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Resonant tunneling through a symmetric triple-barrier structure
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We consider tunneling of electrons through a triple-barrier structure. We focus our attention on
the transmission coefficient T when the incident energy of the electrons is resonant with one of the
quasibound energy levels of the structure. Although it is widely recognized that for a symmetric
double-barrier structure T goes to unity at resonance, we shall show that this is not always the case
for a symmetric triple-barrier structure in which the external barriers are half the width of the inter-
nal barrier.

The physics of resonant tunneling through a double-
barrier structure has been fairly extensively studied in the
last decade or so. This immense interest has been the re-
sult of growth techniques like molecular-beam epitaxy
that have made it possible to construct, layer by layer,
very thin wafers of semiconductor material. One of the
most commonly used semiconductors is GaAs, which
widens its band gap when the gallium is replaced by
aluminum and thus forms barriers to the motion of elec-
trons (holes) in the conduction (valence) band.

The double-barrier structure formed by two wafers of
Al Ga, „As sandwiched between three sections of GaAs
is one of the simplest devices that exhibit the full
quantum-mechanical wave nature of electrons. ' At reso-
nance the energy of the electrons is such that the electron
waves interfere constructively thereby significantly
enhancing the probability of transmission. This results in
a peak in the voltage-current ( V-I) characteristics of the
device followed by a region of negative differential resis-
tance (NDR). If the device is symmetric, i.e., the barriers
are of the same height and width, then the probability of
transmission goes to unity, independent of the thickness
or height of the barriers. Of course, the width of the res-
onance is very sensitive to the transmission properties of
the individual barriers. Since the first observation of res-
onant tunneling in a double-barrier structure by Chang,
Esaki, and Tsu there has been much experimental activi-
ty in trying to improve the peak-to-valley ratio and of
observing NOR at room temperature. ' For a review of
the theory of resonant tunneling see the article by
Toombs and Sheard.

In this paper we shall be considering resonant tunnel-
ing through the "next most complicated structure, " i.e.,
the triple-barrier structure. One may indeed be justified
in asking why this structure should be studied. Is it not
just a simple extension of the double-barrier structure?
The fact is that this structure exhibits very unusual be-
havior which would never be observed in a double-barrier
structure as it results from the coupling between the
quasibound levels in the quantum wells. In a previous
publication by Payne a triple-barrier structure was also
studied theoretically. However, he was mainly concerned
with the current (calculated using the sequential model),
which showed an unexpected increase as the outer bar-

riers were widened. This result is related to the work
presented here. In another publication by Nakagawa
eI. al. a triple-barrier structure was studied experimen-
tally. The structure they used had external barriers that
were exactly half the width of the internal barrier. We
will show in this paper that if the external barriers were
any thinner (or the internal barrier was any thicker) then
the peak current through the device would be decreased.

Consider a symmetric triple-barrier structure where
the central barrier s width is infinite and the outer bar-
riers' widths are finite and furthermore, for simplicity let
there exist only one quasibound state in each quantum
well. As the structure is symmetric the levels will be de-
generate, but as the central barrier is reduced in thickness
the levels will couple forming an antibonding and bond-
ing state. If the transmission coefficient T (defined as the
ratio of the transmitted current density to the incident
current density) of this structure is probed by firing in
electrons at different incident energies, then one would
expect to find two resonances whose splitting is depen-
dent on the transmission coefficient of the central barrier.
Furthermore, as the structure is symmetric, one would
also expect the transmission coeKcient to be unity at the
two resonances. In this paper it is proved that this is not
always the case and that the central barrier has to be
thinner than a critical width (which is dependent on the
width of the outer barriers) before two resonances with
T = 1 can be observed.

We shall now derive an expression for the transmission
coefficient of a one-dimensional triple-barrier structure
using the transfer-matrix formalism. The transfer ma-
trix M of the structure relates the amplitudes of the in-
coming and outgoing plane waves [a(x) and b (x)] on the
left of the barrier structure to the incoming and outgoing
plane waves [c(x) and d (x) ] on the right through the fol-
lowing expression:

a (x) Mii M i~ c (x)
b (x) Mz, M&2 d (x)

Although it is possible to derive the elements of M, in
practice it can be extremely complicated if there are
several barriers and wells so we simplify things by writing

m=n, m, ,
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where m„ is the transfer matrix for the nth segment (bar-
rier, well, etc. ) of the total structure and is given by

for the transmission amplitude of the triple-barrier struc-
ture in terms of the transmission and reAection ampli-
tudes of the individual barriers:

(3) t 2t 2iktt)
e i~

r e 2ikw+ r 2( r yr e )e 4ikw (5)

where t„and r„are the transmission and reOection ampli-
tudes, respectively. Note that for the wells between the
barriers, the transfer matrix takes on the following very
simple form:

—1k llew 0

where the i and e subscripts label the internal barrier and
identical external barriers, respectively. Before taking
the modulus squared of Eq. (5) to obtain the transmission
coefficient, we define the phases P and a from the
definitions,

0 ikw (4)
r, =QR, e

where k is the wave vector of the electrons in the wells
and m is the width of the wells. By multiplying the
transfer matrices together, we can find the following form

I

r, =QR, e

The transmission coefficient is now given by

T,'T;

1+4R,R;+R, +2R, cos20 —4(1+R, )QR, QR, cos0
(8)

where 8=2kw —
P

—a and the R's and ?'s are the
reAection and transmission coefficients, respectively.

The resonance positions can be found from the maxima
of T or equivalently from the minima of the denominator
in Eq. (8). If we assume that the R's and ?'s are slowly
varying functions of energies and therefore can be as-
sumed to be energy independent, then we are left with
only one variable, namely 0. To find the minima of the
denominator we differentiate it with respect to 0 and set
this to zero. This gives the condition that at resonance,

R; 1+R,
(9)cosO=

R,

1sin(0/2) =+
2

R. 1+Re

R,

which gives the two positions in terms of 0 as

Furthermore, if we substitute this condition into Eq. (8),
we find that the transmission coefficient at resonance does
indeed equal unity. We expect there to exist two reso-
nances with T=1 formed from the splitting of the two
original degenerate quasibound well states. The positions
of the two resonances are found by writing the cosine as a
sine to form the following equation:

fz k,AE=
2flZ

Ak

2m

2

(a+/) sin
1

Pl N 2

R;
R,

1+R, I /2

(13)

where we have assumed that a&=a&=a and P&=iI)2=/
which is a fair assumption especially when the splitting is
small. Note that for thick barriers a =P = sr

Up until now we have not proved anything very unusu-
al. In fact, all the results would be expected from what
we know about a double-barrier structure. However, the
existence of two resonances with T=1 depends on the
condition given by Eq. (9) being satisfied. The interesting
point is that if the right-hand side is greater than one be-
cause R, ))R„then no 0 can be found which would give
a T=1. Therefore, we now have the very strange situa-
tion that even for a symmetric structure T & 1 at reso-
nance which is in complete contradiction to the double-
barrier case. Using Eq. (9) we can explicitly find the con-
dition that would give T(1 in terms of the barrier
widths. We first rewrite Eq. (9) in terms of transmission
coefficients (R = 1 —T), then after some simple manipula-
tions we get that for T ( 1,

and

I9&
= +2 sin

1

2

0 = —2sin 1
2 2

R 1+RI e

R,

'" 1+R1 e

R, 4
(12)

Te 2

T
)(2—T )e

1

(14)

By ensuring that current and particle density is conserved
across each boundary, the following form for the
transmission coefficient of a single-barrier can be ob-
tained:

The energy splitting between the resonances can now be
found very straightforwardly and is given by

(i~ +k )(e +e )+(k+i~) +(k —i~)

(15)
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FIG. 1. The transmission coefficient of a triple-barrier struc-
ture plotted as a function of E9 for two values of T, . For the,
solid curve T, =0.01 and for the dashed one T, =0.12. For
both curves T; =0.01. Notice that the two resonances move to-
gether as T, is increased showing that the coupling between the
two wells can be aff'ected by the external barriers.

FIG. 2. As Fig, 1 but now for the solid curve T, =0.18 and
for the dashed one T, =0.4. For the solid curve the critical
value of the external barrier widths has been reached and only
one resonance with a transmission coefficient of unity exists. As
T, is further increased, T reduces and will eventually tend to T;.

where ia is the wave vector in the barrier and b is the
width of the barrier. For typical III-V semiconductor
barriers, the right-hand side of Eq. (15) will be dominated
by the exponential term (this would then give a similar
form for T as that given by the WKB approximation).
Therefore, if we only consider this term and substitute
the resulting form for T, and T, in to Eq. (14), w= get
that when

l 1
b (———ln(2 —T, )

2 K
(16)

then T(1 where b is the width of the external barriers
and It is the width of the internal barrier. We have now
derived a critical width for the external barriers to be be-
fore the transmission coefficient of the entire device can
be equal to one. ln fact Eq. (16) can be simplified even
further to b (l/2 as the second term on the right-hand
side is much smaller than either b or l.

Consider now what happens to the splitting when the
width of the external barriers is decreased down to the
critical width and beyond. As b tends to l/2 the right-
hand side of Eq. (9) tends to one, which results in the ar-
gument of the sine term in Eq. (13) tending to zero. In
Fig. 1 we have plotted the transmission coe%cient from
Eq. (8) as a function of 8 for T, =0.01 (solid line) and
T, =0. 12 (dashed line), T; is fixed at 0.01. The two reso-
nances where T=1 can clearly be seen to move closer

when T, is increased (there is also a large amount of
broadening). The minimum between the resonances is
positioned at sino=0 which also happens to be the condi-
tion for resonance of a double-barrier structure. Our re-
sults can thus be interpreted as resonant tunneling
through a double-barrier structure with another barrier
in the well. There is another minimum in Eq. (8) when
cos0=0 which is away from the resonances. At this
minimum T = T, T, . When b equals the critical value, the
right-hand side of Eq. (9) equals one and the splitting AF.
equals zero. In other words, above this critical barrier
width two resonances with T=1 exist and below it there
is only one resonance with T & 1. In Fig. 2 we have plot-
ted T as a function of 0 for T, =0. 18 (solid line) and
T, =0.4 (dashed line). The solid line is the critical point
where only one resonance exists but where T still goes to
unity. As T, is increased the transmission coefficient de-
creases and tends to a value of T;. The surprising thing
about this is that we have affected the coupling between
two wells without altering the height or width of the cen-
tral barrier.

In conclusion, we have shown that resonant tunneling
through a triple-barrier structure includes complications
which do not exist for a double-barrier structure. This
leads to a relationship between the widths of the external
barriers and the internal barrier which shows under what
conditions a transmission coe%cient of unity will be ob-
served.
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