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The oscillatory behavior in the conductance of narrow channels in semiconductor heterostruc-
tures interrupted by a finite number of potential barriers can be explained by resonant tunneling
of noninteracting electrons in a single one-dimensional subband. A simple and powerful method
based on a generalized wave-impedance concept is used to calculate the transmission coefficient
for electrons passing through such devices. The results show intriguing similarities with recent

experiments.

Suitable lithographic techniques have recently been
used to fabricate narrow channels in semiconductors in or-
der to study the dependence of their conductance on the
Fermi energy or, equivalently, on the carrier density of the
underlying electron gas (EG). Scott-Thomas et al.! re-
ported the discovery of conductance oscillations periodic
in the density of one-dimensional (1D) inversion layers in
Si metal-oxide-semiconductor field-effect transistors.
Similar results have been reported for 1DEG in GaAs.?
These oscillations exhibit a complex phenomenology and
were originally interpreted in terms of pinned charge-
density waves.? Later, Meirav, Kastner, and Wind* re-
ported a set of experiments in high-mobility nanostruc-
tures on GaAs in which they were able to adjust two elec-
trostatically defined potential barriers in the 1DEG. Fol-
lowing the suggestion of van Houten and Beenakker, the
periodic oscillations of the conductance with varying den-
sity were then associated with a sequential addition of sin-
gle electrons to the segment defined by the two barriers.
Although a resonant-tunneling picture has been con-
sidered as a crude model for the experimental findings, no
explicit calculation has been presented.

On the other hand, many other phenomena observed in
submicrometer semiconductor devices have been success-
fully analyzed in light of the transmission approach.® In
view of the absence of a definitive explanation for the os-
cillations and its current controversial status, we have per-
formed transmission-coefficient calculations and represen-
tative results are offered in this paper. For this we have
used a simple method recently introduced by Khondker,
Khan, and Anwar,’ to which little attention seems to have
been paid. We further present calculations of the electron
transmission through a related structure; namely, the
finite 1D crystal recently studied by Kouwenhoven ez al.®
The results, in spite of their simplicity, can account for
many features of the experimental observations.

We first consider the structure shown in Fig. 1(a). The
upper panel is a schematic drawing of the physical system
described in the experiments of Meirav, Kastner, and
Wind.* A IDEG interrupted by two barriers connects
two 2DEGs between which a small source-drain voltage V
is applied. We model this system with the 1D potential
profile (bottom of the conduction band) shown in the
lower panel. The squeezing of the 2DEG is taken into ac-
count through the barrier Uy, which raises the linearly
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dropped potential floor along the 1D channel of fixed
length (3.2 um). The squeezing of the 1DEG is simulated
with two barriers of length d and height U,, separated by
a segment of length L. An electron is incident from the
left-hand side with energy E. It is worth noting that the
devices described in Ref. 4 have two independent gate
voltages, one defines the geometry via a patterned gate
and the other (here referred to as V) controls the electron
density. The effect of the former is here represented by
Uo and Uy, while V, is assumed to scale with the Fermi
level E=Fr. The conductance at zero temperature
G(EF) is related to the transmission coefficient, T(Ef) by
the single-channel two-terminal Landauer formula G (Er)
=(e?/n)T(Er). Contribution from a single one-dimen-
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FIG. 1. (a) Schematic representations of the devices investi-
gated in Ref. 4 and (b) in Ref. 8 (upper panels) and correspond-
ing model potentials across the constrictions used here (lower
panels).
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sional subband has been justified through self-consistent
solution of Poisson’s and Schrodinger’s equations.® In
general, the transmission coefficient can be readily ob-
tained with the method described in Ref. 7, which is based
upon the analogy between transmission-line theory and
quantum mechanics. By impedance-matching the plane-
wave solutions of the Schrddinger equation at appropri-
ately chosen potential discontinuities, the reflection
(transmission) coefficient can be determined. The reader
is referred to Ref. 7 for details. In what follows we
present results for ¥ =0 (low-bias regime), Uy =0, since it
was found to be irrelevant within reasonable values, and
m®* =0.07mo (mgo=electron rest mass), appropriate for
GaAs-Al,Ga, - As heterostructures. We estimate U,
from the measured conversion ratio edVg/dE r=3.5
+0.2.4 Since in the experiments the oscillations in the
conductance occur in a typical interval of 30 mV in V,,>*
it must appear in a corresponding range of 8-9 meV in
EF, so that a barrier of a few meV is reasonable. In Fig.
2 we present results for 7 vs E and T vs k, where k
=0Qm*E)"?/h, for L=1 pym, d=33 nm, and U, =2.5
meV. We can clearly see that the resonances spread out
with increasing E, but are remarkably periodic in k. The
inset in Fig. 2(a) shows the calculated transmission
through a single barrier, which modulates the minima of
the corresponding double-barrier resonances. The inset in
Fig. 2(b) shows an expanded plot of a single peak (dotted
line) and a fit with a Lorentzian line shape (solid line). If
we take into account temperature effects, the conductance
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FIG. 2. (a) Transmission coefficient T vs energy E for the po-
tential profile shown in 1(a), with L =1 um, d =33 nm, U, =2.5
meV, and eV=Up=0. The inset shows the corresponding
single-barrier transmission. (b) Transmission-coefficient T vs
wave number k, for the same set of parameters as in (a). The in-
set shows a single peak (dotted line) and a fit with a Lorentzian
line shape (solid line).
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is given by the convolution of the zero-temperature con-
ductance with the energy derivative of the Fermi distri-
bution function, 8f(E,T)/8E «<cosh ~2[(E—Er)/ksT].
This functional form is dominant if the natural width of
the resonance is <kgT.* At T~100 mK, kzT~10 "2
meV, which is an order-of-magnitude greater than the
mean width of the peaks shown in Fig. 2. In contrast with
the high-mobility GaAs samples, where the electrons
could move ballistically through the constrictions, the os-
cillatory behavior in the conductance of the Si devices
requires—an assumption common to all explanations
—the presence of two dominant scattering centers which
would define an isolated segment within the 1D channel.'
An advantage of the resonant-tunneling model is that,
since the number of impurities can be arbitrary, it can be
easily handled with the wave-impedance method.” One
important feature of the experiments with the Si transis-
tors is the frequent occurrence of two (or more) oscillato-
ry components in the conductance, in particular for longer
(~10 um) samples.! The power spectra in Fig. 3 show
how the oscillations in the transmission change by the
presence of a third barrier slightly different from the two
dominant ones. As in the experiments, we observe in the
transmission spectrum of the three-barriers structure the
presence of two competing frequencies, f,=0.33 um,
—the fundamental harmonic of the L=1 um double-
barrier structure—and f);=2.45 um. Furthermore, the
inset in Fig. 3(a) shows that the fundamental harmonic
scales linearly with L, as is suggested by the experimental
data of Ref. 4. By changing the set of parameters (num-
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FIG. 3. (a) Power spectrum of the oscillation shown in 2(b).
The inset shows the behavior of the fundamental harmonic with
L. (b) Same as (a) with the addition of a third barrier with the
same height, 10 nm in width, and 7.7 um apart from the original
structure. The inset shows the corresponding oscillation in the
transmission.



RAPID COMMUNICATIONS

9986 F. M. de AGUIAR AND D. A. WHARAM 43

ber, width, height, and separation of the barriers) we can
obtain a variety of different shapes for T(E) as observed
in the experiments. An example is given in Fig. 4. Figure
4(a) reproduces experimental data from Ref. 2, corre-
sponding to a segment between scattering centers of
length ~1 um. In Fig. 4(b) we show the calculated con-
ductance for a double-barrier structure with L =1 um,
d =66 nm, and U, =2.5 meV. The similarity of the two
results is impressive; not only is there good qualitative
agreement for the conductance modulation, but, in addi-
tion, the oscillation periods are in excellent quantitative
agreement given the conversion ratio experimentally
determined in Ref. 4.

Another important and related experiment on narrow
channels in GaAs has recently been reported by Kou-
wenhoven et al.® They have studied the transport proper-
ties of an artificial crystal, i.e., a linear sequence of fifteen
quantum dots electrostatically defined in a 2DEG by
means of two independent split-gate electrodes. The
geometry of the electron system is depicted in Fig. 1(b)
(upper panel), together with the potential profile chosen
to model the system (lower panel). For clarity, only seven
barriers (six dots) are shown. Again we neglect the con-
nections with the 2DEG as well as the small source-drain
voltage. The application of the wave impedance method
for a sequence of sixteen barriers (fifteen dots) of length
I, a distance /; apart from each other and of height U, is
straightforward. Some results are shown in Fig. 5 for
l1=1,=0.1 um and U, =0.5 meV. The period of 0.2 um
was chosen from Ref. 8 and the value of U, is a reason-
able one. The calculated transmission-coefficient exhibits
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FIG. 4. (a) Measured conductance as a function of the gate
voltage, from Ref. 2, and (b) calculated conductance for a dou-
ble barrier structure as described in the text. The insets show
the corresponding power spectrum and an expansion of the
sharp peaks close to the onset of oscillation.

a band structure from which the first two gaps and the
first two minibands are shown in Fig. 5. Within each
miniband, as a result of the finite extent of the periodic
lattice, there are fifteen peaks in the transmission,
reflecting the discrete states of the fifteen dots. These re-
sults are again in good qualitative agreement with those
found in experiments and numerical calculations. ®

In summary, we have presented transmission calcula-
tions for electrons in 1D channels using a simple reso-
nant-tunneling model. These calculations give a general
and surprisingly good explanation of the oscillatory be-
havior in the conductance of submicrometer semiconduc-
tor devices observed in recent experiments. One impor-
tant feature remains unclear, namely, the conductance be-
havior in the presence of a magnetic field. Beenakker and
van Houten® argue that one dimensionality can only be
achieved with a magnetic field, since only the highest-
index edge channel has an appreciable backscattering
probability, and that this would be an important reason
why Kouwenhoven et al.® did not observe any band-
structure effect at zero magnetic field. On the other hand,
the lack of observation of spin splitting in the Si samples
has been used against the resonant tunneling model.!
However, it is not clear how the gyromagnetic factor de-
pends on the magnetic field and on the carrier density for
these samples and no result has been presented for the
GaAs samples so far.>* For all these reasons, our purpose
here is to provide some results which could give us an un-
derstanding of a complex phenomenology in its simplest
form. Actually, resonant tunneling has been widely used
to explain a great number of different experiments on
electronic transport, and its transparency seems to have
been lost in the Coulomb-blockade and charge-density-
wave models.
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FIG. 5. Transmission coefficient T vs energy E for the poten-
tial profile shown in 1(b), for a chain of sixteen barriers (fifteen
dots). The lower panel shows an expansion of the energy range
corresponding to the second miniband, exhibiting fifteen maxi-
ma in the transmission.
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