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Hellmann potential extended to next-nearest neighbors for alkali halide crystals
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The short-range Hellmann potential function exhibiting the characteristics of both the Born-
Lande and the Born-Mayer potential functions has been extended to include the contributions of
next-nearest neighbors and van der Waals interactions. It is further employed to calculate the iso-
thermal bulk modulus {8&) and its first- and second-order pressure derivatives (dB /dP,
d Br/dP ), coefficient of volume expansion (P), adiabatic and isothermal Anderson Gruneisen pa-
rameters (5& and 6&), and transverse- and longitudinal-optic-mode Gruneisen parameters (y&o and

y«) for NaCl-structure alkali halides. Computations have also been extended to calculate the
Gruneisen parameter (y) and mode Gruneisen parameter (q) using Slater, Dugdale and McDonald,
and free-volume theories. The results are found to be in good agreement with experimental data.

I. INTRODUCTION

Recently several workers' have performed first-
principles ab initio calculations for potentials in ionic
crystals. These calculations are based on the theory of
Gordon and Kim" for determining pair potentials for
closed-shell systems from the charge densities of the free
ions constituting the crystal. The method of Gordon and
Kim is essentially based on the Thomas-Fermi-Dirac
electron-gas model which has been criticized by
Eggenhoffner, Murthi, and Gumi, pointing out the lack
of any self-consistency of treatment between electron
density and potential. Due to the simplifying approxima-
tions and the parameter-free nature of the first-principles
calculations, the results are generally less accurate than
those derived from the parametrized models of the solids.
These model potentials play a useful role in interpreting
experimental results.

A number of short-range potential functions ' have
been proposed from time to time by different investiga-
tors, but none of them is capable of explaining all ob-
served macroscopic properties of ionic crystals. The
search for the potential function capable of explaining all
the macroscopic properties of the crystals, therefore, still
continues. The essential requirements of an ideal poten-
tial are as follows.

(i) It should be short range in nature, i.e., must fall
sharply with increasing distances.

(ii) It should provide infinite repulsion at zero separa-
tion to avoid the mutual collapse of the ions into one
another.

The Born-Lande (BL) inverse power form, initially pro-
posed to explain the cohesive energy of crystals, satisfies
both conditions cited above, but the results obtained by
using this form are not very satisfactory. The Born-
Mayer (BM) exponential form discussed very often in the
literature does not satisfy the second requirement cited
above, although it has a quantum-mechanical support
behind it.

Hellmann" empirically proposed the repulsive poten-

tial function of the type

tt(r) = —exp( r/p—),b

which evidently satisfies the second condition and simul-
taneously has the advantage of both the BL and BM po-
tential forms. A comparison of the rate of fall of the po-
tential with distance is given in Table I for the sake of
ready reference showing that the rate of fall is very steep
in the case of the Hellmann potential. The Rydberg po-
tential which provides for an attractive term seems to be
the most unreliable potential, for the net interaction turns
out to be attractive for larger distances, which is against
the preliminary assumption. Moreover, it is not infinite
even at r =0. The rate of fall of the Born-Mayer poten-
tial is nearly equal to that of the Hellmann potential but
it also does not satisfy condition (ii) stated earlier. The
Born-Lande potential, though, satisfies condition (i) but
the fall is very slow. Similar is the case with the
Narayan-Ramaseshan (NR) potential which neither be-
comes infinite at r =0 nor is the fall much steeper. Evi-
dently the Hellmann potential seems to be the ideal in na-
ture and needs further investigation.

Preliminary studies of the Hellmann potential conduct-
ed by many investigators ' ' did not yield very en-
couraging results, because none of them tried to extend
the potential up to second neighbors. It is well known
that the second-neighbor contributions are quite
significant (contributing 30—40% to the cohesive ener-
gies of the alkali-halide crystals) and should not be ig-
nored. Moreover, the van der Waals interactions contrib-
uting 10—15 % to cohesive energy of the ionic crystals,
too, cannot be neglected.

We have in the present study not only extended the
Hellmann potential up to second neighbors, but also have
taken into account the van der Waals dipole-dipole and
dipole-quadrupole interactions to calculate the iso-
thermal bulk modulus and its first- and second-order
pressure derivatives, the transverse- and longitudinal-
optic mode Gruneisen parameters () ro and yLo), the
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TABLE I. Comparative study of Rydberg, Born-Mayer, Narayan-Ramaseshan, Born-Lande, and Hellmann potentials for NaCl
crystal (taken as an example) showing the superiority of the Hellmann potential over the rest of the potentials.

Name of the
potential

Rydberg'

Born-Mayer
(p =0.321)
Narayan-
Ramaseshan'
Born-Lande
(n =9)
Hellm ann

(p =0.358)

'Reference 34.
Reference 6.

'Reference 35.

Form of the
potential

k exp( —br)
—pr exp( —br)
B exp( —r/p)

A+ exp( —r+ /p+ )

+ A exp( —r /p )

A /r"

b—exp( —r /p)r

2366

6536

62 000

Relative values of potential at
r=a r =a&2

—0.097

0.0263

0.0318

0.4453

0.0272

r =2a
—0.0109

1.8X 10

0.0035

1.97 X 10

1.9X 10

Gruneisen parameter (y), the mode Gruneisen parameter
(q), and the Anderson Gruneisen parameters (5s and
5z ). It is worth noting that the results are very close to
the experimental data. The mathematical analysis is
presented in Sec. II while the results are discussed in Sec.
III of the present paper. For the sake of comparison, the
calculated values of different quantities using the Naray-
an and Ramaseshan' (NR) potential and the Rydberg
potential are also given in the respective tables.

II. MATHEMATICAL ANALYSIS

the softness parameter p; for different ion pairs given by

Pij p (Pii +PJJ )

within the framework of the Smith distorsion model. '

We have calculated the values of p;, and p employing
the least-squares-fitting approximation and using the
values of p, determined by the procedure discussed ear-
lier, i.e., through Eq. (3).

From the definition of the bulk modulus, we have

8~= —VP' .

Differentiating Eq. (6) we get

dB&

dP
p /I= —1 —V pfaM(Ze) C D+P(r)

r r' r' 'g(r) =— (2)
Subsequent differentiation of this equation yields

The lattice energy per ion pair of a diatomic crystal
can be written as

where r is the equilibrium distance at zero external pres-
sure. The first term of the right-hand side of Eq. (2) being
the long-range electrostatic Madelung energy, C and D
are the van der Waals dipole-dipole and dipole-
quadrupole coefficients. The parameters b and p appear-
ing in Eq. (l) have been evaluated by using the cohesive
energy E, and the equilibrium condition

der(~r) ()
dr

(3)

The potential expressed by Eq. (l) can be extended fur-
ther to include the second-neighbor contribution as under

b
P(r) =n, —exp

' r++r —r

n2+ —,exp
2 r

2r+ r b+ —,expr'
2r —r'

Here n, and n2 are the number of nearest- and next-
nearest neighbors and r' is the next-nearest-neighbor dis-
tance. In this equation, we have used different values of

d8~ p
dP& (P'P

VPri r V(Pal )2+(P')' (P')'

4 —3s V d (PV')IdV
6 2 d(PV')Id V

where P = dg(r)ldV and P',—P", and P"' represent the
first-, second-, and third-order derivatives of P with
respect to volume at constant temperature.

The Gruneisen parameter y ( =PVBzICr ), desc. ribing
the thermodynamic behavior of the crystals, was evalu-
ated by Slater' from the theory of elasticity. His expres-
sion for the vibrational velocities are valid only if the
solid is under zero external pressure. Dug dale and
McDonald' derived a more general expression for y by
including the effect of pressure. But these theories do not
take into account the variation of Poisson's ratio with
volume. ' Vaschenko and Zubarov' developed a formu-
lation for y using the free-volume theory. Recently Mi-
gault and Romain' proposed a unification of these
theories, taking into account the variation of Poisson s
ratio with volume and evaluated a general expression for
p, giving
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where P is the pressure at volume V at absolute zero of
temperature and s is a parameter which takes for all
solids the value zero in Slater's theory, —', in the Dugdale
and McDonald (DM) theory, and ~ in the free-volume

(FV) theory.
The mode Gruneisen parameter q at zero external pres-

sure can be expressed as q =dlny/din V,

A = —' P~ (r)+ —P'i, (r) =3krBr,R r

where

P~ (r) =P(r)—C D
6 8

(18)

(19)

1 (1 s) V—P"
q= . s 1+s— p"'

p/

2
P I I

Pf

(10)

represents short-range potential and P~(r) and P~(r)
represent the first- and second-order derivatives of A

with respect to r. DifI'erentiation of the well-known Szi-
geti relation

r

The two Anderson (adiabatic and isothermal) parameters
(5s and 5r ) related to pressure-independent temperature
derivatives of adiabatic (B, ) and isothermal (Br) bulk
moduli can be written as

o+2
PCOTO—co (20)

with respect to V yields for the transverse-optic-mode
Gruneisen parameter

1
5S p

~»Bs
dT P

P

BlnB~

P dT
(12) 1 1

3'To
2 +2

Vd eo

dV

d coTo
V TO

TO
r

1

e +2
Vde

dV

(21)

BlnBs 1 BlnBs

Bin V r P BT

BlnB„1 BlnBz-

BlnV
J P BT

(14)

(15)

A plausible assumption can be made to calculate
temperature-independent volume dependence of the bulk
modulus

where p is the volume-expansion coefficient, given by

Ir P"'(r) —2rg'(r)]
[r g"(r) —2rg'(r) j

Shanker and Singh expressed the Anderson parameters
with the help of thermodynamic equations in terms of
volume-dependent and volume-independent contributions
of adiabatic and isothermal bulk moduli (Bs and Br) as
follows:

V dd
dV

The longitudinal-optic-mode Gruneisen parameter HALO is
related to @To by the relation

dGO

XLO ~TO 2 E d VEo

where eo and e are the static and electronic dielectric
constants, respectively. p is the reduced mass of the ion
pair and coTO represents infrared-absorption frequency in
the transverse-optic mode.

We have taken the experimental data on eo and e

from Lowndes and Martin and those on Vde /d Vfrom
Bendow et al. and Mahmud, Kamath, and Scaife.
The experimental data on Vd eo/d V have been taken from
Fontanella, Andeen, and Scheule and Lowndes and
Martin.

BlnB

Bln V z-

BlnB&

Bln V z- III. RESULTS AND DISCUSSIONS

which can be expressed in terms of interionic potential
energy as follows:

BlnBr 1 r P'"(r) —3r q"(r)+4ry(r)
a»V, r g"(r) 2rg'(r)—

Values of 5s and 5r are calculated using Eqs. (14)—(17).
Values of the first part on the right-hand side of Eqs. (14)
and (15) are calculated from the Hellmann potential and
the second part, related to the temperature derivatives of
the bulk modulus at constant volume, are determined.
from thermoelastic data. ' The coefficient of volume
expansion (P) is calculated from Eq. (13).

Following Born and Huang, the force constant 2 can
be expressed as

The results of computations carried out in the present
work are reported in Tables II—VII. Table II contains
the values of the model parameters calculated using Eqs.
(1)—(3). Table III records the results on the isothermal
bulk modulus and its first- and second-order pressure
derivatives calculated in the present work along with
their experimental values. A careful examination of
Table III exhibits remarkable agreement for the iso-
thermal bulk modulus (Br ), first- and second-order pres-
sure derivatives of the isothermal bulk modulus (dB7 IdP
and d Bz-IdP ) with experimental values. We have tak-

en the values of ionic radii r," from Sysio. The values of
cohesive energy E have been taken from Ladd. The
values of van der Waals coefficients C and D are taken
from the recent work of Shanker and Rajoria for the
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Crystal

LiF
LiCl
LiBr
LiI

b

(10 ergs m/g mol)

0.880
0.865
0.873
0.997

p+
(A)

0.065
0.065
0.065
0.065

P.—
(A)

0.269
0.281
0.296
0.326

TABLE II. Calculated values of the repulsive strength pa-
rameter (b) and softness parameter p+ and p for anions and
cations, respectively, appearing in the Hellmann potential.

P(r)=/++/ = 3+exp

The Rydberg potential

r+
+A exp( —r /p ) .

P

(23)

Narayan-Ramaseshan' (NR) and Rydberg potential for
the sake of comparison. NR considers the ions as a
compressible sphere assuming the short-range repulsive
interaction of the type

NaF
NaCl
NaBr
NaI

KF
KCl
KBr
KI

RbF
RbC1
RbBr
RbI

0.784
0.867
0.987
1.037

1.276
1.138
1.144
1.169

1.288
1.222
1.233
1.246

0.077
0.077
0.077
0.077

0.114
0.114
0.114
0.114

0.130
0.130
0.130
0.130

0.269
0.281
0.296
0.326

0.269
0.281
0.296
0.326

0.269
0.281
0.296
0.326

P(r) =A, exp( —r /p) pr—exp( —r /p), (24)

contrary to the traditional potential forms, assumes an
attractive term providing for the mutual attraction be-
tween the nucleus of one ion with the electrons of the
other ion. An analysis of the Tables III—VII shows the
superiority of the Hellmann potential over other poten-
tials. It is easy to see from the tables that the Slater's
theory for y and q could safely be discarded as it gives
comparatively poor agreement with the experimental
while the results using Dugdale and McDonald (DM)
theories are in better agreement with the experiment.
The simplified form of Eq. (9) gives a direct relationship
between y and dBT/dP as under

reasons discussed at length in Shanker and Agrawal. '

Table IV shows the calculated values of the Gruneisen
parameter y using Slater, ' Dugdale and McDonald, '

and free volume' theories along with their experimental
data. In Tables III—VII we have also recorded the re-
sults from our previous papers calculated using the

dBT s
6 2 dP 2

which further yields the following expressions:

l dBT

(25)

(26)

TABLE III. Calculated values of the isothermal bulk modulus (BT) and its first- (dBT/dP) and second- (d BT/dP') order pressure
derivatives using the NR, Rydberg, and Hellmann potential along with their experimental data.

Crystal Calc. '
BT (10' Nm )

Calc. Calc. ' Expt. Calc. "'
dBr /dP

Calc. b Calc. ' Expt. '
(
—dB /dP)10 "Pa

Calc. ' Calc. Calc. ' Expt.

LiF
LiCl
LiBr
LiI
NaF
NaCl
NaBr
NaI
KF
KCl
KBr
KI
RbF
RbCl
RbBr
RbI

0.299
0.306
0.279
0.263
0.171
0.181
0.158
0.162
0.124
0.134
0.121
0.117
0.104
0.139
0.137
0.118

0.653
0.323
0.278
0.214
0.436
0.275
0.216
0.173
0.316
0.172
0.153
0.123
0.247
0.161
0.137
0.110

0.682
0.342
0.247
0.205
0.461
0.260
0.227
0.169
0.319
0.188
0.164
0.126
0.288
0.167
0.152
0.113

0.674
0.301
0.238
0.178
0.471
0.240
0.197
0.151
0.306
0.176
0.148
0.117
0.270
0.158
0.134
0.106

4.79
4.79
4.79
4.69
4.88
4.80
4.88
4.71
5.18
4.94
5.08
4.98
6.21
5.88
5.31
5.26

3.84
4.61
4.78
4.95
3.94
4.66
4.53
4.75
4.00
4.82
4.55
4.69
4.37
4.63
4.69
4.74

4.58
4.76
4.94
4.86
4.69
4.97
5.10
5.10
5.21
5.20
5.27
5.31
5.44
5.32
5.11
5.33

5.30
5.63
5.68
6.15
5.30
5.63
5.68
6.15
5.38
5.46
5.47
5.56
5.69
5.62
5.59
5.60

27. 1

19.9
21.1
19.7
49.5
36.2
42.7
35.4
70.8
45.0
58.0
55.0

136.1
90.2
51.6
60.7

7.4
10.6
19.8
24.8
10.7
17.3
25.0
32.7
12.6
44.9
37.0
47.6
21.1
36.0
43.5
54.9

12.5
20.5
31.4
35.1

14.9
28.0
31.2
46.9
21.2
40.6
52.5
71.6
24.7
52. 1

68.2
77.0

49+ 14

53+15

58+21
75+25
77+ 17

'NR potential (Ref. 37).
Rydberg potential (Ref. 38).

'NR potential (Ref. 36).
Reference 39.

'Present study.
References 21 and 22.
References 40 and 41.
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TABLE IV. Calculated values of the Gruneisen parameter (y) using Slater, Dugdale and McDonald (DM), and free-volume (FV)
theories along with experimental data.

Crystal

LiF
LiC1
LiBr
LiI
NaF
NaCl
NaBr
NaI
KF
KC1
KBr
KI
RbF
RbC1
RbBr
RbI

2.23
2.23
2.23
2.18
2.27
2.23
2.27
2.19
2.42
2.30
2.37
2.32
2.94
2.77
2.49
2.51

y (Slater)
b

1.76
2.14
2.23
2.31
1.80
1.96
2.10
2.21
1.84
2.24
2.11
2.18
2.02
2.15
2.18
2.20

2.12
2.21
2.30
2.24
2.18
2.32
2.38
2.38
2.44
2.43
2.67
2.49
2.55
2.49
2.39
2.48

1.90
1.89
1.90
1.85
1.94
1.90
1.94
1.86
2.09
1.97
2.04
1.99
2.60
2.44
2.16
2.18

y (DM)
b

1.42
1.80
1.89
1.97
1.47
1.63
1.77
1.87
1.50
1.91
1.77
1.85
1.68
1.82
1.84
1.87

1.79
1.88
1.97
1.91
1.85
1.99
2.05
2.05
2.10
2.10
2.14
2.15
2.22
2.16
2.05
2.15

1.56
1.56
1.56
1.51
1.60
1.57
1.61
1.52
1.75
1.64
1.71
1.66
2.27
2.11
1.82
1.85

y (FV)
b

1.09
1.47
1 ~ 56
1.64
1.14
1.29
1.43
1.54
1.17
1.56
1.44
1.51
1.35
1.68
1.51
1.54

1.45
1.54
1.63
1.58
1.51
1.65
1.72
1.72
1.77
1.77
1.80
1.82
1.89
1.82
1.72
1.82

1.63
1.81
1.94
2.19
1.51
1.61
1.64
1.71
1.52
1.49
1.50
1.53
1.40
1.39
1.42
1.56

y (expt. )
e

2.48
2.38
1.86
1.69
1.75
1.72
1.71
1.59
1.69
1.27
1.66
1.45
1.37
1.32

2.66
2.74
2.78

2.52
2.50
2.56

2.60
2.65
2.61

'NR potential (Ref. 37).
Rydberg potential (Ref. 38).

'Present study.
Based on thermodynamic data (Ref. 39).

'Based on the lattice-dynamical theory. (Ref. 42).
'Based on the finite-strain theory (Ref. 43).

TABLE V. Calculated values of the mode Gruneisen parameter (q) using Slater, Dugdale and McDonald (DM), and free-volume
(FV) theories along with experimental data.

Crystal

LiF
LiC1
LiBr
LiI
NaF
NaC1
NaBr
NaI
KF
KC1
KBr
KI
KbF
RbC1
RbBr
RbI

1.82
1.37
1.32
1.19
1 ~ 87
1.47
1.49
1.31
1.81
1.34
1.50
1.39
2.42
2.27
1.42
1.43

q (Slater)
b

1.38
1.17
1.37
1.37
1.30
1.10
1.23
1.28
1.08
1.72
1.34
1.34
1.30
1.34
1.37
1.37

2.00
1 ~ 59
1.68
1.60
1 ~ 57
1.57
1.48
1.66
1.39
1.57
1.74
1.82

1.39
1.75
1,53
1.76

1.41
0.88
0.82
0.58
1.46
1.00
1.02
0.82
1.38
0.85
1.02
0.90
2.02
1.87
1.09
0.93

q (DM)
b

0.86
0.66
0.89
0.81
0.85
0.57
0.80
0.78
0.58
1.30
0.87
0.86
0.82
0.86
0.89
0.89

1.65
1.14
1.30
1.16
1.13
1;11
1.00
1.21
0.89
1.10
1.29
1.38
0.89
1.30
1.06
1.29

1.12
0.47
0.40
0.24
1.20
0.62
0.63
0.40
1.04
0.42
0.62
0.48
2.11
1.55
0.48
0.49

q (FV)
b

0.69
0.21
0.48
0.37
0.53
0.1 1

0.39
0.36
0.18
0.98
0.48

. 0.45
0.44
0.47
0.49
0.49

1.43
0.79
0.90
0.81
0.78
0.73
0.60
0.85
0.45
0.71
0.92
1.02
0.44
0.93
0.66
0.93

q (Expt. )

0.98
1.46
1.61
1.48
1.08
1.14
1.46
1.44
1.34
1.53
1.24
0.99
1.80
1.84
1.69
1.59

'NR potential (Ref. 37).
Rydberg potential (Ref. 38).

'Hellmann potential (present study).
References 21 and 22.
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TABLE VI. Calculated values of isothermal and adiabatic Anderson parameters (5T and 5&) and the coeScient of volume expan-
sion (P) along with their experimental data.

Crystal Calc. ' Calc. Calc. "' Expt. d Calc. ' Calc. Calc. ' Expt. ' Calc. '
p (10 k ')

Calc. " Calc. "' Expt. g

LiF
LiC1
LiBr
LiI
NaF
NaCl
NaBr
NaI
KF
KC1
KBr
KI
RbF
Rbcl
RbBr
RbI

5.62
6.21
6.33
6.12
5.48
5.40
5.83
5.71
5.12
5.87
5.62
5.31
7.41
7.17
6.46
6.32

4.67
6.03
6.33
6.38
4.54
5.26
5.48
5.75
4.94
5.75
5.09
5.02
5.57
5.92
5.84
5.80

5.41
6.98
6.48
6.29
5.29
5.57
6.05
6.10
6.15
6.12
5.81
5.63
6.64
6.61
6.26
6.36

6.00
6.77
7.01
7.32
5.77
5.85
6.23
6.43
6.20
6.22
5.88
5.76
6.80
6.76
6.60
6.52

3.96
3.37
3.24
3.26
4.28
4.20
3.93
3.71
4.24
4.01
4.54
4.65
5.01
4.59
4.16
4.20

3.01
3.19
3.23
3.52
3.34
4.06
3.58
3.75
3.06
3.89
4.01
4.36
3.17
3.34
3.54
3.68

3.75
3.34
3 ~ 39
3.43
4.09
4.37
4.15
4.10
4.27
4.27
4.73
4.98
4.24
4.03
3.96
4.24

3.56
4.09
4.12
4.06
3.75
3.80
4.11
4.13
4.08
4.38
4.02
3.93
4.97
4.93
4.72
4.47

2.51
1.33
1.23
0.99
3.41
1.34
1.84
1.36
3.43
1.89
1.90
1.57
4.42
1.79
1.58
1 ~ 54

0.86
1.05
1.11
1.25
1.01
1 ~ 17
1.23
1.29
0.97
1.33
1.22
1.29
1.02
1.19
1.25
1.31

1.05
1.18
1.43
1.34
1.21
1.32
1.35
1.44
1.34
1.44
1.48
1.58
1.37
1.63
1.36
1 ~ 58

1.00
1.32
1.50
1.80
0.96
1.19
1.26
1.37
1.02
1.11
1.16
1.23
0.94
1.03
1.08
1.23

'NR potential (Ref. 37).
"Present study using the Rydberg potential.
'Present study using the Hellmann potential.
Reference 20.

'Reference 30.
'Rydberg potential (Ref. 38).
gReference 39.

TABLE VII. Calculated values of longitudinal- and transverse-optic-mode Gruneisen parameter (y«and yTo) along with their
experimental data.

Crystal

LiF
LiCl
LiBr
NaF
NaC1
NaBr
NaI
KF
KC1
KBr
KI
RbF
RbCl
RbBr
RbI

Calc. '

1.38
1.26
1.20
0.83
1.42
1.42
1.63
1.41
1.48
1.62
1.61
1.28
1.69
1.71
1.79

Calc.

0.75
1.27
1.76
0.87
2.12
1.31
1.46
0.83
1.08
1.12
1.31
0.39
1.17
1.23
1.32

3 Lo
Calc. '

1.15
1.61
1.27
0.99
1.29
1.35
1.38
1.41
1.41
1.44
1.41
1.46
1.45
1.35
1.48

Expt. d

0.97

0.76
0.97
1.09

1.19
0.97
1.12

1.04
1.33
1.15

Calc. '

2.83
2.88
3.26
2.24
2.75
2.85
2.87
2.49
2.64
2.68
2.58
2.74
2.78
2.79
2.77

Calc.

2.62
2.66
3.37
2.07
2.53
2.65
2.80
2.13
2.23
2.25
2.23
1.65
2.19
2.24
2.15

XTo
Calc. '

2.60
3.23
3.33
2.40
2.62
2.78
2.62
2.49
2.57
2.50
2.48
2.92
2.55
2.43
2.46

Expt.

2.35+0.16

2.08+0.18
2.35+0.16
2.37+0.20

2.28+0.18
2.06+0.13
2.20+0.06

2.16+0.10
2.39+0.16
2.09+0.15

'Calculated in the present work using the NR potential.
"Rydberg potential (Ref. 38).
'Present study using the Hellmann potential.
Reference 44.

'NR potential (Ref. 37).
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1~DM Vslater (27)

2 — 1

~FV Yslater 3 VDM 3

It is worth noting that the formula for y is not satisfied
even for the experimental data on dBT/dI', the main
reason for this being the diversity in the data on y as ob-
served from Table IV. Reverse calculations using the ex-
perimental values of dBT/dP and y yield the average
value of s as 1.5 for Li halides, 1.85 for Na halides, 2.00
for K halides and 2.5 for Rb halides, i.e., no uniform
value of s can be chosen to satisfy the formula for y. The
formula for y therefore needs further investigation and
refinement of the theory which will be the scope of future
work. The values of the mode Gruneisen parameter (q)
given in Table V, calculated from the DM theory using
the Hellmann potential, are found to be close to 1 which
is in agreement with the assumption q =1 initially made
by Anderson and Swenson. The values of 6&, 6T, B,

fQ p LQ calculated from the Hellmann potential are also
in better agreement with experimental data than the oth-
er potential forms taken into consideration.

In the present work, we have neglected the many-body
interactions for the sake of simplicity. Moreover, in this
simplified version of the Hellmann potential we have tak-
en the uniform value of b for all ion pairs (cation-cation,
anion-anion, cation-anion). The Hellmann potential can
further be improved to incorporate the correction factors
along with other minor modifications. The application of
the Hellmann potential to predict the elastic and photoe-
lastic constants will be our next step of study.
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