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A tight-binding formalism for calculating the eff'ects of lattice relaxation on deep levels due to
substitutional impurities in semiconductors is presented. Molecular dynamics is used to calculate
the lattice relaxation around an impurity, and its eff'ects on the associated deep levels are computed
using a Green's-function method. The results of applying this scheme to several impurities in GaP
and Si are presented and compared with experiment.

There have been many theories of deep levels in semi-
conductors, ' and they are of varying degrees of sophis-
tication and accuracy. In this paper, we present a tight-
binding formalism for calculating the effects of lattice re-
laxation on the deep levels produced by substitutional im-
purities. Molecular dynamics is used to calculate the re-
laxation around an impurity and its effects on the associ-
ated deep levels are computed using a Green's-function
technique. As a first application of our method, the
deep levels produced by several impurities in GaP and Si
are investigated.

A defect in a semiconductor will interact with the host,
displacing the surrounding atoms. Because deep levels
are produced by a short-ranged potential, ' this distor-
tion will strongly affect them. First-principles theories
have been used to study these effects in a few cases.
They have also been included phenomenologically within
tight-binding theory. ' While first-principles techniques
produce the most reliable results, they require consider-
able computational effort, which is undesirable when the
number of defects to be studied is large or when one
desires to obtain trends in deep levels. On the other
hand, while tight-binding approachs require compara-
tively little computational effort and can thus easily be
used to study large classes of defects or trends, they are
somewhat unsatisfying because of the necessity either to
assume an amount of relaxation or to calculate it from a
simple model. ' Our theory is intermediate between
these approaches. Since it is tight binding based, it re-
tains much of the computational simplicity of this ap-
proach. However, lattice relaxation is calculated using
molecular dynamics, so that the necessity to treat it phe-
nomenologically is circumvented.

Our approach is based on our generalization of the
theory of Hjalmarson et al. of deep levels to include lat-
tice relaxation. In obtaining numerical results, we de-
scribe the host using the sp s* tight-binding band struc-
tures of Vogl et al. However, any other suitable choice
of tight-binding band structures could also be used. The
theory of Hjalmarson et al. is a simple, yet widely
used' '" theory in which lattice relaxation is neglected.
It and its extensions have been successful in predicting
trends in deep levels in numerous applications. ' '" In
Ref. 5, lattice-relaxation effects were incorporated into
the theory of Hjalmarson et al. by treating the off-
diagonal elements of the defect potential with a generali-
zation of the inverse-bond-length-scaling rule, ' with the
impurity bond length determined using a covalent radius

model. ' By contrast, in the present approach, molecular
dynamics is used to determine this bond length. The at-
tractive part of the force which enters the molecular-
dynamics calculation is computed from the electronic
structure using the Hellmann-Feynman theorem' and
the repulsive part is obtained from a pair potential based
on Harrison's overlap interaction. '

We consider the problem of the calculation of the deep
levels produced by neutral, sp bonded, substitutional im-
purities in zinc-blende and diamond structure hosts. The
point group for such an impurity is Td and the deep lev-
els can thus be either of the A &-symmetric (s-like) or the
Tz-symmetric (p-like) type. In principle, our formalism
could be generalized to include more complicated de-
fects' and charge state effects. " In treating lattice relax-
ation, we include only those effects due to relaxations of
the nearest neighbors. We show elsewhere' that
second-neighbor relaxations have only a small eff'ect on
the deep levels. Our technique is applicable for a general
distortion of the host atoms around an impurity. Here,
however, we consider only Td symmetry conserving
breathing-mode distortions, which are thought to dom-
inate for substitutional impurities in the materials of in-
terest. ' '

The Koster-Slater' theory is convenient for calculat-
ing the bound-state energies c produced in the band gap
by a defect potential V. In this method, these energies
are given by the solutions to

det[1 —G (e)V]=0, (1)

where G (c, )=(c,—Ho) ' is the host Green's function,
and Ho is the host Hamiltonian. The advantage of this
method is that Eq. (1) only needs to be solved in the sub-
space of V. In the present case, this yields a 20X20
determinant (five atoms, four orbitals per atom). For
breathing-mode distortions, it is shown in Ref. 5 that
symmetry allows Eq. (1) to factor into the product of four
5 X 5 determinants, one. of which yields the 3

&
states and

three of which yield the T2 states.
For an impurity on the anion site in a zinc-blende crys-

tal, the defect potential can be written '
V= g V, = g ~iaO) U;(iaO~

+ g([iaO) (icctd(+H. c.), (2)
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2.
In Fig. 1, we show the results for the time dependence

both of the magnitude of the total force along an
impurity-atom —host-atom bond and of di for N substitu-
tional for P in GaP. These are plotted versus t*=t l(b, t),
where At=0. 35X10 ' s. This choice of At was ob-
tained by trial and error. We have found that, while the
best choice depends on the particular case, it is always of
this order of magnitude. A smaller At uses considerably
more computer time to achieve similar results and a
larger value can cause an "overshoot" of the final equilib-
rium position and an oscillatory behavior of di versus t
As can be seen from Fig. 1, after about 16 time steps or
about 0.06 ps, the force approaches zero. It can also be
seen that, as the atoms approach their new equilibrium
positions, the nearest-neighbor Ga atoms move inward by
about 0.21 A, or about 9% of the 2.36-A GaP bond
length. This result is in qualitative agreement with a co-
valent radius model. '

It is also of interest to study the relationship between
the distortion distance, Ad =di —dH, and the force. In
Fig. 2 we show results for the total force on one of the
four Ga nearest neighbors as a function of Ad for N and
0 substitutional for P in GaP. In agreement with Fig. 1,
it can be seen that N induces an inward relaxation of the
nearest-neighbor Ga atoms by about 0.21 A. By contrast,
0 in GaP induces an outward relaxation, which contra-
dicts an analysis based on covalent radii, ' but which is
in qualitative agreement with a model discussed by Mor-
gan. ' We note that Morgan's model' is similar to that
proposed earlier by Baraff et at. ' and that it contradicts
an earlier calculation by Jaros, ' who proposed an inward
relaxation for GaP:O. We also note that a complete sur-
vey of the problem of GaP:0 can be found in Ref. 22. In
our calculations, the nearest-neighbor Ga atoms move
away from the 0 impurity by about 0.42 A or about 18%
of the GaP bond length. The qualitative difference be-
tween the results for N and 0 in GaP is partially due to
the fact that 0 is much more electronegative than X and

partially due to the small radii of the 0 orbitals in com-
parison with those for Ga, which cause a small overlap
between the Ga and 0 orbitals. ' ' Thus, the Ga—0
bond is much weaker than the Ga—N bond, so that the
Ga atoms relax away from the 0 atom. ' ' The fact that
the magnitude of the initial force between Ga and N is al-
most five times as large as that between Ga and 0 (Fig. 2)
also supports this conclusion.

Results obtained using our formalism to compute the
2 &-symmetric deep levels produced by several impurities
in GaP and in Si are shown in Table I. Also shown for
the same impurities are the experimental deep lev-
els, ' the predictions of theory of Hjalmarson
et al. , and the results of our phenomenological treat-
ment of lattice relaxation on deep levels. The last
column in Table I gives results for dI calculated with our
formalism. As can be seen from that table, our model
predicts an inward relaxation for all impurities con-
sidered, except for 0 in GaP and Te in Si. In all cases ex-
cept for 0 in GaP, our results are in qualitative agree-
ment with a covalent radius model. ' Also, in all cases
considered, our deep-level predictions improve upon
those of Ref. 3 in comparison with experiment. We note
that other studies' ' of deep-level shifts with symmetric
displacements of nearest-neighbor atoms in Si and GaP
have found energy shift-to-displacement ratios, with
respect to deep levels obtained in the absence of distor-
tion, which are similar to those obtained from Table I by
comparison of the present results with those of Ref. 3.

In this paper, only the effects of nearest-neighbor lat-
tice relaxation on deep levels associated with substitu-
tional impurities have been considered. We have recent-
ly generalized our formalism to include second-neighbor
relaxation and preliminary results show that such effects
cause the predicted deep levels to change by only a small
amount. ' The remaining discrepancies between theory
and experiment might thus be attributable to other fac-
tors, including inaccuracies in the host band structures
and charge state effects.

TABLE I. Deep energy levels of 3, symmetry for various impurities in GaP and Si. All energies are
in electron volts, measured from the top of the valence band. The bond lengths are in angstroms.

System

GaP N
GaP O
GaP:P~,
GaP.Ge
GaP:Se
Si S
Si:Se
Si:Te
Si C

Present
theory

2.25
1.70
1.09
1.95
C.B.
0.63
0.83
1.05
C.B.

Experiment

2.34
1.46
1.10'
2.16

0.85'
0.86'
1.01'

Hjalmarson'

2.10
1.85
1.03
1.85
2.32
0.58
0.65
1.12
1.09

Ref. 5

2.27
2.08
1.11
1.90
C.B.
0.66
0.70
1.09
C.B.

Bond
length

2.15
2.78
2.28
2.24
2.22
2.23
2.03
2.60
1.98

'Reference 3 (no relaxation).
Reference 23.

'Reference 24.
Reference 25.

'Reference 4.
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The results presented here depend on a generalization
of the inverse-bond-length-squared scaling rule' for the
ofT-diagonal matrix elements [Eq. (3)], and on Harrison's
model for the overlap interaction' [Eq. (4)]. However,
the formalism outlined here can easily be utilized with
any other reasonable assumptions for these quantities.

To test the sensitivity of our results to these assumptions,
we have repeated some of the above calculations assum-
ing exponential dependences of these quantities on dl,
following Menon and Allen. Results obtained in this
manner both for dl and for the deep levels diff'er by less
than 1% from those presented above.
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