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A new model of the geometrical structure of icosahedral quasicrystals is discussed that is based
on icosahedral clusters connected by linkages (consistent with currently accepted motifs of the
atomic structure), yet that is also a tiling by four kinds of "canonical cells. " Such a geometry i,s con-
venient for complete atomic structure models defined by decoration, especially if configurational
disorder is to be included. The canonical-cell tiling is related and compared with previous models
such as packings of Ammann rhombohedra, sphere packings on Penrose tilings, and two decoration
models of Audier. The frequency of occurrence is estimated for each kind of cell or other geometri-
cal object —the basis for stoichiometry calculations of decoration models. The 32 distinct local en-
vironments around a given cluster are described. Many useful periodic tilings of this class are de-
scribed providing useful "rational approxirnants" of the true structure and hypothetical structure
models for some recently discovered approximant crystal phases.

I. INTRODUCTION

In order to understand the mechanism of the formation
of quasicrystals, and even more to open them up for mi-
croscopic theoretical studies of the cohesion, transport,
and magnetic properties, ' a good model of the atomic
structure is required. There are two major classes of
quasicrystals in which the basis of the order is known
from examination of closely related cubic crystalline
structures, but essential details are unknown. An
abundance of diffraction data has recently become avail-
able for i(A1-Mn-Si) (Refs. 7—10) and on i(A1-Cu-Li). "'

There are two great dif5culties in formulating a
structural model for quasicrystals. One of these is that,
even if the structure is perfectly quasiperiodic, the atomic
positions, in principle, require an infinite number of pa-
rameters to specify. This raises practical difFiculties for
the fitting process. The other difficulty is the packing dis-
order present in most real quasicrystals. ' ' Even i(A1-
Cu-Fe) and i(A1-Cu-Ru), which have long-range transla-
tional correlations as evidenced by Bragg peaks, ' may be
realizations of a "random-tiling" model, stabilized by en-
tropy.

In the past two years, some progress has been made in
extracting atomic positions from diffraction. ' There are
quaisperiodic tiling-like models with very reasonable lo-
cal packing and stoichiometry for i(A1-Mn) by Duneau
and Oguey and for i(A1-Cu-Li) by Audier et al. "~'
A serious shortcoming in the quasiperiodic-tiling-like
models is their arbitariness: there is no visible implemen-
tation of the "matching rules" that would explain their
quasiperiodicity.

Furthermore, atomic structures, in the form of cuts
through a continuous six-dimensional density, have been
derived from x-ray and neutron measurements of
"Bragg" intensities. ' ' The partial occupations and

unrealistic local packing visible in the real-space struc-
ture' would be the natural effect of the ensemble averag-
ing (implicit in neglecting diffuse scattering), if the struc-
ture is a random packing. Such disorder can be account-
ed for awkwardly, if at all, in either the quasiperiodic til-
ing or continuous density descriptions.

There is not yet any atomic structure model for any
quasicrystal alloy which simultaneously (i) incorporates
the packing randomness which probably occurs in real
quasicrystals, (ii) has adjustable parameters which can be
optimized in fits to experimental data, (iii) agrees with
available diffraction information, and (iv) has chemically
sensible local environments (for the composition in ques-
tion).

A. Decoration models and geometrical frameworks

Decoration approaches to the structural description of
quasicrystals are the most tractable. They are based on
factoring the problem into parts: a "geometry" defined
by (1) a set of rigid units, with (2) rules for connecting
them, plus (3) rules for decorating them by atoms.

1. Objects of the geometry

A geometry consists of a set of nodes connected by
bonds. There are just a few classes of allowed bonds; each
class consists of a vector and all those equivalent to it by
icosahedral symmetry; typically the bonds lie along spe-
cial symmetry directions, such as the five-fold, two-fold,
or three-fold symmetry axes of icosahedral symmetry.
The icosahedral axes are oriented the same throughout.
Depending upon the degree of order, the bonds may also
form flat polygonal faces and these may join to form po-
lyhedral cells.

Two kinds of geometry have been popular. The first
kind is a "tiling. " The fundamental rigid unit is taken to
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be the tile (or cell), and the structure is required fill space
with these objects without gaps or overlaps. In three di-
mensions, the cells are almost always taken to be the Am-
mann rhombohedra, ' the cells of the three-
dimensional Penrose tiling (3DPT) generated by projec-
tion. '4 "

A second kind of geometry is a network (often called
"packing") of icosahedra. ' ' The fundamental rigid
units are taken to be the nodes (the "icosahedra") and the
linkages connecting them.

2. Rules packing objects into geometries

For a given set of geometric objects, it is usually possi-
ble to build structures with various kinds of long-range
order (or lack thereof): periodic lattices, quasiperiodic
lattices, and several kinds of random lattice, with or
without long-range translational order.

3. Decorations

The decoration is a rule for placing atoms in or around
the objects making up the geometry. We are principally
interested in deterministic decorations: this means that,
given a geometry, there is a unique way of placing atomic
sites upon it.

When attempting to formulate a decoration model, we
find a conAict. On the one hand, experimental evidence
suggests a packing of icosahedral clusters of two or three
atomic shells both for the i(A1-Mn) class of quasicrys-
tals ' [which includes i(A1-Cu-Fe)] and the i(A1-Zn-Mg)
class and for the i(A1-Zn-Mg) class ' ' [which includes
i(A1-Cu-Li)]. Packing such objects is the simplest way to
obtain a structure possessing both strictly determined lo-
cal order and also nonperiodicity (possibly randomness)
at larger length scales. Yet it is dificult to formulate a
decoration of such a network of icosahedra which is com-
plete in that it also specifies the positions of the many
atoms which fill the spaces between clusters.

On the other hand, a tiling model is much more attrac-
tive technically, because space is filled by only a few kinds
of objects. Then a decoration rule can place atoms in the
same places in each cell of a particular class, as if it were
the unit cell of a crystalline structure. Hence, a finite set
of parameters suffices to specify positions for all the
atoms. However, known tiling models based on Am-
mann rhombohedra fail to incorporate enough complete
clusters. This conAict is removed in the "canonical-cell"
geometry presented in this paper, which is both tiling and
network of icosahedra.

focuses on the geometry; a subsequent one will describe
model decorations and discuss how much information
about them may be extracted from diffraction data.

Previous work suggests that a realistic geometry
should be some sort of network of icosahedral clusters
with linkages in two-fold and three-fold directions (a
broad class including many kinds of ordered and random
structures). Restrictions are added to this model to make
it into a new kind of tiling with four kinds of canonical
cells; these structures are explored in the remainder of
the paper. Section II defines the elements of the
canonical-cell geometry and the rules for packing the
cells together. To connect to previous decoration mod-
els, ' ' it is shown how a canonical cell packing can be
turned into a tiling of (smaller) Ammann polyhedra. Sec-
tion III presents notations and relations useful for analyz-
ing and comparing canonical-cell tilings by the frequen-
cies of local patterns. It is shown that there is only one
degree of freedom [parametrized by g, see Eqs. (3.6)]
which specifies the volume occupied by different types of
cell and the packing fraction. Furthermore, a nomencla-
ture is given for naming, and a scheme found for
enumerating, the 32 allowed environments of nodes in the
network.

Section IV shows how structures periodic in one or
more directions can be constructed from canonical cells.
Such "approximant" models are important because (i)
many approximant crystals closely related to quasicrys-
tals have recently been discovered in nature, ' and
(ii) atomic models which approximate the nonperiodic
icosahedral structure, yet satisfy periodic boundary con-
ditions, are more practical technically in many theoreti-
cal calculations. To conclude, Sec. V discusses applica-
tions of the results, recent elaborations in cluster-packing
models, and the difFiculties in producing infinite
canonical-cell structures.

In addition, there are four appendices. An arbitrary
tiling can be viewed as a projection from a higher-
dimensional space, where it forms a continuous faceted
(hyper)surface which can be usefully treated in a coarse-
grained fashion," Appendix A reviews applications of
this description that are used in this paper. Appendices
B and C discuss two ways in which Penrose tilings can be
decorated to produce perfectly quasiperiodic networks of
icosahedra closely related to canonical cells, and why
these constructions are inadequate. Appendix D reports
the methods used for the complete enumeration of vertex
types.

II. RULES FOR CANONICAL-CELL PACKINGS

B. Outline of the paper

This paper is the first of two intended to present a
different way to set up a complete and realistic structural
model of the atomic structure. By "complete, " I mean
that the atomic decoration has a one-to-one relationship
to the geometry and accounts for all the atoms. By "real-
istic, " I mean the model should conform to everything
known about the local arrangements in the alloy being
modeled, and in related crystalline structures. This paper

This section motivates (Sec. II A) and defines (Sec. II B)
the four kinds of canonical cells and their packing rules
used in the rest of this paper. The most significant prop-
erty of canonical-cell packings is that they are both til-
ings and cluster networks; this allows them to satisfy the
criteria of Sec. II A for geometries allowing well-
formulated decorations even in random structures. They
are compared (in Sec. II A) to previous cluster packings,
inadequate by these criteria, and (in Sec. II C) are related
to previous tilings using Ammann rhombohedra.
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A. Principles for networks of icosahedra

I.et us start with the fairly standard picture of a net-
work of icosahedral nodes ' joined by "linkages" which
are perfectly rigid in length and perfectly oriented along
twofold or threefold icosahedral directions. Two kinds of
nearest-neighbor linkage are allowed, called "b," in the
twofold direction and "c," in the threefold direction [Fig.
1(a)]. These names will also be used for their lengths.
We will use b as the unit of length, related to the usual
"quasilattice constant" (rhombohedron edge length) by

b =2(~'g&S)'"a, (2. l)
and then

c=(&3/2)b . (2.2)
In order to get the correct space group, the c linkage
suftices' ' but to get a well connected network, we need
the twofold (b) linkage.

It will also be assumed that nearby nodes are only re-
lated by displacements of these allowed types (this ex-
cludes the wall defects known as "tears" characteristic
of the more disordered packing models' ' ). The link-
ages of the network may, but need not, define faces which
may enclose cells.

1. Desired features for decoration models

Decorations for a geometry are rules which, given any
realization that satisfies the packing rules, produces a set
of atomic sites. The obvious decoration for a packing of
icosahedra is to placing identical clusters of atoms on
each node. In this case, the Fourier transform of the
scattering density would simply be a product of the
geometrical structure factor of the centers times a form
factor for the cluster. ' In reality, other atoms
(identified as "glue" atoms) must be placed at sites in the
interstices between clusters. Structural modeling starting
from random cluster packings has been awkward; there is
a great variety of diff'erent kinds of interstices, some quite
large, so a straight forward rule is impossible. Instead, a
procedure may define candidate sites in rings around
each cluster, and then use a heuristic rule to eliminate
conflicting sites.

We escape these problems by satisfying the following.
Criterion CO: The geometry is a tiling (no overlaps or

gaps), and there is a unique way of decorating each ob-
ject. Such a rule is obviously deterministic, i.e., each
realization of the geometry corresponds to a unique reali-
zation of the decoration). Also, since there is a finite set
of objects, there is a finite set of rules. Some corollaries
of (CO) are the following.

Corollary CO-1: The Fourier transform of the atomic
structure is a sum of products of form factors and geome-
trical structure factors.

Corollary CO-2: The symmetry of an object's decora-
tion i the intersection of the object's symmetry and the
icosahedral point group 532/m. For the case of the
canonical-cell tiling, these symmetries are listed in Table
I.

Corollary CO-3: The atomic structure has the same
space group as the geometry.

2. Desired features for the geometry

Physical intuition suggests the following criteria for a
good geometry.

Criterion C1: We presume the compositions at which
icosahedral phases form are those where the chemistry
most favors the presence of icosahedral clusters in the
structure; therefore, we demand that the fraction of all
atoms that belong to such clusters be as large as possible.
Since the overall density of atoms is essentially fixed, this
means the number density of clusters, or equivalently the
packing fraction of clusters (considered as spheres), must
be as large as possible.

Criterion C2: To develop long-range orientational or-
der as in the icosahedral phase, the clusters must be
packed in a way that strongly favors having the same
orientation. Furthermore, the energetics must strongly
favor neighboring clusters having as many linkages as
possible; if they did not, the defects that disrupt the
translational order would have high densities contrary to
observation. Hence, we demand that the network have as
high a coordination number as possible. (Of course, if the
coordination number is high, the density must be high
also. )

Criterion C3: If the clusters are well packed, the inter-
stices between are relatively small and most of the "glue"
-atoms that fill these spaces will be in contact with atoms
of the surrounding clusters. Also, if the "linkages" are
strongly favored, this suggests there are special arrange-
ments of atoms associated with them. So, physically, we
expect that the "glue" atoms are fairly well ordered and
it follows that the set of favored shapes for interstices in
the network geometry is relatively limited. Furthermore,
a tractable model cannot have too many decoration rules.
Hence, we also demand that the structure have as few
types of cells as possible (corresponding to the interstices
of the network).

A model geometry based on the "twelvefold" sites, a
decoration of the ideal 3D Penrose tiling, was developed
but is deficient by the above criteria. Namely, (i) the
packing fraction (density of nodes) is too low (see Table
III, later), (ii) the coordination numbers are also too
small, and &iii) there are too many diFerent kinds of
interstices —some rather big, yet too small to fit an addi-
tional cluster. Data on this model are given in Ref. 46
and in Appendix B. Two recent structural models, by
Duneau and Oguey ' and by Yamamoto and Hiraga,
have proceeded by using cut-and-project to define a sub-
set of Penrose tiling vertices to place clusters (a "sphere
packing"). The quasiperiodic network of clusters used,
however, is essentially identical to the "twelvefold pack-
ing. " A different decoration, due to Audier and
Guyot, ' produces a similar geometry with similar
deficiencies (see Appendix C). Models generated by ran-
dom growth processes, with carefully adjusted anneal-
ing, can do better but still have many kinds of local
holes in the network, the decoration of which is hard to
specify.

B. Canonical cells

All the criteria can be met if we restrict not only the
types of possible linkages, but the types of possible inter-
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stitial cells and faces shall be limited to a short list of
"canonica ce s an1" 11 d faces. The resulting structure is
thus a tiling. e nam'1 . Th name "canonical cells" is chosen by
analogy with t e canonh th " onical holes, "which were classi e
by erna .B 1. These were the interstices in random close
pac ings o sp ek' f heres modeling the structure of amorp ous

alloys. The rest of this paper develops a tiling based on
four canonical cells.

The allowed linkages and the three kinds of allowed
faces are shown in Fig. 1(a). The canonical faces are an
isosceles triangle ("X"),an eqnilaterial triangle ("Y", and
a rectangle ("Z").

P ~TABLE I. Geometrical objects of canonical-cell tiling.

Symbol identification Symmetry [apparent symm. ]' Measure

Node
Twofold bond

[full]
[co/mm]

[ ~ /mm)

53m
2/mm b

v'32'
1

2&2

4
v'32'

—,'2 b'—=0.083b'

b —=0. 186b'
1&

b'=—0.373b'

b =—0.093b
24

8b =-0.375b

Threefold bond

Isosceles triangle

Equilateral triangle

Rectangle

bcc tetrahedron

Pyramid

"Octahedron"

X [2/mm]

[3/mm]

2m

Z [2/mm]

[4m]

2/m

2m

82 3m

(Triang. ) tetrahedron

[3/mm]Trigonal prismD

onsidered, ther of the cell's outline; when the decorations are co'Brackets indicate apparent symmetry o t e ce s ou
lower symmetry is correct.
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The four kinds of cells allowed ' are shown in Fig. 1(b).
They may be understood best by noting that each kind
can be packed into a simple periodic structure. The A
cell ("bcc tetrahedron"), is a tetrahedron with two two-
fold linkages perpendicular; these pack together to form
a bcc "A" structure, which describes the a(A1-Mn-Si)
phase. The B cell is half of a triangular antiprism which
is a slightly distorted octahedron; it will often be useful to
consider the trigonal antiprism (a flattened "octahedron")
B2 by itself since it has greater symmetry (threefold axis).
The C cell is a triangular pyramid, somewhat flattened
compared to a regular tetrahedron. The 8 and C cells
pack to form a rhomboheral "BC"structure which is an
fcc packing compressed (along the threefold axis) by a
factor &5/8. Finally, the D cell is a trigonal prism and it
packs into a trigonal "D"structure.

It is important to note that the objects have less sym-
metry than they appear to. For example, an equilateral
triangle has point symmetry group 3/mm, which in-
cludes a mirror reflection in the triangle's plane. Howev-
er, the icosahedral group does not contain such a mirror
operation, so when we consider the atoms, the two sides
of the face are not equivalent. The same thing happens
wih the isosceles triangle. We will indicate this by mark-
ing the two sides of each triangular face with + and-
signs (see Fig. 1). In general, the actual symmetry of an

(a} Node

(b)

(e}

FIG. 2. Relation of canonical bonds to rhombohedral
decoration. The node and bonds on the right correspond to the
rhombohedral groupings on the left. (a) Each node becomes a
vertex (open circle) in the rhombohedral tiling with edges
(heavy solid lines) radiating in all l2 possible directions. The
neighboring vertices (small solid circles) form an icosahedron.
(b) Each twofold (b) bond becomes a rhombic dodecahedron
(RD). The dotted lines show one of the two ways of breaking it
into two prolate and two oblate rhombohedra. (c) Each c bond
becomes a prolate rhombohedron.

(a)

(b)

(d)

(e)

FICx. 3. Bonds on cell faces and rhombohedral decoration. The X faces [(a) and (b)] and Y faces [(c) and (d)] are shown from both
sides; the Z face (d) has both sides equivalent. The RD and PR decorating b and c bonds are outlined with heavy lines. »e some of
the nearer RD and PR tiles, hidden edges are shown dashed.
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TABLE II ~ Contents of canonical cells.

Cell Nodes Bonds Volume
Rhombohedra

Prolate Oblate

1/2

1/2

1/2

3/2

3/2

2/3

3/2

1/2

—W VP= —61 4 —1 3
3

-'&5~'V = v'S
P

8
3 4y 3b3

P 8

5/3

11/2

15/2

7/2

9/2

~ ~

object is the intersection of the apparent symmetry of the
outline of the edges and the icosahedral group 532/m.
The volumumes and symmetries of the canonical objects are
given in Table I. Other information about the canonical
cells and their corners is given in Table II. (Vp is the
volume of the prolate rhombohedron. ) Notice how the
number of nodes per cell can be defined by allotting frac-
tiona nodes proportional to the part of surrounding solid
angle belonging to the cell.

Thus, when the cells pack together, we enforce a con-
strained packing rule that the + and — '

j Fig.an —signs (see Fig. 1)
must match: if the outside face on one cell is +, the out-
side face of the adjoining one must b — Th'
thet e sort of restriction imposed by "matching rules, " but
the constrained packing rules do not s ffi t 'fsu ce o specify the
structure the way "strong" matching rules do (up to local
isomorphism class) for ideal quasiperiodic tilings.

C. Rhombohedral decoration and packing

these rhombohedra appear on the canonical faces. The
correspondence of the abstract decoration and the rhom-

'bohedral decoration is also indicated (for both sides of a
face, if they are inequivalent).

In the A cell, the two RD from b linkages fill the inte-
rior completely, with the top face of one fitting against
t e side face of the other [exactly as illustrated in Ref. 4,
since the a(A1-Mn-Si) geometry is a packing of A cells].
All other cells produce additional rhombohedra which
are not associated with bonds. In the most economial

escription, there are three kinds of extra rh b h dromoera

(a) Each Y face (equilateral triangle) has a PR piercing
it along its threefold axis [Fig. 4(a)]. The hole into which
this is inserted is obvious in Fig. 3(d). Around it, there
are always three PR's (not shown) which have lower end-
points at nodes defining the Y face, share the upper faces
of the central PR, and share with t thi eir upper end-

Here a "standard" decoration of the canonical cells is
escribed that turns any packing of canonical cells into a

packing of tiles called prolate rhombohedron (PR), oblate
r ombohedron (OR), and rhombic dodecahedron (RD)
(to reduce confusion, the term "tile" will be reserved for
t ese units, although canonical cells are, of course, tiles

t e 3D Penrose tiling projected from a 6D h bypercu ic
a ice, which has been used by many authors as the

geometry for decoration models. The rhombohedron
edges run along five-fold symmetry axes and have len th
az related to b by Eq. (2.1). (In real materials, az =5 A).
The RD is a packing of two PR and two OR which are
welded together to form a polyhedron of greater symme-
try (mmm). An earlier version of the atomic decora-
tion ' was based on the OR, PR, and RD; the RD need-
e to e treated as a distinct tiling unit with its own
decoration. (Later, when we count the contents of a cell

PR+2 OR.
in rhombohedra, the RD will count as if d' d d

+2 OR. ) The constraints of consistency with this ear-
ier work are enough to determine the rhombohedral

decoration completely.
There is a double motivation to study this decomposi-

tion: (a) To heie p visualize the canonical cell structures.
(b) To systematically compare decorations based on
canonical cells with those based on rhombohedra. (In
particular, the latter can be used as a hint in generatingenera ing

Speci+cation of rhombohedral decoration: For every c

larl
linkage, we place a PR connecting the two tips and simi-
arly for every b linkage we place an RD [Fig. 2(b)], as

was already done in Refs. 4 and 6. Figure 3 shows how

(c) 4L

1I

FIG. 4. Extra rhombohedra in the rhombohedral decoration
The gaps left after the bonds are decorated as in Figs. 2 and 3

are filled by (a) a PR sticking through each Y face, (b) an OR ti-
lted through each Z face, and (c) three PR's in each D cell.
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points. In the case of the C cell, the three PR's decorate
c bonds and their common upper vertex is the node at the
apex; in the case of the D cell, they are the PR's shown in
Fig. 4(c) and their common vertex is the bottom tip of
another PR through the upper Y face.

(b) Each rectangular (Z) face divides a tilted OR in
half [Fig. 4(b)] with the stub through the Z along the
threefold axis of the OR. [The thin hole where the OR
fits is obvious in Fig. 3(e).] Note that if we break up B2
into B +B (which can be done in three equivalent ways),
its internal OR becomes the OR decorating a Z face; then
the OR of Fig. 4(b) is symmetrically oriented at the
center of the B2 cell with its own threefold axis coincid-
ing with that of the B2. However, in the B2 cell (not
shown in Fig. 4), a hole is left inside which is exactly
filled by an OR.

(c) There are still left over the three PR connected to
vertices in the D cell, which must be associated with its
interior rather than its faces [Fig. 4(c)]. Sharing the in-
side faces of these three is the PR decorating the bottom
Y face, and around their upper outside faces are the three
OR associated with (and bisected by) the rectangular Z
faces.

To summarize, we have exhibited a decoration by PR,
OR, and RD rhombohedral tiles, of the linkages, faces, or
cell interiors of the canonical-cell structure. There are
five categories of decorating objects: the RD and PR as-
sociated with linkages b and c, the RD associated with
the Y face, the OR associated with the Z face, and the
PR's associated with the D cell. This decoration enforces
exactly the same constrained packing rules for the cells as
the abstract decoration of Sec. II B in terms of "+"signs
and stubs.

icosahedral cluster packing.
Complicated structures are usefully characterized by

the statistical distribution of the many possible local envi-
ronments; Sec. IIIB explains how to construct pictures
(as two-dimensional tilings of the unit sphere) and labels
for the environments. From the packing rules on the unit
sphere, induced by the 3D cell-packing rules, the com-
plete list of possible local environments is found.

Section III C derives forcing rules which allow quick
recognition of forbidden and allowed arrangements (use-
ful when growing structures). The forcing rules eliminate
so many possibilities that we can finish the enumeration
of all local environments by pure brute-force reasoning,
case by case. The most striking result is how few envi-
ronments there are, an indication that the canonical-cell
rules are quite restrictive. Besides a natural sequel of the
similar study of the "twelvefold packing" (see Appendix
B and Ref. 46), it is a useful way to compare diff'erent
geometries based on these linkages (e.g. , see Ref. 28).
Furthermore, it is one piece of the vocabulary for
describing particular periodic structures in Sec. IV.

A. Sum rules and frequencies of objects

The simplest kind of information we can have about a
canonical-cell packing is the volume density of cells of
the different types. These densities will be written
n ( A ), n (B), . . . . Since each cell will have a unique
decoration by atoms, the frequencies of cells will give
the stoichiometry and mass density. In this part we
determine some geometrical constraints on the frequen-
cies.

l. Pairing ofB and C cells

III. STATISTICAL DESCRIPTION
OF CANONICAL-CELL TILINGS

Apart from the diffraction pattern, one of the main
predictions we expect of a decoration model is the
stoichiometry, and the frequency of various local envi-
ronments (e.g. , how many of the Mn atoms occur in
pairs). In a quasiperiodic structure generated by cut-
and-projection, one can calculate these directly by
evaluating the volume of the intersection of various
translates of the acceptance volumes in the "perpendicu-
lar space. " However, one motivation for developing the
canonical-cell geometry is its use in formulating a
random-tiling model, and the perpendicular space ap-
proach is useless for local correlations in random tilings.

This section lays the basis for describing the
stoichiometry and local environments in canonical-cell
structures. Section III A derives constraints on the num-
ber frequencies of the different geometrical objects.
Given icosahedral symmetry, one parameter describes the
possible concentrations of the four kinds of cells, instead
of the three degrees of freedom we would naively expect.
Furthermore, from existing information one can guess
which values are most reasonable for this parameter.
Then we can verify that the packing fraction in a
canonical-cell packing is better than in the quasiperiodic

n (BC)—:n (B)=n (C) . (3.l)

2. Fraction of BC cells

In tilings of rhombi or rhombohedra, there are simple
formulas for the number density of each kind of cell, in
each possible orientation, as a function of the "phason
strain" tensor A. The meaning of "phason strain" is
discussed in Appendix A. Briefiy, (i) a structure of
icosahedral symmetry must have zero phason strain, (ii) a
random tiling (see also Sec. V) includes random phason
strains, but at large scales the phason strain should aver-
age out to zero in any realization, ' ' and (iii) period-
ic or layered structures made of the same units, called
"approximants" (see Sec. IV) are special, commensurate-
ly locked cases of the canonical-cell structures with spe-
cial uniform, nonzero values of phason strain.

According to the matching rule for triangular Y faces,
each such face must belong on one side to a cell in which
the face has an outward directed arrow and on the other
side must belong to a cell in which the face has an inward
directed arrow. Now, the B cell has one outward arrow,
the C cell has one inward arrow, and the D cell has one of
each. Therefore, n (B)=n (C), which must be satisfied in
any unbounded packing of canonical cells. From now
on, we will write
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In the case of the canonical-cell tilings, we can decom-
pose each canonical cell into Ammann rhombohedra (PR
and OR) as described in Sec. II C. The densities of these
rhombohedra, in each orientation, are given by the same
functions of the phason strain as in any other packing of
the Ammann rhombohedra. Thus, 20 liner equations for
the densities of the canonical cells are obtained. Unfor-
tunately, there are many more unknowns than equations.
For, grouping together the orientations related by an in-
version (these have the same content of rhombohedra,
since rhombohedra are invariant under inversion), we still
find 10 orientations each for Bz, C, and D cells, and 15
orientations for 3 cells, or a total of 45 unknowns.

Happily, we can salvage one simple, useful equation by
grouping together all the orientations. The numbers of
PR and OR in each canonical cell are given in Table II.
Thus,

and n is the total number of nodes. Combining (3.6),
(3.7), and the fractional contents of nodes and linkages in
cells from Table II, we find densities

12
5
—(1 —p)+6@—2pg (3.8a)

n (c)= —(1 —p)+8@——"pg12
3

b 3 (3.8b)

n = ,'n (b) .—

Thus, in particular,

Zb =6,

(3.8c)

(3.9)

an identity valid in any unbounded canonical-cell struc-
ture. Also, for the case of icosahedral symmetry (p= —,

' ),

Eq. (3.8) gives
n ( PR) = ,

' n ( A ) +——", n (BC)+ —", n (D) (3.2a)

(3.10)

Z =4[(36+2)V 5)—13&5/]/[(6+3+5) —+5/]
= 13.056( 1 —0.350$) /( I —0. 176() .

n (OR) =n ( 3)+ ,'n (BC—)+,'n (D—) (3.2b)

(which is still true even without icosahedral symmetry).
From Appendix A, Eq. (A4), we find for the rhom-

bohedron densities f =(~c /6)n =0.6442 —0. 1134( . (3.1 1)

The packing fraction f is defined by replacing the node
with identical spheres with the largest possible diameter,
that is c, so each has a volume mc /6 and (for p = —,

' )

n (PR)/n (OR) =(r—detA)/( I+r detA), (3.3)

where the determinant detA=O if we have icosahedral
symmetry. Substituting (3.3) into (3.2), we finally get

n ( A)+ ', n (D)=——', &5 (3.4)
1+~ detA

n(BC) .

We now have two nontrivial linear equations (3.1) and
(3.4) in n (A), n (B), . . . as well as the more trivial one
from the constraint that the cells exactly fill space.

Let us define p as the volume fraction occupied by 2
and D cells. Combining (3.4) with the volumes given in

Table II, we see that

p= —,'(1 —r detA) . (3.5)

n ( 2) =12@(1 g)/b-
n (BC)=(8//5)(1 —p)/b

n (D)=(8/3)@gib,

(3.6a)

(3.6b)

(3.6c)

3. Coordination number and packing fraction

The average coordination number is obviously

Z =Z„+Z, =2[n (b)+n (c)]/n, (3.7)

where n (b) and n (c) are the densities of b and c linkages,

So, in the case of icosahedral symmetry, exactly half the
volume is occupied by AD cells and exactly half by BC
cells. The nontrivial parameter, which apparently is not
determined by the phason strain, is g defined by letting

pg be the volume fraction occupied by D cells, so that g
measures the relative importance of D cells. Then

4. Expected values ofpacking fraction and D cell fra-ction

We are interested in the value of g in infinite
icosahedral structures. No infinite mode1 has yet been
constructed (see Sec. VA), but we can use large approxi-
mants (see Table VII) to guess the value (=0.3 in the
limit of icosahedral symmetry. Alternatively, we can
match to previously studied icoshedral networks using
the same b and c linkages, but without "canonical" rules.
In the twelvefold network (Appendix B), we can count
node combinations in the form of canonical cells (these
are not quite cells since they can overlap); the ratio be-
tween 3- and D-cell densities then corresponds to
/=0. 189. In Elser's annealed growth model, which (see

Sec. VI B 1) closely approximates canonical cells, we get
(Zb, Z, ) =(5.86, 6.25) for the best value (0.001) of his re-
duced growth velocity; matching the ratio Z, /Z, gives
/=0. 28, while his packing fraction f =0.615 would give

/ ~ 0.23 (the inequality allows for a small density of non-
canonical holes).

The above considerations lead one to expect g to be 0.2
or 0.3. Consistent with this, analysis of an extended x-
ray-absorption fine-structure (EXAFS) experiment '
gave Z, =6.6 (b linkages were not considered), which
corresponds to (=0.2. The packing fractions and coor-
dinations for icosahedr ally symmetric canonical-cell
packings are shown in Table III as a function of g. The
best ~acking in any canonical-cell structure is

f = i/3m /8 -=0.680, Z = 14, in the 1/1 (bcc) network. On
the other hand, "random close packing" has packing
fraction f„=0.64; according to Nelson, with an ideal
coordination number Z„=13.397 within Coxeter's
"random-froth" approximation.
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TABLE III. Coordination and packing fraction in various structures.

Periodic
1/1 cubic
2/1 cubic
BC
D
3/2 cubic

Packing

1.00
0.333

Zb Z.

8
7
6
2
6.25

Z

14
13
12

8
12.25

0.6802
0.6423
0.6084
0.4534
0.6065

"Twelvefold" packing'
Annealed random aggregation '

0.19'
0.28(?)

5.825
5.86

5.528
6.25

11.353
12.1

0.5535
0.615+0.003

Canonical-cell packings' 0
0.10
0.20
0.30
0.50
1.0

7.056
6.824
6.584
6.334
5.807
4.292

13.056
12.824
12.584
12.334
11.807
10.292

0.6442
0.6329
0.6215
0.6102
0.5875
0.5308

'Reference 46.
In these structures, canonical cells do not fill space.

'From the ratio of A and D cells (see Appendix B).
Reference 28.

'Assuming statistical icosahedral symmetry.

B. Classification of node environments

Counting the frequencies of different node types is a
compact way to characterize different geometries. Fur-
thermore, in a decoration model, the node and cell fre-
quencies directly give the frequencies of different atom
environments.

As with the 3D Penrose tiling, " nodes may be
classified by either (i) the arrangement of cell solid angles
packed around the node, or else, (ii) the arrangement of
linkages which converge at the node. These descriptions
are equivalent: given either, we could generate the other.

1. Scheme for depicting node enuironments

It is convenient to represent each node's surroundings
by projecting the neighboring nodes and cell faces onto a
unit sphere imagined to surround the node. This is
then represented two-dimensionally by a sort of projec-
tion, where the projection of a reference icosahedron is
also shown as a sort of coordinate system (see Figs. 5—7).

This is a tiling of the reference sphere by two-
dimensional tiles. First, there are two types of vertices:
projections of b and c linkages, depicted by crosses and
triangles, respectively [Fig. 5(a)].

Secondly, there are four kinds of edges of the 2D
spherical tiles, projections at the node of the corners of
canonical-cell faces [Fig. 5(b)]. Here b and c linkages be-
tween the neighboring nodes are represented by double
and single lines, respectively. Finally, there are nine
types of 2D "tiles, " spherical polygons projected down
from the solid corners of canonical cells, as in Fig. 5(c).
Each canonical cell has two crystallographically distinct
types of corners, as indicated ( A„etc.) in Fig. 1. The 8
cell also has a corner B, which is equivalent to a com-
bination of a B, and a Bb corner. The decorations which

enforce the 3D face-packing rules (Sec. II B) induce 2D
spherical edge-packing rules. The latter are shown in
Fig. 5(b), which also indicates the types of 2D spherical
"tiles" allowed on each side of each 2D spherical "edge."

This pictorial code is also intended to suggest how the
vertex appears when the cell packing is translated into
the language of the rhombohedral decoration (Sec. II C).
Each end of a b linkage becomes a rhombic dodecahed-
ron tip that fills two triangles of the reference icosahed-
ron; each end of a c linkage makes a prolate rhombohed-
ron tip that fills one triangle. Reviewing Fig. 5, it is evi-
dent that, in a canonical-cell node environment, the only
unfilled icosahedron triangles are in the middle of C, and
Db projected corners. These correspond, respectively, to
the tip of the extra prolate rhombohedra from the oppo-
site Y face in the C cell [Fig. 4(a)], and to the Db corner
in the D cell [Fig. 4(c)].

The corner angles and the areas of the spherical po-
lygons marked in Fig. 5(c) are, of course, the same as (re-
spectively) the angles between faces along the edge of the
canonical cell, and the solid angles of the cell corners
Q(A, ), . . . . Here

@=cos '( —„' ) =4'(0. 1049)

and

il=cos '(I/&6)=4ir(0. 0915) .

(Recall that, by spherical trigonometry, the area of each
spherical polygon is the angular excess in the sum of the
corner angles. ) Table IV shows the contents of each
canonical cell when nodes and linkages are apportioned
according to the solid angles at canonical-cell corners and
edges.



1002 CHRISTOPHER L. HENLEY 43

2. Nomenclature for node enuironments

For practical work with models, it should be easy to
find the name of a given environment, and obviously the
name should be invariant under rotations. (To construct
the environment given the name, one can always use a
table. ) In 3D, it is simplest to base the label on counts
of selected features within the environment. The labeling
will be based on

(P, y)=(N(b), N(c)),

the number of b and c linkages at that node [note

(P, y ) = (Zb, Z, ) in Eq. (3.7)]. To fully distinguish node
types, we look at each fivefold direction and look at the
pentagon of edges surrounding it. Any b linkage cen-
tered on one of those edges fills a polygon of two trian-
gles, with a acute tip at the five-fold direction. Let p be
the total number of such linkages around the fivefold
direction (it is easy to read off from the above-described
diagrams). In the twelve-fold packing, this scheme was
used and it sufficed to write (P, y)p, appending P, the
largest p value over all fivefold directions. For the
canonical-cell tiling this does not suKce: for example,
one can construct three distinct environments by rotating

+ )

(b) X (base) X (apex)

~7

+~ /
XA 8 8

7

/
h +==-'a' + /

/ +

I

B,IDb

~+ /

c.,o.i /
/

Z

h B
1

0 ~ 0 + /
/

/

(c)

Ao

+
2~

/

/
/

/
/

—+—m
/

/ L -. ; -L

Cb

/

Bg/Bb Bc
Db

/

r

FIG. 5. (a) Bonds, (b) faces, and (c) cell corners around a vertex, become 2D spherical vertices, edges, and tiles when projected
onto a sphere with icosahedral "coordinates" (dashed lines). A + on a given side of a 2D spherical edge means that the 3D cell on
that side shows a face with a + marking. The circle with the heavy bar through it is the projection of the second-neighbor node diag-
onally across a Z face; the bar is the projection of the stub decoration through the Z face. Labels in (c) correspond to corner labels in
Fig. 1. The 2D packing rules are indicated in (1) by the "2,",etc. , on the sides of the 2D spherical edges.



43 CELL GEOMETRY FOR CLUSTER-BASED QUASICRYSTAL MODELS 1003

(a) (b) (c)

m
I

I
/

/
/

V

(a)

FIG. 6. Three arrangements forbidden in node local environ-

ments.

the "south polar cap" in Fig. 7(a), and in each case
(13,y)=(&, 7) and P =3. Therefore, we append, as sub-
scripts, the p counts for every fivefold direction (with
p ) 1), in descending order. In a few cases this still leaves
a pair of environments which would have the same label;
in such a case one of them is given a superscript prime.
These primed and unprimed pairs differ only by the rear-
rangement of one c linkage, except, for the case of (66)43&

432'

Since, by icosahedral symmetry, most of the environ-
ments can have 120 distinct orientations, it is also useful
to have a standard convention for orienting the picture.
At the center of the front side, we place the icosahedron
vertex with the largest number I' of b linkages in a ring
around it, and so that the mirror plane of that ring is
vertical; this resolves most ambiguities of orientation.

C. Enumeration of allowed node types

l

t

1

~P
/

/

/
/

/

We start by developing forcing rules which make it
easy to recognize disallowed node types, and which lead
to constraints on the 20 spherical tiling analogous to
those of Sec. III A for the canonical-cell tiling.

1. Forcing rules at nodes

(b)

(c)

First we derive some "forcing rules" which must be
obeyed by all local environments. The first refers to the
sets of distances between neighboring nodes (analogous to
the separations found in Ref. 46, Sec. IV A and Table IV,
in the case of a quasiperiodic network).

Rule FO: Besides links b and c, the nearest allowed
node separations are ,' &7b = 1.32—3band &2b = 1 414b.

Remark: The former is the diagonal of a Z face; the
latter is the diagonal of two b linkages at right angles,
formed whenever two A cells adjoin.

Proof: Obviously the only separations appearing
within a single cell are b, c ( = 2

&3b) and ,'&7b; but s—ure-

ly any other separations less than &2b must be relating
nodes in neighboring cells. Thus, for each face, we need
only consider the different ways of packing a cell
on each side, and calculate the separations between
the nodes (that are not in the faces) of the two cells.
There are ll combinations: (A+, C+)X(A,B );

(C+,D+ )F(B,D ); and B(Z)B, B(Z)D, or D(Z)D.
The distances are all larger than those mentioned in rule
FO.

TABLE IV. Solid angles of cell corners.

Corner Solid angle
Number of bonds

b c

FIG. 7. Three of the 32 allowed node environments, shown

using the conventions of Fig. 5. The reference icosahedron
(dashed lines) is projected using an approximation of an equal-
area projection with a "south pole" cap shown separately. (a}
node (57)33», (b) node (66)42», (c) node (76)&3,. From each of (a)
and (b},we can generate two other nodes by rotating the pentag-
onal "cap" on right.

Ab

B,
Bb
B,
C,
Cb

D,
Db

~/6
m/6

~/2 —3e/2+ g
3~/2 —e/2 —3q

2(~—e—g)
36

@+2'—~
m/3
m/3

1/4
1/4

g/2~
1 —3g/2~

1 —g/~
0

g/n
1/2
1/2

1/3
1/3

3/4 —3e/4~
1/4 —e/4~

1 —e/w
3e/2m.
e/2m.

1/6
1/6
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The other rules apply to local environments. Here
"triangle" means one of the 20 triangles of the icosahed-
ron "coordinate system. "

Rule F7: Unfilled triangles never adjoin.
Proof: Note "filled" was defined in Sec. IIIB1. As

noted there, emply triangles occur only in C, and Db
corners, and an inspection of Fig. 5(c) shows that they are
completely surrounded by filled triangles.

Rule F2: If a triangle is surrounded by triangles filled
by b linkages, then it must be filled with a c link.

Proof: Otherwise, the triangle would stay empty. But
C, and Db in Fig. 5(c) contain the only empty triangles,
and, in either case, at least one neighboring triangle is
filled by a c link.

Rules F3(a,b, c): Two linkages at a node cannot be re-
lated in the ways shown in Figs. 6(a)—6(c), respectively.

Proof: The impossibility follows from calculating the
distances between the nodes at the ends of the two link-
ages. These are, respectively,

of the type labeled Y in Fig. 5(b), with + markings on the
outside. Then, inside each edge must be either a Bb or
D, . But no two Bb can adjoin, and, at most, one can be a
Db since that includes the central five-fold corner; clearly
there is no way to fill the pentagon.

As a byproduct of the classification of environments
summarized in Sec. III C 3, we find that the forcing rules
are not only necessary, but sufficient.

Theorem: Every arrangement of radial linkages that
satisfies rules F1—F3 is a valid canonical-cell node.

Proof: By the complete enumeration of cases (see Ap-
pendix D).

gum rules for solid angles at a node

%'ithout considering the angular arrangement of ob-

jects around a node, we can count them two ways.
(i) We can count the numbers of each cell corner in the

integer "eight-vector"

and

[(5/&5)/2]' b =1.19b,

[(9—2&5 )/4]' b = 1.06b,

'b=0. 62b .

N( A, , AI„B„Bq,C, , C, , D„DI, ) . (3.12)

(Every B, corner is considered to be broken down into

B,+Bi, ).
(ii) We can count the numbers of b and c linkage ends,

and the fraction k of the total area (i.e., solid angle)
&(BC) occupied by B and C corners:

(I3, y, k)—:(N (b), N (c),O(BC)/2m) . (3.13)

But, by rule FO, these cannot be separations between
nodes in a canonical-cell tiling.

Rule F4: One cannot have five b linkages in a ring
around a node.

Proof: This makes a spherical pentagon with five edges

We will see shortly that k is an integer and k/2= —' in

most local environments; note the close analogy between
1 —k/2 and the AD volume fraction p of Eq. (3.5).

Obviously, given (3.12), we can find (3.13), given by a
matrix equation with coefficients from Table IV:

1

4
1

3

1

24

N(A, )

N(Ai, )

N(B, )

N(Bg )

N(C, )

N(Ci, )

B(D, )

N(Dd )

1

4
1

3

1

24

3

4
—+1

8 4m.

—+1

8 4~

36'

36
8~
3E

8~

1 —3n

4~
3 3'g E

8 4m 8m
3 3'g

8 4n 8m

3E
2m

1 3e——+
4 4~
1 3e——+
4 4~

2'

277

+ +1 'g E

4 2n 4m

——+ +1

4 2~ 4~

1

2
1

6

1

12

1

2
1

6

1

12

(3.14)

The last row is the fraction of total solid angle occupied by corners, which must be unity.
As in the quasiperiodic "3D Penrose tiling" [Ref. 46, Eq. (B2)], but less easily, it will turn out we can invert this and

derive (3.12) given (3.13). That is, given the values (P, y, k) of an environment, there is only one possible set of numbers
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(N( A, ),N( A& ), . . . } independent of the several ways the linkages might be arranged.
We first derive more linear equations in the spirit of the 3D sum rules of Sec. III A. Note [Fig. 5(b)] that, there, each

of the four kinds of 2D edges has a + and a —side. For each face type o., the sum

W =w (A, )N(A, )+w (A&)N(A&)+ . +w (D&)N(DI, )=0,

where the weight w ( T) is the signed number of 2D edges from face type a appearing around the 2D spherical tile "T
The coefficients w ( ) can be written in matrix form:

W(X (base) )

8'(X (apex ) }
8'( Y)
W'(Z)

—2 —1 —1 0 2 0
1 —1 0 3 0 0
0 0 —1 0 1 —1

0 1 —1 0 0 2

0
N( A„AI„B,,Bi„C,, Ci„D„DI,}= 0 (3.15)

One can now derive two equations by elimination in
(3.15). The same equations also follow by noting that the
sums in (3.14) are integer although the e and ii terms in
(3.14) are irrational; hence, their coefficients must be
identically zero:

—3 —1 6 2 0
3 (} 2 N(Bg, Bq, Co, Cq )=

(} (3.16)

@=6—k+l,
y=8 —

—,
'

I k +i +[N(D, )+N(DI, )]I .

Hence,

(3.18a)

(3.18b)

l =(P—5)k—:/3
—6+k . (3.19)

The solutions in integers of (3.16) are

N(B, ,BI„C,, CI, )=(4,2, 2, 1)k+( —1, 1, —1,2)l, (3.17)

where k, l are integers. Substitution into (3.14) confirms
that k in (3.17) is the same as the k in (3.12). Since k is an
integer, either (i) k =0, there are no B/C corners, (ii)
k =1, A /D and B/C corners each occupy exactly half
the solid angle, or (iii) k =2, B/C corners occupy all of
the solid angle.

Now, an 3 cell cannot adjoin on a D cell. Thus, if
[case (i)] there are no B/C corners, then the corners must
either be all 3 or all D; this forces the nodes found in
the 3 and D crystalline structures, respectively. Similar-
ly, if [case (iii)] there are only B/C corners, this forces
the node of the BC crystalline structure [(k, l) = (2,2)].

Inserting (3.17) back into (3.12)—(3.14), we now obtain

N( Aq)=2(/3+y —8 —2k),

N(B, ) =3k —P+6—:(9—P)k,
N (Bi, ) =3k +P—6—:(/3 —3 )k,
N(C, ) =k —P+6=—(7—/3)k,

N(CI, ) =3k +2p —12:—(2p —9)k,
N(D, ) =8—y —k,

(3.22)

N(Di, )=14—P —y —k .

[We could have anticipated the appearance of three pa-
rameters (p, y, k) in the solution, since we had five in-
dependent equations (3.14) and (3.15) in eight unknowns. ]
Of course, N( . ) &0, so Eqs. (3.22) imply the inequali-
ties

5&P&7, 4&y&7, 10&/3+y&13. (3.23)
In all, 13 possible combinations (P, y ) are realized in node
environments. Their contents, as calculated from (3.22),
are given in Table V. [The cases with k = 1 and
(/3, y)=(5, 5) or (7,4), although allowed by (3.23), do not
occur in any environment. ]

—,
' [N ( A, )

—N ( A i, ) ]=N (DI, ) N(D, ) =6——p . (3.20)

Furthermore, substitution into the solid-angle equation
(3.14) now tells us

[N( A, )+N( Ai, )]+2[N(D, )+N(Di, )]=24(1—k/2),
(3.21}

which, coupled with (3.18b), yields N(A, )+N(BI, ) and
the full solution

N( A, ) =2(y —2 —2k),

[Note that all three cases with k%1 have P=6, so that
(/3 —6)(k —1)—:0 can be used as an identity. ] From this
we get the values of N (B„Bb,C„Ci, ) given below.

So far, two linearly independent equations from the set
(3.15) have not been used. Substitution into these gives

3. Exhaustive enumeration of allowed node types

As just noted above, the only nontrivial case is k =1
where half the solid angle is BC corners and the other
half is AD corners. The inequalities (3.23) restrict the
possible values of (P, y, k), thus reducing the work of ex-
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TABLE V. Cell corners in node environments.

(Xbv, )

(68)
(64)
(62)
(56)
(57)
{64)
(65)
(66)
(66)
(67)
(75)
(76)

12
0
0
4
6
0
2
0
4
6
2
4

12
0
0
2
4
0
2
0
4
6
4
6

Bb Cb D,
Number of

environments

1

1

1

3
3
2
3
1

10
3
4
1

TABLE VI. Allowed node environments.

Name

(68)o
{64)222222

(62)222222

{56)222

Symmetry

2/m 3
3m
3m

m

1

Type

pure A (1/1 cubic)
E' plane
pure D

b wedge

Figure

13(a) and 14
13(b)
13(a) and 14

13(c)

{57)322
(57)332

1

1

m

7(a), rotated
7(a), rotated
7(a)

{64)3322

(64)3322

Z plane
b wedge

13(b) and 14
13(c)

(65)432

)3322 c wedge 14

{66)222222

{66)3332

{66)333

(66)422

{66)4222

(66)4222

{66)432
(66)432

{66)4322

{66)4322

(67)
(67)333

3m
1

1

1

m
m

1

1

1

1

c wedge
c wedge

X plane
c wedge
2/1 cubic

13(a) and 14

14
14
7(b)
7(b), rotated

7(b), rotated

13(b) and 14
14

(7»4332
(75)4332

(75)4422

b wedge 13(b)

(76)433 7(c)
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haustive enumeration.
To finish classifying the environments, we must now

consider the ways in which link ends and cell corners are
arranged around the solid angle, case by case. By sys-
tematically constructing (by hand) a "tree" of all possible
cases, I found a total of 32 distinct environments, as tabu-
lated in Table VI. The tree can be based on either (i) cell
corners or (ii) link ends, as detailed in Appendix D. Fig-
ure 7 illustrates some common environments. By rotat-
ing the pentagonal "cap" on the right, Fig. 7(a) also pro-
duces (57)3z2 and (57)332, similarly, Fig. 7(b) also pro-
duces (66)4322 and (66)432.

IV. PERIODIC, LAYERED,
AND TWINNED STRUCTURES

The canonical cells can be packed to form periodic as
well as aperiodic structures. This is relevant for several
reasons.

(i) Decorating a periodic packing provides a trial atom-
ic model for several large unit-cell approximants which
have recently been discovered by electron diffraction (Sec.
IV A). However, contrary to an earlier suggestion,
most of the large-cell structures found in Al—transition-
metal phase diagrams near the quasicrystal-forming con-
centration are not true approximants.

(ii) Since (Sec. V A) we do not yet know how to con-
struct quasiperiodic canonical-cell structures, we must
use periodic structures to approximate them and to ob-
tain some suggestive information about their statistical
geometry, e.g. , counting the distributions of the different
kinds of node local environments, or in modeling the
real-space atomic structure. Furthermore, periodic
boundary conditions are desirable for technical reasons in
calculations of physical properties. ' Some examples
are the following: electronic structure calculations,
dependence of diffraction on atomic decoration, or
modeling of surface structure.

Some special grain boundaries are known which allow
joining domains of different periodic canonical-cell pack-
ings without any violation of the canonical-cell rules. We
do not believe that most icosahedral "quasicrystals" are
really twinned aggregates of crystals in this fashion.
However, the large approximants in nature ' do occur
microtwinned and it is interesting to explore how defec-
tive the structure must be along a grain boundary (Sec.
IV E).

A. Approximants in nature

The cubic "approximants" a(A1-Mn-Si) and R(A1-Cu-
Li) have been starting point for models of the different
atomic arrangements of the i(A1-Mn) and i(A1-Zn-Mg)
classes, respectively. But in terms of the description used
in this paper, they appear rather trivial, consisting of a
bcc packing of icosahedral clusters, and containing only
2 canonical cells. Recently several larger approximants
have been discovered, with cells larger than the bcc pack-
ing and closely related to the icosahedral phase (as ob-
served from the similarity of electron-diffraction pat-
terns).

Note that, by our linkage rules, all the clusters
decorating icosahedral node centers must be oriented the
same way, so the point group of a periodic packing must

be a subset of the icosahedral point group. This greatly
restricts the possibilities for the space group: there are no
true tetragonal or hexagonal structures. ' (In orthorhom-
bic, rhombohedral, and cubic structures, the point groups
are at most 2/mmm, 32/m, and 2/m 3, respectively. ) In
the i(A1-Mn) system, at compositions close to the quasi-
crystals, a few large unit-cell compounds (still unsolved
by x-ray diffraction) were speculated to be approxi-
mants. ' but most of them are supposed to have point
groups incompatible with a single orientation of the
icosahedral clusters.

Recently, genuine large-cell approximants have been
discovered. In the i(A1-Mn) structure class, the equilibri-
um quasicrystal i(A1-Cu-Fe) was found to transform at
lower temperatures to a rhombohedral crystal approxi-
mant. This might be described as a packing of ~
inAated prolate Ammann rhombohedra decorated with
clusters, with the cell then doubled due to the even-odd
alternation mentioned in Sec. V B2, below. Furthermore,
five large-cell approximants (including the 3/2 approxi-
mant of Sec. IV C) were recently discovered in the Ga-
Mg-Zn system.

B. Simple periodic packings

For each of the three independent types of unit cell,
there is a unique way to build a periodic packing with
only that kind of cell. [Because of the constraint
n (8)=n (C) found in Sec. III, we cannot independently
pack B or C cells, but only an equal mix of the two. ] The
uniqueness is trivial to show: for each face of an A, B, or
D cell, there is only one way to pack another 3, C, or D
cell, respectively. I will call these structures the "2,"
"BC," and "D"packings.

A packing

Using only A cells gives a bcc structure (space group
Im 3); the nodes form a bcc Bravais lattice. This has the
highest possible packing fraction of any possible packing
of canonical cells (Table III). The primitive unit cell is
the oblate rhombohedron of six 2 cells shown in Fig.
8(a). Each face is a rhombus made from two X faces.

If we take the bcc "2"structure and decompose it into
Ammann rhombohedra as prescribed in Sec. II, it forms
exactly a 1/1 cubic tiling with lattice constant b. The
atomic structures of a-(Al-Mn-Si) (Refs. 4 and 38) as well
as (Al, Zn, Cu)49(Mg, Li)» (Ref. 6) were described as
decorations of this rhombohedral tiling; however, the
cluster description is simpler and more fruitful.

2. BCpacking

Assume we have only B and C cells. Then each rec-
tangular Z face of a B cell must adjoin on another B, so
they form the trigonal antiprism (a flattened octahedron)
B2. Also, only a C cell can be placed on the triangular Y
faces of the B2. Thus, the absence of D's forces B's and
C's to occur in "B2C2" units in a prolate rhornbohedron
shape [Fig. 8(b)]. Each face is a rhombus identical to the
faces of the A6 rhombohedron. These are not the same
shape as the Ammann rhombohedra (see Sec. IV C,
below). Thus, the only possible structure is the rhom-
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(b)
B~C~

canonical-cell packings with moderate-sized unit cells
which happen to be approximants (in the strict sense) of
the quasiperiodic twelve-fold packing (Appendix B). This
is the case of the 3/2 cubic approximant (Sec. IVC3),
and is probably so for every entry in Table VII. (For
larger approximants, though, it cannot be true, since
Table III shows the twelve-fold packing has a much
lower packing fraction than a canonical-cell packing. )

FIG. 8. Rhombohedral primitive cells of periodic structures.
(a) Oblate rhombohedron of "A" structure. (b) Prolate rhom-
bohedron of "BC"structure.

bohedral BC packing mentioned in Sec. II B, for which
the B2C2 cluster is the unit cell.

3. D packing
In this structure the cells occur alternately in just two

orientations; the nodes form a hexagonal Bravais lattice
(stacked triangular layers).

r "b =(F 7 '+F r )b (4 1)

Of course, noncubic approximants are possible too.
Thus, given an atomic-structure model based on

decorating Ammann rhombohedra with atoms, one can
trivially generate approximants of arbitrarily large size.
Here, however, we will instead construct some particular
periodic packings of canonical cells (it is not clear exactly
what these are "approximating, " nor do we have a gen-
eral rule to construct arbitrarily large approximants).
These will be given the same labe1 F„/F„, as the pack-
ing of Ammann rhombohedra (with a quasilattice con-
stant of a„—5 A) having the same unit cel/. Table VII
gives the data on the cell contents for some periodic
structures.

Since (Sec. VA) a perfect quasiperiodic canonical-cell
tiling has not yet been formulated, we commit an abuse of
language in calling the canonical-cell packings discussed
below "approximants. " The abuse is small, however, for

C. Large cubic cells

1. Cubic packings ofAmmann rhombohedra

It is well known that the projection method for gen-
erating the rhombohedral 3D Penrose tiling can be
adapted to produce periodic approximant tilings by using
a projection strip which is oriented in a commensurate
direction, as described in Ref. 4 and also Ref. 27. There
is a sequence of such structures which are called
"F„/F„, cubic" (where F„denotes the nth Fibonacci
number: F, = 1, F2 =2, . . . ). An F„/F„, cubic ap-
proximant has cubic lattice constant a, =~" 'b; it con-
tains F3„+, prolate and F3„oblate rhombohedra. It is
easy to check that the volume of the unit cell can be ex-
pressed as

c+ /c =(1+2cos8)' /(1 —2 cos8)' (4.2)

There is always a cubic packing of four prolates and
four oblates per unit ce11 in the nonsymmorphic simple-
cubic space group Pa 3. In this space group, the (111)
threefold symmetry axes in different directions do not in-
tersect (the group is nonsymmorphic). In each unit cell,
each threefold axis of Pa3 is the central threefold axis of
one oblate rhombohedron and one prolate rhombohed-
ron. These span the cubic unit cell, tip to tip, so that

c+ +c =+3a~„g (4.3)

where a,„& is the lattice constant. The maximum symme-
try points are the centers of the prolates and oblates.
These form complementary fcc structures as in a CsC1
structure. All prolates are surrounded by oblates and
vice versa. There is a handedness to the structure as we
look down a threefold axis since there are two ways (re-
lated by mirror symmetry) to pack oblate rhombohedra
around the faces of a prolate rhombohedron. The eight
rhombohedron vertices are at crystallographically
equivalent sites in class "8c"at [x,x,x], where

x =c /2(c++c ) . (4.4)

In particular, this packing can be made from the Am-
mann rhombohedra of the three-dimensional Penrose til-
ing. ' ' ' They have edges along fivefold directions
and

O=cos '(1/V 5)=63.43' .

Thus, Eq. (4.2) gives c+ /c =r and (4.4) gives
x =~ /4. For Ammann rhombohedra of edge a~, this
produces the 1/0 tiling described by Kuriyama and
Long; its cell is too small for a canonical-cell packing.
For inAated Ammann rhombohedra of edge ~ a&, it pro-3

2. Small cubic approximants

We start by describing a way of packing eight rhom-
bohedra into a unit cell, which works for arbitrary angles
of the rhombohedra; this is needed in order to describe
two nontrivial approximants based on two different sets
of rhombohedron shapes.

In order to pack the rhombohedra together, it is neces-
sary (and su%cient) that their faces are identical rhom-
buses. For any given acute rhombus angle 0, there is one
way to make a prolate rhombohedron and one way to
make an oblate rhombohedron, using that rhombus for
the faces. If c+ and c are the threefold axes of prolate
and oblate rhombohedra, respectively, then
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duces the 3/2 tiling, the largest one we have studied (see
below).

Such a packing can also be made from the A6 and
B2C2 rhombohedral unis described in Sec. IV B 2 above,
and shown in Fig. 8. Their edges are along icosahedral
threefold symmetry directions and

H=cos '(1/3) =70.53

Hence, by (4.2), c+/c =&5 and by (4.4) the vertex
coordinates are at x =r '/4. This is the "ABC" (=2/1)
canonical-cell packing.

3. The 3/2 cubic packing

Elser has discovered a packing of 2, B, C, and D
canonical cells, with lattice constant r b. This has 32
nodes per unit cell; when decorated with atoms, it pro-

0
duces a structure model with lattice constant over 30 A
and some 2000 atoms per unit cell.

We can best understand the 3/2 packing by starting
with the 1/0 packing of Ammann rhombohedra, then
inAating it by a factor ~, and viewing the canonical cells
as a decoration of these large rhombohedra; this
decoration (shown in Figs. 9 and 10) is very symmetrical.

TABLE VII. Periodic structures.

Name

1/1 cubic

Space
group

Im3

Lattice
constant(s)

a,„b =b

Cell contents
BC D

12 0 0 1

2 2(a) in (0,0,0)

Node
position

Node
type

(68)

BC' R3m
a„g =c
a,z =70.53' 0 2 0 1

2 1(a) in (0,0,0) (66)222222

P3m 1

apex =b

Cbees

C
0 0 2 1(a) in (0,0,0) )222222

2/1 cubic

3/2 cubic

(2/1) x1/1
ortho rhombic

Pa 3

Pa 3

Pnma

a,„b =~b

a,„~=Hb

ap =co ib
ho=b

24 8 0

72 32 8

0 4 4

0 8(c) in (x,x,x), x=~ '/4

4(c) in (&5,0, 1 )w '/4

0.333 8(c) in (x,x,x), x=~ /4
24(d) in (&5, —&5, —1)w /4

(67)333

(67)333

(66)4322

(64)3322

(2/1)' x 3/2
a,„,=Hb

P2&/c b,„,=c,„,=~b 24

Pmono
=90

12 4 0.429 4(e) in (—~,~ ', ~ ')/4 (65)3322

monoclinic 4(e) in (3~ ', ~ ', ~ ')/4 (66)4322

4(e) in (-2', 0, —2')+(~ ', ~ ', —~ ')~ '/4 «7)333

(2/1)'x 3/2

orthorhombic

Cmc2&
ao=db
bo =co =~b 24 12 4 0.429 4(a) in (0,~,—~ ')/4

8(b) in (~,~, 7- ')/4

(66)4222

{66)4322

(2/1)'x &

"orthorhombic"

ap=bo=~b

[co= co
0 0.317

3/2-OR' R3m
a g=T ag3

+rg = 116.57 6 3 0.429 3(b) in (~,0,0) (66)4222

Figure 13(c) P3
a„,„=&2~b

' Cpqx C
18 6 2 0.333 1(a) in (0,0,0)

6(g) in ( —', 0,0)+ ( —~ ', z ', 1)/3

(68)p

(66)422

'In hexagonal coordinates, a&,„=b and cz„=&5C.
Ohashi, Ref. 35.

'In hexagonal coordinates, a&,„=r b and cz,„=c.
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Every vertex is a node; also, two nodes are associated
with every face, one on the face and the other above or
below it [Fig. 9(c)]. In the case of the large OR, the node
below a face on one side is also on one of the faces on the
opposite side of the OR. Note the similarities of Fig. 10
here to Fig. 16 of Ref. 46, which showed the "twelvefold"
sites as a decoration of the ~ -inAated rhombohedra in the
3DPT.

Along each threefold axis of the 3/2 structure, we have
alternating large oblate and prolate rhombohedra. As
can be seen from Fig. 9, this implies the following se-

quence of canonical cells along the threefold axis: A6, C,
D, Bz, D, C, A6, C etc. The high-symmetry points (0,0,0)
and ( —,', —,', —,

'
) are at the centers of the A6 cluster and the

82. There are several other crystallographically ine-

quivalent cells filling the spaces between the threefold
axes.

D. Layered structures

Here we consider canonical-cell structures which have
a b or c bond displacement (stacking vector) as a period
in one direction, but which have long periods (or are
aperiodic) in the other two. Thus, they consist of layers
stacked along an icosahedral twofold or threefold axis.
To represent the structure, we project columns of cells
along the stacking axis onto two-dimensional polygons;
these form a tiling. Each polygon represents a cluster of
one to six cells which, together, make up the parallel-
piped which is obtained by translating a tilted face verti-
cally by the stacking vector. Every node has b (or, re-
spectively, c) bonds extending above and below in the
stacking direction; consequently, all other allowed bonds
are inclined well away from these directions.

Stackings in this fashion would provide models for the
supposed (Ti, „Ni )zV phase, stacked in a twofold
direction, and the T'(Al-Mn) phase, stacked in a three-
fold direction, both of which were claimed to be incom-
mensurate normal to the stacking direction.

(b)

(c)

FIG. 9. Parts of the 3/2 cubic packing of canonical cells,
shown relative to the outlines of the "large" (~'-inAated) Am-
mann rhombohedra: (a) large oblate rhombohedron, (b) large
prolate rhombohedron. These alternate along the threefold axes
of the cubic cell. All other canonical cells border on, and are
forced by, the ones shown. Every large rhombohedron face is
decorated as in (c): one node is in the face and the other is offset
normal to it.

VERT
FACE
EXTER

FIG. 10. The same nodes as in Fig. 9 are presented so as to
emphasize that the decoration is similar to that of Ref. 46, Fig.
16, but more symmetrical.

I. Twofold (b) axis

The bonds within the layers normal to the twofold axis
project to three kinds of tiling edges [Fig. 11(a)]. One
kind, of length (1/&2)b, is the projection of c bonds
which (with the vertical b bonds) form X faces. Two
kinds are of length (&3/2)b but they are unrelated: one
of these kinds is a projection of b bonds which (with the
vertical b bonds) form Y faces, the other is a projection of
horizontal c bonds which (with the vertical b bonds) form
Z faces.

These form three kinds of tiles in the two-dimensional
projection [Fig. 11(b)]. There is a square of edges
(I/&2)b, which is a projection of a cluster A6; an isos-
celes triangle with acute angle ~—2q, where g is the an-
gle defined in Sec. II, which is the projection of a cluster
BC, and a larger square with inequivalent kinds of edges
of length (v'3/2)b, which is the projection of a cluster
D2.

The three-dimensional packing rules of the cells induce
two-dimensional packing rules of these tiles, which are
implemented by the slashes shown along the edges in Fig.
13(b). There is a one-to-one correspondence between
two-dimensional tilings satisfying the packing rules and
b-layered structures. There is also a one-to-one
correspondence with triangle-square tilings (compare the
patterns in Figs. 13 and 16).] The simple periodic struc-
tures discussed above —the 2, BC, and D packings —are
all special cases of b-stacked structures; they are
represented by tilings which are just repetitions of the
respective patterns in Fig. 13(a).

An interesting periodic packing stacked along a b axis
is the (2/1) X(1/2) orthorhombic approximant shown
in Fig. 15(a). Note that although ao =ho, the structure is
not tetragonal (the edges of the 2D square tiles,
representing columns of D cells, are certainly not
equivalent). In the same way, Ohashi's c-face-centered
(2/1) X(3/2) approximant is only orthorhombic; it is
the favored structural model for the observed approxi-
mant in Ga-Mg-zn, which shows the same systematic
absences. By stacking a (2/1) cubic cell on top of the
(2/1) X (1/2) orthorhombic cell, a different
(2/1) X(3/2) approximant is produced; this structure
has the same shape of unit cell, but is officially only
monoclinic since the contents are packed less symmetri-
cally. We can also stack thin (b) and fat (rb) layers in a
quasiperiodic Fibonacci sequence on the ~b Xv.b base to
make a "(2/1) X co" approximant (see Table VII).
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2. Stackings along threefold (c) axis

The vertical faces of these structures project to just two
kinds of 2D tile edge. There are edges of length &2/3b,
projected from b and c bonds which (with the vertical b
bonds) form X faces [Fig. 12(a)]; the other kind of edge is
of length b, projected from a horizontal b bond. The
decorations here are different from the b-stacked case, be-
cause the twofold axis is normal to a mirror plane but the
threefold axis is not. The arrows indicate which way is
down along the c bond.

There are again three kinds of tile [Fig. 11(b)]: (i) An
equilateral triangle with edges &2/3b, projected from a
cluster A3 (the column of stacked A3's has a threefold
screw axis). (ii) An isosceles triangle with apex angle 6,
projected from a BC combination. (iii) A larger, horizon-
tal, equilateral triangle of edge b, projected from a D cell.

The simple A, BC, and D packings are special cases of
c-stacked structures. The corresponding 2D tilings are
repetitions of the patterns in the first row of Fig. 14.

(b)

+ —W

BC

ML
-%F

H IL
'%IF

4ILI I '

Qs b
Cs'

b

FIG. 12. Faces and cells of structures stacked along a three-
fold (c-bond) axis, as in Fig. 11. (a) Allowed stacks of faces; ar-
row on the 2D edges marks downward direction of (nonvertical)
c bonds. (b) Allowed stacks of cells.

(b)
A6 BC

&I L ~ g IL
Wlr

The next simplest c-stacked structure is the (3/2)-OR
rhombohedral structure shown in Fig. 15(b). The unit
cell has the same size and shape as the ~ -inAated oblate
Ammann rhombohedron in Fig. 9, but in this case the
nodes are not on the high-symmetry corner points. (This
packing gives a more attractive model for the observed
Ga-Mg-Zn approximant than Ohashi's model, which
includes close distances between clusters along, e.g. , five-
fold axes, and thus violates canonical-cell rules. )

Another c-stacked structure is shown in Fig. 15(c).
Note how the projection of its cluster centers is a simple
triangular net with a &7 X v'7 distortion. For this
reason, Guyot and Audier suggested it as a model for
A,(A14Mn).

9IF ~ I I '

FIG. 11. Faces and cells of structures stacked along a two-
fold (b-bond) axis, projected onto a normal layer, and represent-
ed as edges and polygons of a two-dimensional tiling. Each
solid circle in the two-dimensional tiling represents a column of
nodes connected by b bonds. (a) Allowed stacks of faces become
2D edges, with lengths indicated and with slashes representing
2D packing rules (b). Allowed stacks of cells become 2D tiles.
Notice how the fourfold symmetry of the A6 and D2 squares
and the mirror symmetry of the BC isosceles triangle are bro-
ken.

E. Twinned structures and grain boundaries

1. Quasicrystal versus twinning models

Noncrystallographic diffraction patterns cannot all be
explained by twinning moderately large ( —30 A) unit-
cell crystals. Twinning of structures with much larger
cells would be consistent with experiment only if the unit
cell were identical to a portion of a quasicrystal structure;
in this case the structure is more economically described
as an approximant to a quasicrystal. On the other hand,
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A boundary plane can be made from X, Y, or Z faces
(Fig. 11); such planes occur within the simple packings as
follows: (i) X planes are (110) faces of the bcc A structure
and they are (100) faces of the rhombohedral BC struc-
ture. (ii) Y planes are (111)faces of the rhombohedral BC
structure and (001) faces of the trigonal D structure. (iii)
The rectangular Z planes form (110) planes of the rhom-
bohedral BC structure and (110) planes of the trigonal D
structure. Thus, there are three types of grain boun-
daries: (i) A (X)BC, (ii) BC( Y)D, and (iii) BC(Z)D,
where the intervening plane is in parentheses.

Obviously, we can also produce random stackings ei-
ther of X, Y, or Z planes using these grain boundaries,
since, in each case, there are two kinds of slabs of canoni-
cal cells that could be inserted between two identicl adja-
cent planes. In particular, the (110) stacking fault ob-
served in R(A1-Cu-Li) by Dubost et al. is
3 (X)BC(X)A, where one layer of BC structure is insert-
ed in the bcc A structure. [An X plane is a (110) plane

BC
(Z)

DBC '(y)

(s6)„, I

(4)~&zz (a)

BC D

FIG. 13. Allowed nodes in b-stacked structures: (a) Nodes
from pure periodic structures, (b) grain-boundary nodes, (c)
wedge nodes. The name of the node type is given beneath. Ar-
rangements in (b) and (c) can be extended to infinity using grain
boundaries along the dashed lines.

(b)

(x)
I

(66)zzzzz

(Z)
(6~)zzzzz

since each kind of canonical cell can be packed in a
periodic structure, one might be tempted to call the ran-
dom tiling of cells a "microtwinned" structure. Howev-
er, this can be di.stinguished, in principle, by its
diffraction properties: in a twinning explanation, the
whole diffraction pattern is an incoherent superposition of
rotated, broadened copies of a single crystal's spots. The
random-tiling diffraction pattern includes spots due whol-
ly to coherent interference between different cells, i.e.,
longer-range correlations. In some experimental systems,
twinned structures appear to grade continuously into ran-
dom quasicrystal structures.

2. Grain boundaries and their intersections

Now let us consider ways we might fill space with
periodic structures which satisfy pevfectly the canonical-
cell rules, even at the grain boundaries. In view of the
preceding paragraph, these must be domains of more
than one kind of periodic structure.

Cxrain boundaries are only possible between A and BC,
or between BC and D packings. For (Sec. III 8), when we
pack with purely A, purely BC, or purely D cells, the en-
tire structure is determined. Also, the 3 and D struc-
tures have no kind of face in common.

(x)
C

I

(64)zzzz

(X) E)0 (X)

(X)
I--(X) (X)-

BC
--(x)

BC
A

(X)

(x)

BC
(z}' (z)

(66}~zzz
(X) E}(- .(Z)A

I
I

(X)
BC

(x)

BC
D

(Z)

(z)
(66)ozz

(Z)

3322

FIG. 14. Allowed nodes in c-stacked structures: (a) pure
periodic nodes, (b) grain-boundary nodes, (c) wedge nodes.
Names and possible extensions of grain boundaries and wedges
are given as in Fig. 13.
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(b) 4. Transfer ma-trixiteration (random tilings)

FIG. 16. Triangle-square tiling. (a) In a random rhombus til-

ing with twelvefold symmetry, any group of three rhombi form-

ing a (possibly irregular) hexagon about a single vertex can be
repacked (dotted lines). (b) In a triangle-square tiling, also with
twelvefold symmetry, we must reshufBe an entire chain of ver-

tices. (c) The repacking of the smallest closed chain is a 30 ro-
tation of a dodecagon.

with Stampfli's inAation procedure " seems to have a frac-
tal boundary. ' The acceptance domain for a
canonical-cell packing may be equally exotic; we already
know that it must be disconnected if it is to have a
reasonably large packing fraction.

This approach to random tiling s does not require
reshufBings. ' ' For canonical cells it would be based
on the decomposition of (all) canonical cell tilings into
well-defined layers transverse to five-fold axes (see Ref. 69
and Fig. 4.53 of Ref. 35). The method may be too pon-
derous for 3D tilings, since the code to generate the pos-
sible next layers would be complex and the large number
of configurations drastically limits system size.

5. Aggregation algorithms

Growth algorithms which aggregate nodes carefully
can produce very good packings which are almost
canonical-cell packings. ' Aggregations of cells ought
to be feasible, but it is necessary to prevent generating
unfillable holes on the growing surface. This is easy to do
in handbuilt models since the large entropy of possible
packings provides freedom to avoid bad choices. Howev-
er, it may not be easy to formalize rules for the computer
which work for arbitrarily large systems. (Such models
would be expected to have large phason Auctuations lead-
ing to broadened diffraction peaks, similar to an
"icosahedral glass. " '

)

2. Infiation rules (quasiperiodic)

In general, inAation rules are decorations of the objects
which produce another structure following the same rules
but reduced by a scale factor. Now, Sec. IIC showed
how to decompose a canonical-cell tiling into rhom-
bohedral units. In turn, Sec. IVC showed one way to
decompose rhombohedral units into canonical cells (see
Fig. 9); there are many others. The product of these two
operations is a ~ inAation. If it permitted repeated
operations, it could produce a quasiperiodic structure.
(The decoration in fig. 9 cannot be repeated; it works only
on the 1/I rhombohedral tiling. ) This would be analo-
gous to StampAi's iterative construction of quasiperiodic
triangle-square tilings.

3. Monte Carlo equilibration (random tilings)

B. Progress in related cluster models

l. 6'ell-packed growth models

The canonical objects are certainly the four best-
packed polyhedra allowed in icosahedral cluster networks
with b and c linkages. Thus, we naturally expect well-

packed random networks to be largely composed of
canonical cells. Recently, Elser has demonstrated that a
growth process with annealing, using properly chosen
temperature gradient and growth velocity, produces large
clusters without tears. He has studied the distribution
of twofold and threefold bond coordination numbers

(/3, y) (Ref. 28, Table I). Fully 94%%uo of all nodes have
coordinations which are allowed according to Table V
(though this presumably includes some with forbidden
ways of arranging the linkages around a node). Compar-
ison of the packing fractions and average bond coordina-
tion (see Table III) also indicates that most of this net-
work consists of canonical cells.

This has been successful for random tilings, modeling
entropically stabilized quasicrystal phases. ' '

The fundamental move is a rearrangement of a few tiles
within an otherwise unchanged geometry. ' However,
no simple move exists in a 2D triangle-square tiling; we
must rearrange an entire chain [Fig. 16(b)]. For canoni-
cal cells, the analog of the chain is probably a two-
dimensional irregular slab two cells thick. We do not yet
know the analog of the dodecahedron in the triangle-
square tiling, i.e., a polyhedron of cell faces whose interi-
or can be packed by cells in two different ways.

2. Even and odd cluster models

Any b-c cluster network can be divided without
convicts into even and odd sublattices, wherein neighbors
related by c linkages have opposite parities, while those
related by b linkages have the same parities. Usually the
even and odd sublattices are statistically equivalent so the
geometry is essentially bipartite. Fowler eI; al.
decorate the even nodes with large clusters, the odd ones
with small clusters. This reduces the symmetry from
simple icosahedral to face-centered icosahedral, as seen
in experiments.
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3. Large and small cluster models

Another type of two-cluster model has been proposed
recently which is a nontrivial extension of the one-cluster
geometry: a network built of both large and small funda-
mental clusters. Besides the same b and c linkages be-
tween any two clusters, there is a new small-small linkage
of length ~ ' which is allowed along a twofold
aXiS 2 1

& 22& 35& 97

This is plausible in the i(A1-Zn-Mg) class [i.e., i(A1-Cu-
Li) class] of quasicrystals. Ohashi discovered that the
solved Al&Cu6Mg2 structure is a simple-cubic packing
of small clusters connected by the short linkages; Audier
speculates that Z(A1-Cu-Li-Mg) includes a triangular net
of short linkages. A two-cluster model was also con-
sidered in the i(A1-Mn) class by Yang, who suggested
generating an infinite geometry by a heirarchical rule.
However, there is no evidence at present for small clus-
ters in the icosahedral phase or related crystal phases of
the i(A1-Mn) class.

Now, recall (Sec. VI A2 above, compare Fig. 10) that
decorating large (r -inllated) oblate and prolate Ammann
rhombohedra with cluster packings was problematic if
we obey canonical-cell rules. On the other hand, with
good packings of large and small clusters, ' we can fix
one highly symmetric way to decorate prolate rhombohe-
dra, and similarly for oblate rhombohedra, consistent
with any packing of the rhombohedra. This is the basis
of a recent quasiperiodic decoration model for i(A1-Cu-

Li) with excellent short-range order and stoichiometry.
However, these descriptions in terms of the large

rhornbohedra are surely incomplete. They are not
sufficient to implement the matching rules that would
force the infinite structure to be quasiperiodic. On the
other hand, if the small and large clusters are the basic
units, then (just as in the simpler networks or packings
with only one cluster and two linkages) there is no reason
why each large rhombohedron should be decorated iden-
tically, and moreover we can imagine many good pack-
ings that cannot be regrouped into any decoration of
large rhombohedra.

It would be natural to formulate a generalized
canonical-cell model by adding to the canonical set the
simplest, best-packed, polyhedra with short bonds. How-
ever, this turns out to make several times as many kinds
of geometrical objects as in the basic canonical-cell model
presented in this paper. Since the basic model is still
insufficiently understood, it may be premature to attempt
its more complex versions.

C. SUMMARY

In summary, I have presented a set of geometrical rules
which I present as a good basis for models of icosahedral
alloy structure as well-connected packings of icosahedra.
The rules (i) are based on "linkages" between clusters
that are found in known crystalline alloys, and believed
to predominate in the icosahedral ones, (ii) appear to
have sufficient freedom to grow random structu. res obey-
ing them, and (iii) are restrictive enough that the sets of
cells and faces, and the possible local environments, are
relatively few; among other things, such simplicity is

essential if we are to construct decoration models and fit
the parameters.

A language was developed in Secs. II and III to de-
scribe and compare canonical-cell packings. Section II
showed how the canonical-cell packing relates to previ-
ous models built in terms of clusters or Ammann rhom-
bohedra. Section III detailed some of the less obvious
ways that canonical-cell models are simplified through re-
strictions on the freedom of packing (the sum rules in
Sec. III A, the forcing rules for local. environments in Sec.
III B). It appears that taking four basic polydehra or
"canonical cells" is just enough to allow icosahedral sym-
metry and/or extensive configurational entropy within
the structure, yet few enough that many constraints are
imposed (as seen in the relatively small set of possible lo-
cal environments). As a byproduct, we find that the
canonical cells —forming simultaneously a tiling and a
cluster packing —can achieve a larger packing fraction
than previous models. Note that all the results of Sec. III
are equally valid for random or for ideal tilings.

From Sec. III, the stoichiometry of a decoration of
canonical cells can be calculated given its average phason
strain and one parameter g characterizing the ratio of
well-packed A cells and more loosely packed D cells.
The frequencies of atom local environments could also be
calculated given this and the frequencies of the 32 types
of node local environments. It is surprising that there are
so few: the number is comparable to the 24 environments
in the 3D Penrose tiling, but that is an ordered, quasi-
periodic structure. The number of possible environments
in an arbitrary or random tiling of the rhornbohedra is

3O8 100

The packings of Sec. IV provide realistic structural
models for a number of approximant crystals. Further-
more, the larger approximants serve as approximations to
unbounded icosahedrally symmetric canonical-cell pack-
ings since (Sec. VI B) we still lack the rules to make them.
At least Sec. IV shows that the "packing rules" of Sec. II
allow a variety of structures, so that the canonical cells
are a possible basis for a decoration model with random-
tiling disorder. More practically, the 3/2 structural mod-
el is being used as a basis for calculations of diffraction
or of physical properties such as surface energy.

It is hard to produce arbitrarily large approximants for
the same reasons (Sec. VB) that it is hard to produce
quasiperiodic structures. A 5/3 approximant could prob-
ably be produced starting with large rhombohedra in a
1/1 packing an decorating them by canonical cells as in
Sec. VA2; however, it seems impossible to do this with
enough symmetry to make a genuinely cubic space group.
In fact, each successively larger approximant required
one additional kind of cell besides that in the preceding
approximant ( A in 1/1, BC in 2/1, D in 3/2), so perhaps
a symmetric 5/3 would require yet another kind of cell.

Along the way, two different kinds of two-dimensional
tilings were defined with packing rules induced by the
canonical-cell packing rules: the spherical tiling of Sec.
III B and the layer tilings of Sec. IV D. These have prov-
en to be useful tools for analyzing particular canonical-
cell structures.

Notes added in proof. M. Oxborrow (unpublished) has
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APPENDIX A: SIX-DIMENSIONAL GEOMETRY
AND FREQUENCIES OF SITES

This appendix contains results of the "six-dimensional"
description of quasicrystal geometry needed in this paper
(Sec. III A, volume fraction of BC cells; Sec. IVC 1,
rhombohedral cubic approximants; Sec. V A, random til-
ings).

1. Lift of a network to 6D and phason strain

Here I summarize needed old results and definitions.
Consider a network with rigid b and c bonds, as described
in Sec. IIA. The linkages, and hence all internode vec-
tors, can all be expressed (uniquely) as integer combina-
tions of the six icosahedral basis vectors along fivefold
axes a~e,'. We select a node ro arbitrarily as the origin,
and then for each node position

we construct the perpendicular-space coordinates
6

h =aug n;e;
i=1

(A2)

where we have arranged that e;=(e,". +e;)/&2 are an
orthonormal basis of a six-dimensional simple-cubic lat-
tice. If the nodes are vertices of a tiling in physical
space, then in 6-space they define a continuous faceted
three-dimensional hypersurface h (r").

We can coarse grain our notion of h and define the
phason strain tensor A to be the gradients of h as a func-
tion of r l. That is,

3;.—=dh; /drll (A3)

As noted below, a given set of statistical frequencies of
different linkages corresponds to a unique phason strain;
thus, any homogeneous structure must have a uniform
phason strain.

found the analog for canonical cells of the move shown in
Fig. 16. Contrary to Sec. VA3, it forms a chain 2 cells in
diameter. Thus, Monte Carlo is now feasible in principle
for the canonical-cell tiling. A transfer-matrix calcula-
tion for a small system (Sec. VA4) gives an entropy of
0.12 per node, much smaller than what was suggested in
Ref. 17. If we modify the packing rules to disallow the
nodes (68)0 (66)222z22, and (62)222222 (those of the A, BC,
and D tilings), then k —= 1 in Eq. (3.17) and it can be
shown this forces /=0. 317 (see Sec. III A 4 and compare
Tables III and VII).

"Random-tiling model" refers to equilibrium ensem-
bles which (in the simplest case) are defined by giving
equal weight to each different arrangement allowed by
the packing rules. The number of such packings grows
exponentially with system size, i.e., there is a finite entro-
py per site. ' ' Then the statistical weighting of long-
wavelength fluctuations in the tiling is expressed by the
coarse-grained entropy which is a function of phason
strain (defined in Appendix A). This entropy generally
has a maximum at zero phason strain; this selects a state
with icosahedral symmetry and (in d =3) Bragg
peaks. ' '

2. Number ratio of rhombohedra

n &
=m m&Xm&, (A4)

where the vectors m live in physical space and are given

by

(A5)

In a structure with (statistical) icosahedral symmetry,
A =0 so the I m J are proportional to the rhombohedron
edge vectors and the triple vector product (A5) is propor-
tional to the rhombohedron volume.

More generally, to calculate either n(PR) or n(OR), we
must insert (A5) into (A4) and sum over ten orientations.

The object of this part is to derive the ratio (3.3) be-
tween the number densities n(PR) and n-(OR) of prolate
and oblate rhombohedra, respectively. This is a generali-
zation of the well-known relation n(PR)/n(OR) =r for the
ideal 3DPT generated by projection, to more general
(possibly random) tilings with nonzero phason strain.

Consider an arbitrary tiling by the Ammann rhom-
bohedra with an average phason strain A. We keep in
mind the representation of the tiling as a faceted hyper-
surface. There are (3)=20 possible orientations of 3-face
in the 6D lattice which might be used as facets. These
fall into two classes, ten orientations projecting to prolate
rhombohedra and ten orientations projecting to oblate
rhombohedra.

The number of rhombohedra of a particle orientation
in the tiling is the number of corresponding 3-faces in the
irregular hypersurface. This is proportional to the three-
volume of the irregular hypersurface projected on the
coordinate three-plane parallel to the three-face of in-
terest. Thus, the ratio of numbers of different rhombohe-
dra is determined by the parameters (analogous to direc-
tion cosines) which specify the average orientation of the
hypersurface relative to the projection plane. For a 3-
plane in 6-space, the parameters are the nine independent
components of A. (An immediate corollary is that the 20
densities n p z for different rhombohedron types are not
independent, since they must depend on only nine param-
eters. )

Using this idea, the densities of rhombohedra for gen-
eral orientation can be worked out exactly as done in Ref.
57 for two-dimensional tilings, but with unit basis vectors
e~ ~

in physical space and e~ ~
in perpendicular space.

The result is
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In either case, the terms linear and quadratic in A sum to
zero, and the cubic term simplifies, giving a total

n(PR, OR) = —,'( VI,R oR+ VPR oRdetA), (A6)|
where V$R oR and VPR oR are the volumes of rhombohe-
dra in the respective spaces. It is well known that
VpR / VoR =~ and furthermore by a sort of duality,
Vpa = VgR and VoR = VI,R. From this follows (3.3), as
was to be shown.

APPENDIX B: THE TWELVEFOLD NETWORK

1. Twelvefold sites

The twelvefold network was defined as a subset of ver-
tices of the 3DPT generated by projection which have all
12 of the possible neighbors connected by edges (along
fivefold directions). They are fairly uniformly distributed
in space, and most of their relative displacements be-
tween neighbors are just b and c linkages. The network
can be described in the projection method by a simple
(triacontahedral) acceptance domain.

Pairs of twelvefold sites have separation aR, to exclude
such unrealistic separations a deterministic rule is used to
remove one site from each pair. The resulting (still quasi-
periodic) structure is called the twelvefold packing The.
removals cut pieces out of the acceptance domain and it
becomes a complicated shape. ' (Actually, there are
several slightly different twelvefold packings depending
on the rule we choose for deleting sites. )

The twelvefold packing was studied in detail in an ear-
lier paper, Ref. 46; I return to it here because(1) it gives
the best known quasiperiodic cluster packing with b and c
links; studying it highlights how much better a quasi-
periodic canonical cell packing would be, and (2) it con-
tains many canonical faces and cells; hopefully it can give
some suggestion of the statistics in the canonical-cell til-
ing (especially the parameter g defined in Sec. III A).

2. Frequencies of "cells" in twelvefold network

Let us determine the density of canonical-cell-shaped
patterns in the twelvefold network. These are not cells
proper: they sometimes overlap, because the short (a~
length) neighbors are not removed.

The frequency of patterns can be calculated using
volumes in perpendicular space. Recall that a polyhed-
ron of nodes corresponds to a perpendicular-space po-
lyhedron. The displacements of the latter polygon,
which keep all its vertices within the acceptance domain,
map out a subdomain whose volume is proportional to
the frequency of the physical-space polyhedron. (Amus-
ingly, the perpendicular-space patterns corresponding to
the canonical cells happen to be the same shapes but
smaller by r .) By Monte Carlo integration as in Ref.
46, I found about 2.15 A cells per twelvefold vertex; the
D subdomain was determined exactly and analytically
there are 2~ =0.111 D cells per vertex. The volume ra-
tio of A and D cells then corresponds to /=0. 19.

3. Frequencies of linkages in twelvefold packing

The average linkage coordinations in the twelvefold
network are known to be Zb =6+2~ and Z, =6—2~
from Ref. 46 (Table VI and Sec. IV A). We can derive
them for the twelvefold packing using information from
that paper.

We must count the total number of linkages removed.
When a node is removed, we count each linkage with a
weight —1, except the weight is —,

' when the node at the
other end is also removed. The only k&nd of environment
with a close neighbor is (175)~3&2, and exactly half of these
are removed. It turns out that, besides the obvious neigh-
bor by the short a~ connection, each such site also has
exactly two neighbors of the same type by the b linkages
near the center of the left part of Fig. 17 in Ref. 46. As-
suming, for simplicity, that we choose at random which
node of the short pair to remove, then each of these two b
linkages counts —

—,
' [the deterministic prescription for re-

moval of Ref. 46, Fig. 9(b), would make little difference].
The fraction of removed nodes is x =~ and each carries
5+2( —,') =6.5 of the b linkages and 5 of the c linkages, so
the new coordinations are

Z I,
= [Zb —2(6.5)x ]/( I —x ) =5.825;

similarly Z,' =5.528. Using Eqs. (3.9) and (3.10}, a
canonical-cell packing with the same ratio Z, /Zb would
have g =0.542.

APPENDIX C: AUDIER-GUYOT NETWORK

1. Construction of network

Audier and Guyot ' introduced a decoration of the
rhombohedral 3D Penrose tiling quite different from the
"twelvefold" decoration, which produces a similar net-
work of b and c linkages. One starts with a 3DPT com-
posed of prolate and oblate rhombohedra (PR and OR)
inflated by r, i.e., with edge length Az =r a~. (Note
how these are smaller than the ~ -inAated rhombohedra
seen in Figs. 9 and 10 of this paper, and also used in later
models of Audier and Guyot. '}

The even vertices of the 3D rhombohedral tiling all be-
come even nodes of the network. Each PR also contains
an interior site dividing its long diagonal in the ratio 1:~,
nearer to the even tip. All the odd nodes of the network
sit on selected interior sites. To avoid close node neigh-
bors, we must remove interior sites so that, if two PR
share a face around their (common) even tip, one must be
empty. This is a problem of partitioning the graph of
mutually excluding sites, and an efticient heuristic algo-
rithm was used to optimize the packing.

2. Optimal occupation and packing fraction

All mutually excluding sites are in PR with a common
even tip. Thus, the graph breaks up into disjoint finite
subgraphs, each encircling an even node; manifestly, the
global density is maximized if it is maximized for each
subgraph. This is easy provided we started from the usu-
al 3DPT constructed by projection.

For each of the 24 kinds of local environment in the
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f~G —=0.5584 . (C 1)

This is better by 0.9% than that of the twelvefold pack-
ing, and therefore currently the best known packing frac-
tion for a quasiperiodic b-c network.

APPENDIX 0: ENUMERATION
OF ENVIRONMENTS

Two independent methods were used to generate (by
hand) a "tree" containing each local environment exactly
once. A two-stage method based on linkages is described
below. Both approaches found 32 distinct environments,
as tabulated in Table VI.

The local environment is treated as a set of linkage
directions, i.e., the set of vertices of the 2D spherical til-
ing rather than the tiles. We count all ways to place ver-
tices, subject to the forcing rules of Sec. III C 1. A priori,
these conditions are necessary for an environment to be
"canonical, " but not sufricient, so at the end it was
checked that a valid spherical tiling is formed. Remark-
ably, it was valid in every case, which shows that, in fact,
the forcing rules FO —F4 are not only necessary but
sufhcient.

A quite different and less eKcient method was also
used based on building up the 2D spherical tiling; instead
of a b-linkage arrangement, the numbers of D, and D,
tiles contained, and how these adjoined with each other,
was used for the first stage of classification. Given this,
the rest was built outwards from the initial D tile by the
rules in Fig. 5; most choices were forced.

3DPT, the possible odd sites are in those threefold
directions with a sharp PR tip (a "P," corner in the nota-
tion of Ref. 46). For each of these, the optimal number of
c linkages was found, by hand, using the pictures of the
local environments of the 3D Penrose tiling. ' Often
several distinct arrangements had the same optimal num-
ber; if we choose by a deterministic rule, the result is
quasiperiodic but has a face-centered icosahedral Bravais
lattice (see Sec. V) since the even and odd nodes are not
equivalent.

The optimal number M of associated odd nodes is sum-
marized by the rule M=N(P&) if N(P&)~4;
M=N(P, ) —1 if N(P, )=5 or 6; M =6 for the environ-
ment (10 5 0)3, otherwise, around twelvefold environ-
ments (12/30) we have M =8 for p =0, M=9 —p for

p = 1,2, and M = 10—p for p =3,4.
Knowing the frequencies of the environments (Ref. 46,

Table III), ' this gives the packing fraction

1. First stage

We begin by identifying all ways of arranging the b
linkages consistent with (a) P=S, 6, or 7 (Sec. III C2
showed that only these values are allowable), and (b)
obeying forcing rules F3(b) and F4 (the other ones refer
to c linkages). Organizing by b linkages is more efficient;
if one fills in c linkages first, there is often no valid way to
complete the environment with b's. To avoid generating
the same configurations twice, the standard orientation
for pictures of Sec. III 8 2 was employed.

The first stage was subdivided into two parts. First,
"maximal" b arrangements were generated: arrange-
ments satisfying rule F3(b) in which any additional b
would violate the rule. Obviously all allowed b packings
are part of at least one maximal packing. The maximal
arrangements have P=6 or 7 while (see Table V) canoni-
cal arrangements have /3=5, 6, or 7. The second part of
this stage, then, is to find all arrangements obeying rules
F3(b) and F(4) obtained by removing, at most, one [or, if
N (b) =7, two] of the b linkages from a maximal arrange-
ment. (Of course, some duplications must be eliminated
here since many canonical arrangements can be made
from more than one maximal one. )

It was found that there were only eight maximal b
packings, all with the number of b links P= 6 or 7. Seven
of these are the b arrangements represented in environ-

(76)433 (75)4422 (75)4332 (75)3333 (67)322 (6 )222222

and (68)o. The eighth corresponds to a b arrangement
like Fig. 17 in Ref. 46; its name would be (7y)5322, so it
violates rule F4, but removals from it generate several le-
gal arrangements. After the removals, 25 canonical ar-
rangements of b's were found.

2. Placement of c linkages

The second stage, filling in with c's, turns out to be
very easy. First note that each b can usefully be viewed
as filling up the two triangles next to it, and the c as
filling up its triangle —in fact, this is exactly the way the
rhombohedra which represent these linkages take up the
solid angle. (As noted in Sec. III 8 1, any unfilled triangle
it part of either a C, or a Db corner. ) When two triangles
of the icosahedron were left unfilled surrounded by b's,
there were two choices, so one or the other must receive a
c linkage. This freedom is the difference between (66)4zzz
shown in Fig. 7(b), and (66)4zzz which can be deduced
from Fig. 14. It is responsible for five primed-unprimed
pairs of node types in Table VI, all of them except for
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