eyR dn(Q —bKoRg, k)

(2.11)

where A —= (M, —p) +q; 8 =(M2 —p) +q, and
=[(Mi —M2) —(A —8) ]/4AB When H. —&0, then

M2 —M& and p ~0 which yields
M~ —M, cn([ —6(Mi+q )]'~ g, k), where k =M, /
(M f +q )'~, in agreement with our earlier calculations.
We may also have q ~0 as H ~0, whereupon M (()
tends to the sech-solitary wave solution. Alternatively, if
M& ~0 as H —+0, then M becomes the disordered phase
solution, M ~0.

(v) Constant solutions. In addition to the inhomogene-
ous solutions of (i)—(iv), constant (mean field) solutions of
the equation of motion are directly found which satisfy
the homogeneous equation of state"

H = AM+8M (2.13)

Note that they have been represented in Figs. 1(c) and

where k =+ I —R, e=+1, and a, p, y, 5, are those of
Eq. (2.7), R is in Eq. (2.8), and Ko in Eq. (2.10). As
H~O, M~eMi dn(M, V —bg, k) with k=(1 —M2i/
M, )'~, in perfect agreement with one of the solutions
found earlier. If M2 —+0 in addition to H ~0, we obtain
the sech-solitary waves. If M2~M, we obtain the con-
stant solutions M ~@M „and for M2 ~0 and M, ~0 the
disordered phase results since M ~0.

(iv) Two distinct real roots and two complex conjugate
ones. We put M2 &MI, M3 4 p+iq where q )0, 6 (0
[Fig. 1(g)]. In this case the solution can be found direct-
ly" as

(M2 A MiB)cn(i—/ b, AB g, k )—+M& A +MiB
( A B)cn(i/ b, A—B g, k)+ A—+8

(2.12)

1(h) using the isolated circles. For H~O we obviously
have M~O or M~+i/ —A/B. With A =a(T —T, )

the magnetization M is a single-valued function of H for
T & T, . For T & T, and —( —A/8)' &M &( —A/
8}',M as a function of the field H exhibits a typically
hysteretic behavior. The constant values of M corre-
spond to multiple roots on the plot of M versus M. In
particular M =0 is a quadruple root; M =+(—A /8 )'~
for ( —A /8) & 0 are two double roots.

We close this section by providing a physical interpre-
tation of the obtained solutions. First, the constant solu-
tions correspond to equilibrium (when A + 3BM & 0) or
unstable (otherwise) mean field or homogeneous phases in
the system. The nonsingular elementary solutions (alge-
braic or hyperbolic) represent two classes of localized or-
der parameter structures. They describe either nu-
cleation centers of magnetic order (algebraic or sech type)
or domain walls separating energetically equivalent
phases (kinks). Nonsingular periodic solutions are ex-
pressed either through trigonometric or elliptic functions.
Depending on their type and specifically whether or not
they oscillate crossing the M =0 point, they can be inter-
preted as classical analogs of either ferromagnetic (if they
do not) or antiferromagnetic (if they do) spin waves. The
analogy here is, of course, not complete since ferromag-
netic or antiferromagnetic spin waves are usually trans-
verse, dynamical oscillations. The model presented here
is static (no time dependence) and the solutions are neces-
sarily longitudinal since the order parameter is one com-
ponent. We have reason to believe, however, that similar
patterns also exist in time-dependent extensions of the
presented model as well as in two-component ones where
the magnetization represents a rotating vector.

III.MEAN MAGNETIZATION

In Sec. II we have obtained a complete list of all non-
singular real translationally invariant solutions of the
static Landau-Ginzburg equation (1.5) for arbitrary exter-
nal magnetic fields H. We thus have explicit expressions
of the magnetization profiles M( g, H ) as a function of the
spatial coordinate g= (e, x—xo) and parametrized by the
magnetic field H. The obtained solutions were found to
be constant, localized, or. periodic in space. For HAO
the localized ones are always in the form of solitary
waves (bumps or wells}. When the field is switched oF
(H~O) the solitary waves either vanish, go over into
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1
M(H) =—f M(g)dg,L

(3.1)

where L =
g2

—g, is the characteristic length. For
periodic solutions we identify L with the wavelength.

For localized solutions two different types of averages
will be defined, namely M„(H) corresponding to the
average over the entire macroscopic sample (L —+ ~) and
Mo(H) calculated for L taken to be the "half-width" of
the solitary wave. In this latter case the limits of integra-
tion gi and g2 are determined from the condition

kinks, or remain as solitary waves. Periodic waves may
either vanish when H ~0 or remain periodic and degen-
erate special cases may also occur.

In experimental studies, the measured quantity is a
mean magnetization M(H) averaged over the length of
the sample. To establish a direct connection with experi-
ment, in this section we shall calculate exactly mean mag-
netizations corresponding to each of the exact solutions
found in Sec. II. For a solution M(g) its mean magneti-
zation is defined through

M(H) =M, [—(M, M—, )(M, M—, ) ]'"

X ln[(1 —m+2 —I )(1—m ) ']
ln[(3 —tn +2}/2 —m )(1—m ) ']

(3.6)

where m =(M2 —M3)/(Mi —M3) (1. The limit H~0
yields limH OMo(H) =Mi )0. Note that in this limit the
bump corresponding to Fig. 1(b) is going over into an an-
tikink (for e = + 1) and we have
$2~0, $0—+ —~,g'i~ —~. We are thus averaging over
a nonsymmetric region (half an antikink). For e= —1 we
would have obtained a kink and the limit —M& for
H —+0.

3. Solution (2.5) of Fig 1(d).
In this case we have either a bump (a=+1), or a well

(e= —1). The two possibilities are considered separately.
Calculations of the mean magnetization for the bump
produce

Mo = ,'(ME+—M—„)=M(g, ) =M($2), (3.2) (3.7)

where Mz —=M(go) is the maximum value of M(g) for a
bump and the minimum value for a well and
M —= lim& + M(g). In principle, both M (H) and

Mo(H) should be observable through a measurement of
scattering intensity (using, for example, neutrons) and
would have to involve a very detailed scanning of the
sample. Throughout this section we shall assume that
D & 0 in Eqs (1.5) and (2.1). In each case considered the
limit H ~0 will be taken.

Mo(H) =M~+ [(M, —M2)(M2 —M~)]'

2(Mi+2M~)
arccosh

M)+Mq

M~ —M4

2(Mi+M2)
(3.8)

A. Localized solutions

For H~O these results reduce to M (0)=0 and
Mo(0)=(Mi/3)(~/~arccosh2~ ). Second, for the well the
mean magnetization is found as

The localized solutions can all be written as
M(g)=M +S(g), and we always have M (H)=M„,
since the integral over S (g) converges.

I. Solution (2.2) ofFig 1(a).

M„(H) =M~,

Mo(H)=M2 —[(M, —M~)(M2 —M4)]'~2

2M)
X arccosh

MI +M~

(3.9a)

For an arbitrary choice of gz we find

M =M2+2 arctan[( —2)V —bM2$2]//zan —b, ,

where M2=( H/2B)'~ and h—ence

M„(H)=M, &0, Mo(H)=( —M, )(~—1)&0 .

(3.3)

(3.4)

Mi —M2

2(Mi +M~ )
(3.9b)

to M„(0)=0 and

B. Periodic solutions

As H —+0 this reduces
Mo(0) = —(Mi /3)(m/~arccosh2~ ).

When H ~0, M2 ~0 and M (g) =0, i.e., the solution (2.2)
approaches the disordered phase: M „(0)= Mo(0) =0. Periodic solutions found in Sec. II include elementary

ones (trigonometric) and three di6'erent types of Jacobi el-
liptic functions.

2. Solution (2.3) ofFig. 1(b)

Performing the required integration we obtain

M„(H)=M, &0 (3.5)

1. Trigonometric solution (2.4) of Fig. 1(c)

The period of this solution is
T =2m[ —b(M, —M3)(M2 —M3)] '~, and its mean
magnetization is

and M(H) =M, +[(M, —M, )(M, —M, )]'" . (3.10)
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Thus, this solution oscillates between M, and M2 satisfy-
ing 0&Mz~M~M&. For a vanishing magnetic field
H~O we have M2 —+M&, M3~ —M& and the solution
tends to a constant M(g) =M, so that M(0) =M, .

2

M(H)= ——+ II
2

k
y ayK(k)

(3.11)

where II is the complete elliptic integral' of the third
kind. For H ~0 we obtain M(H) ~0 as H ~0.

2. The "snoidal" solution (2.9) ofFig. 1(e)

The real period of this solution is T =4K (k)/QKob, R
where K(k)= f 0 (1 —k sin 8) '~ d0 is the complete
elliptic integral of the first kind. ' The average magneti-
zation over its period is

3. The "enoidal" solution (2.12) ofFig. 1(g)

The real period of this solution is
T =4K (k) /& —b, AB. After lengthy calculations the
final result for its mean magnetization is expressed in
terms of complete elliptic integrals as

M(H) = [4( A B)(M—i —M2)] [(Mi —M2)[ A (Mi +3M2) —B (3Mi +M2 )]—( A +B)(A —B) J

(A +B)(M, —M~) (A —B)2
4K (k)( A B) — 4AB

4K(k)( A +B)(Mi —M2) ( A +B)2

In the limit H —+0 we have limH OM(H) =0.

(3.12)

4. The "dnoidal" solution (2.11)ofFig 1(f).
Its period is T =2K(k)/Q —bKOR. The final result for M(H) is obtained in terms of the normal elliptic integral of

the third type' as

e5R+/3 + a5 —Py 4R
&

1+R R —1 eyR +a
a+eyR a —y R K(1+R) 2R ' R +1 eyR —a

(3.13)

where we have used the definition

II(u„a )—=J
1 —a sn u

When the field H is switched off, the corresponding solu-
tion oscillates between M2 and M& for @=+1 and be-
tween —M2 and —M, for e= —1. The magnetization
averaged over one period of the solutions tends to
@Mid/2K(k).

IV. FREE ENERGIES OF
INDIVIDUAL SOLUTIONS

fo — (L~ L, )+—
where

F L2
=2DA M —M) M —M2

1

&( (M —M3 )(M —M„)d ( .

(4.2)

(4.3)

The bulk free energy for a given solution is obtained by
appropriately integrating the free-energy density f of Eq.
(1.1) in which M(g) is taken to be a solution of the
steady-state LG equation (1.5). In this section we shall
run through the solutions of Sec. II and calculate their
energies analytically and numerically. It is assumed that
the ferromagnetic sample is long and that its cross sec-
tion is Si. The translationally invariant solutions found
earlier depend on g which is along the length of the sam-
ple. Then, the free energy corresponding to a particular
translationally invariant solution M(g) is

L2
F =Si d 0+ 21 AM'+ 418M' —HM+DM' . 4.1

1

Using Eq. (2.1) we obtain

The first term on the right-hand side of Eq. (4.2) describes
the free energy of the constant background. For local-
ized solutions we shall assume that the sample is infinitely
long and integrate from —~ to + ~. For periodic solu-
tions the integration will be performed over their period.
Below we calculate the free energies of individual solu-
tions and compare the results with the corresponding
cases with no magnetic field (H ~0).

A. Localized solutions

1. Solution (2.2) ofFig. 1(a)

In this case we have
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(4.4)

B. Periodic solutions

1. Trigonometric solution (2.4) of Fig. 1(c)

Assuming D &0 we have B &0, H)0 b, &0 and hence
(F!Sl ) & 0, i.e., its energy is lower than that of the homo-
geneous background which is understandable in view of
the negative sign of D. In the limit of H~O this bump
solution disappears into the disordered phase (M =0) and
consequently its free energy vanishes, too: F/S&~0 as
H —+0.

The final result in this case is

(M, —M~) (M, +M~)v —b, . (4.7)

In the limit H~O we have M&~M2 and the solution
goes over into a constant one (M=M&). Consequently,
the free energy contribution in (4.7) vanishes and only the
background term in (4.2) survives.

2. Solitary wave (2.3) ofFig. 1(b)

The result here is

2. The snoidal wave solution (2.9) ofFig. 1(e)

The free energy can be expressed as

F D(M2 —M3)
[b,(M, —M )(M —M )]'~

12m
'

2Db
(May+5)(M~y+5)(M3y+5)(M4y+5)

Qb, IVOR

X 2m(3m —2m +3)
X

4& [R —sn (u, k)][1—sn (u, k)]
4 dQ

0 [a—y sn(u, k)]
(4.8)

+ 3( 1 —m ) ( 1+rn ) ln
1 m

1+m (4.5)

with m =(Mz —M3)/(M, —M3) and —1&m & 1. Note
that the H ~0 limit corresponds to M3 ~ M],
Mz ~M &, and m —+ 1. This then leads to
F/S~~16DM, &h/3 as H~O. Comparing this to the
kink energy found earlier, Ek;„k =4( —A D) ' /3B, we
find that the result above is exactly twice the value of the
single kink energy. However, in the previous article the
integration was over a semi-infinite region [0, ~ ), rather
than ( —co, + 00 ) as in the present paper. We therefore
conclude that the bump of Eq. (2.3) transforms directly
into a kink as H ~0.

3. Solitary wave (2.5) of Fig 1(d).
The integral required here is elementary and the final

result is

The integral can be evaluated in terms of complete ellip-
tic integrals, but we shall not present this here, since the
result is not very illuminating. In the limit H —+0 we
have M3= —M2, M&= —M&, k =1/R =M2/M&, p=O,
y=O, 5/a=Mz, ED=M& so that F/S~ reduces to pre-
cisely the integral evaluated in our earlier paper

H=0
=2D&bM, M~

X f [1—k sn (u, k)][1—sn (u, k)]du .
0

(4.9)

F =2D& b.R (a5 —Py)—
S~

3. The dnoidal wave solution (2.11)ofFig. 1(fj

The expression for the free energy integrated over one
period can be expressed as

F
S~

2D (M, —M2 )(M~ —M4)

3[2M~+ e(M ) +M2 ) ]

X[—&(M, —M )(M —M )] ~ .a ~~~(a+1)

X[3(a+1) (a —1)arctan&a +a(3a +Za+3)],
(4.6)

X [(M/y+5)(M2y+5)(M3y+5)(M4y+5)]'

[1—dn (u, k)][dn (u, k) —k' ]
[a—yR dn(u, k)]

Again, although this is doable we shall not express this
integral in terms of elliptic functions since the result is
very complicated in form. In the limit H —+0, we have
complete agreement with our previous result, namely

where a = [2M2 —e(M&+M2)]/[2M2+e(M&+M2)],
with 0&a & 1 for @=+1and 1 & a for e= —1. The limit
H~O corresponds to M2 —+0, M4~ —M„a~1 and
hence F/S~ ~4DM, V b, /3 as H ~0. This agre—es per-
fectly with the value of the free energy obtained for the
corresponding bump solution in the previous paper.

K=2D& hM, f [(1—dn (u, k)]—
H=O

X[dn (u, k) —k' ]du .

(4.11)
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4. The cnoidal wave solution (2 12.) of Fig. 1(g)

The contribution of the cnoidal waves to the free ener-

gy over one period is

p (2 +8) —(M, —M2)=2D& —b.(A8) (M, —M )
S~ (3 +8) (1—k )

X
4& [(1—cn (u, k)][k' +k cn (u, k)]

4 JQ
[ I+[(3 8)/—( 2 +8)]cn(u, k)]

(4.12)

In the H~O limit (4.12) reduces to the case integrated
explicitly in our previous article

=2D & AM j
—QM ~~ + q

2

X f [1—cn (u, k)][k' +k cn (u, k)]du
0

(4.13)

V. DISCUSSION AND CONCLUSIONS

This paper has been concerned with a Landau-
Ginzburg model of a uniaxial ferromagnet with inhomo-
geneities in the presence of an external magnetic field.
Having presented the results of symmetry reduction
analysis for the steady-state equation of state we have
completely analyzed the most important case, transla-
tionally invariant solutions. This included the analytical
form of all the magnetization profiles M(g), the mean
magnetization values and free energies required for their

formation. A summary of all these results is given in
Table I to assist the reader. It can be concluded that lo-
calized solutions which may only be in the form of bumps
for HWO possess a finite energy and when defined over a
finite domain have a nonzero magnetization above the
mean field background. Periodic solutions in the form of
several types of elliptic waves describe classical spin
waves which may be of ferromagnetic or antiferromag-
netic kind. all of these waves have finite energy densities
and their mean magnetizations are expressed in terms of
elliptic integrals.

We have also found, very much in analogy with the
earlier calculations for the case with no field, that for
D )0 (ferromagnetic nearest neighbors) the spectrum of
the free-energy functional is bounded both from above
and below while for D (0 only from above. The latter
case corresponds to the antiferromagnetic nearest-
neighbor interactions and it leads, in continuum approxi-
mation, to a structural instability of its solutions with a
tendency to acquire uncontrollably high frequencies and
amplitudes. It can thus be called a modulational instabil-
ity. This problem, however, can be solved by imposing a
lower bound on the wavelength of solutions due to the ex-
istence of lattice periodicity in the spin system.

Finally, we wish to comment on a particular applica-
tion to which our analysis may find use, namely to the ex-
planation of details of the shape of the so-called Arrott
plot. Many years ago, Arrott' introduced a convenient
way of analyzing experimental data concerning magneti-
zation processes of ferromagnetic materials. He pro-
posed to plot H/M versus M rather than M =M(H) in
order to obtain a predominantly linear dependence and

TABLE I. Summary of the results obtained in the paper.

Solution

(2.2)

(2.3)

Type

Algebraic
bump or
well

Hyperbolic
bump or
well

Part of
Fig. 1

(a)

(b)

Mean
magnetization

(3.3)
(3.4)

(3.5)
(3.6)

Energy

(4.4)

(4.5)

Sketch

(2.4)

(2.5)

(2.9)

(2.11)

(2.12)

(2.13)

Trigonometric
wave

Hyperbolic
bump or
well

Elliptic
waves (sn)

Elliptic
waves (dn)

Elliptic
waves (cn)

Constant

(c)

(d)

(e)

(g)

(c), (h)
isolated
circles

(3.10)

(3.7)
(3.8)

(3.11)

(3.13)

(3.12)

(4.7)

(4.6)

(4.8)

(4.10)

(4.12) V V
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H
y =— =A +Bx, where x —=M

M
(5.1)

assuming that MAO. This is precisely the straight line
behavior in the "idealized" Arrott plot. We have illus-
trated this graphically in Fig. 2(a). Of course, if the mean
phase considered here is to be stable, it must be in addi-
tion required that

avoid multivaluedness. Indeed, the thus obtained Arrott
plot is usually linear. However, it was observed early on
that close to the origin of this coordinate system the cur-
vature of the plot becomes quite pronounced and it devel-
ops a downward trend. One of the most recent sets of ex-
perimental data to conform with this characterization is
concerned with Fe304 submicronic particles. ' Several
possible explanations of the e6'ect have been put forward
including random anisotropy' but so far no consensus on
the answer to this question has emerged.

Based on the results of our analysis concerning the
forms of M(g) which minimize the free-energy functional
(and thus are most likely to play an important physical
role) we wish to investigate the possibility of a particular
e6'ect causing the curvature of the Arrott plot. First, the
homogeneous phases, M=const, satisfy the equation of
state (1.5), which upon rearranging becomes

Thus, mean equilibrium phases will not provide a satis-
factory explanation of the said curvature. Next, consider
periodic solutions found earlier in the form of elliptic
functions. Their mean magnetization can usually be well
approximated by the midvalue between the two turning
points M„M2 (especially for the low-energy ones which
should contribute the most). This then gives

Mi+M2
M—=

2
—=Mp, (5.3)

where Mo is the extremal value of the plot (dM/dg) as a
function of M, which lies between M& and M2. Since Mp
is an extremum of F (M), it satisfies Eq. (5.1) yielding

M
+BM2

0
0 (5.4)

Once again, we must conclude that these solutions will
very closely obey the standard Arrott plot form. In Fig.
2(b) we have demonstrated this for snoidal waves with
various values of the Jacobi modulus k. A small curva-
ture can be seen which becomes more and more pro-
nounced as k —+1, i.e., as they tend to the bump soliton
[Fig. 2(c)].

Finally, consider the localized solutions in the form of
bumps. We have seen in Sec. II that

8 Fp = 3 +BM = 3 +Bx )0,
BM

where I'0 is the free energy of the mean field, i.e.,

Fp =—AM +—BM HM0 4

H

M

(5.2a)

(5.2b)

(5.5)

where M is the double root of (dM/dg) versus M
which corresponds to the higher-energy (metastable)
phase when H is switched on. The small correction AM
is in the direction of the stable phase M+ which is orient-
ed along the field H. Since M is a double root, it too
satisfies Eq. (5.4) or

AM +BM =H . (5 6)

Intercept = A

Substituting (5.5) into (5.6) and keeping only linear terms
in AM yields

(b)

-1.2H
M

-3.0

-4.0
H
M

M2

—=-10, C=202A
B

AM +BM (A +3BM )b M =—H,
but the coefficient multiplying AM is

3 +3BM —=
M=M

L

(5.7)

(5.8)

-1.3

(c)

-1.4
0

2—
0

-2—
M

0.01

M2

I

0.02

A=-0.1, B=1

-5.0

-6.0
0.03 0

40

20

0
H—-20
M

-40

-60

I

0.1
M2

I

0.2

A=-1, B=1

0.3

i.e., it represents the positive curvature of the free-energy
plot Fo(M) close to its extremum M and hence, it is ap-
proximately independent of the field for small values of
H As H~H„. however, A +3BM ~0 [since we ap-
proach an infiection point of Fo(M)] and the extra term
in Eq. (5.7) disappears. In terms of the Arrott plot we
have

(5.9)

-8-
0

I I

0.02

M2

I

0.04
-80 I

0.2

M2

I

0.4

FICx. 2. Arrott plots obtained for particular types of solu-
tions: (a) constant, (b) snoidal waves, (c) bump solitons.

where b, =( A +3BM )bM ~0 and xAO. This is graphi-
cally illustrated in Fig. 2(c). We may therefore conclude
the following.

(i) Bumps (representing nucleation centers of the meta-
stable magnetic phase) produce a curvature of the Arrott
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plot close to the origin.
(ii) The curvature produced is in the right direction

since b ~ 0, based on thermodynamic stability.
(iii) The curvature should be sensitive to temperature,

i.e., diminish as T~T, .
(iv) Since b,M is in fact proportional to the density of

bumps (their number per unit length) and the latter
should increase with the number of defects, we expect the
curvature to be more pronounced in polycrystalline sam-
ples than in monocrystals (exactly as shown by experi-
ment).

(v) Since A +3BM ~0 as H~H„starting from
H =H, the curvature should disappear completely. It so
happens that at H =H, bumps are no longer allowed ei-
ther.

Magnetic inhomogeneities were indeed previously
linked with the curvature of the Arrott plot ' ' but a
direct link has never before been demonstrated. In fact,
comparing the results of our analysis for H=0 with
those for HAO, we note that the effect of applying an
external magnetic field is to disallow kink solutions
(domain walls) as results of minimization of the free ener-

gy and replace them by bump solutions (nucleation
centers). Since the Arrott plot is basically a special way
of drawing the dc susceptibility of a magnet (i.e., y
versus M ), we conclude that its curvature in the range

0 ~ H ~ H, manifests the dynamics of localized magneti-
zation profiles in the form of nucleation centers of the
metastable phase.

It should be added in closing that for large values of x
( =M ) the presence of a sixth power term in the free-
energy expansion could manifest itself in another type of
nonlinearity in the Arrott plot. ' This would also lead to
a very interesting possibility of double hysterics loops ex-
perimentally observed in ferroelectrics. '

A question that has been investigated recently' is the
stability of exact solutions of the quartic Landau-
Cxinzburg equation without an external field (H=0).
Most of the solutions turn out to be unstable with respect
to certain types of time-dependent perturbation. The
physical implications of this remain to be investigated.
In any case nonstable solutions may represent transient
phenomena that may be quite important.
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