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Relaxation mechanisms in a benzyl chloride —toluene glass
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Using frequency-dependent dielectric susceptibility, we have studied three different types of relax-
ation phenomena, namely primary (a), secondary (i3), and conductivity (c) relaxation, in a sample of
25 vol %%uo benzyl chloride in toluene. The measurement covers ten decades of frequency:
10 '(v(10' Hz. The conductivity relaxation which is due to mobile ionic impurities in the sam-

ple has characteristics similar to those of the primary relaxation. Using the universal scaling curve
for the primary relaxation response in glasses, we can separate the primary and secondary relaxa-
tions which overlap in frequency. The shape of the secondary relaxation is log-normal in the fre-

quency domain and corresponds to a Gaussian distribution of energy barriers. The relaxation time
for this process can be fitted by an Arrhenius form. Extrapolating the data to higher temperatures,
we find that it crosses the primary-relaxation curve. We compare a set of similar molecular liquids
and conclude that the secondary relaxation is mainly due to the rotation of a subgroup in the benzyl
chloride molecule. We also report a measurement of the nonlinear dielectric response. There is no
evidence of a divergent nonlinear susceptibility as the glass transition is approached.

I. INTRODUCTION

Several different kinds of relaxation phenomena have
been identified in glassy systems. There are relaxations
that occur in the supercooled liquid in the region where
the viscosity increases dramatically with decreasing tem-
perature. These are known as the primary or o. relaxa-
tions. At lower temperatures, in the region where the
sample is already solid, there is another relaxation mech-
anism known as secondary or I3 relaxation. Finally, if
there are any mobile ions in the liquid there will be relax-
ation due to the conductivity, which we call c relaxation.
In this paper we study these three different relaxations in
one sample, a mixture of 25 vol%%uo benzyl chloride in to-
luene, and try to understand the relation between the
three different relaxation mechanisms. We have chosen
the dielectric response as our probe of the dynamics in
the glass because of the ease and precision with which
these measurements can be made on a single specimen
over a wide range of frequency and temperature. Our
techniques allow us to cover ten decades of frequency.

As liquids are cooled down below their freezing point,
the relaxation time for structural rearrangement in-
creases dramatically. If crystallization can be avoided by
sufficiently rapid cooling, most supercooled liquids will
enter a metastable glass state. The glass transition is
characterized by a large viscosity, typically on the order
of 10' poise. ' This implies a relaxation time on the or-
der of a day. These primary relaxations have been inten-
sively studied for many years by means of specific heat,
dielectric ' and mechanical ' spectroscopies, and by
viscosity measurements ' (the average shear relaxation
time ~ is given by the Maxwell relation g=G w, where
6 is the infinite-frequency shear modulus and g is
the viscosity). For most glass-forming liquids, the relaxa-
tion time ~ can be fitted near the glass transition with

the empirical Vogel-Tamman-Fulcher
r=roexp[ A /( T —To)].

Relaxation spectra are often much more complicated
than would be obtained from a simple Debye process,
where the response to a step-function perturbation, P(t),
is given by P(t)=foe '~'. Experiments on relaxation

phenomena therefore focus not only on the mean relaxa-
tion time but also on the shape of the spectra. If the ex-
periment is done in the frequency domain, the response is
given by the Fourier transform of —dP(t)/dt Several.
functional forms for the decay have been introduced as
good approximations to the experimental data. One of
the more commonly used functions has been the
stretched-exponential form: P(t) =(toexp[ —(t/r)~], with
0 &P & 1. There is no simple analytic form for this func-
tion in the frequency domain. The frequency dependence
of the loss spectrum for stretched-exponential decay is
broader than that for a Debye function (P= 1). This form
is generally successful in describing relaxation processes
for t ~ r (or co & 1/r). Recently a careful study of several
different glass-forming supercooled liquids over a wide
frequency range (14 decades) has shown that the high-
frequency tail is different from that given by the
stretched-exponential form. The data can be scaled onto
a simple universal curve for the a relaxation which is in-
dependent of' temperature for all the samples studied.
Only two parameters, the peak frequency and width, are
necessary to determine the spectrum for each sample at
each temperature.

Secondary, or P, relaxation, takes place at high fre-
quency usually at temperatures well below the glass
transition. However, this relaxation can also exist in the
equilibrium liquid above T . This secondary relaxation
has been studied in many glassy systems. However, we
still lack knowledge of the detailed frequency dependence
and shape of the response function. From the studies of
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glassy crystals such as (KBr), ,(KCN)„' " we have
learned that P relaxation plays a very important role in
the properties of glasses and may be a key to the connec-
tion between the low-temperature thermal properties and
the high-temperature glass transition. It is difficult to get
reliable data for this relaxation process not only because
there is a much weaker signal and a much broader spec-
trum than for the a relaxation, but also because a and P
relaxations overlap; it is often difficult to disentangle the
contributions from these two processes. Because we have
a universal curve for the shape of the a relaxations over
the entire frequency range, we are now in a position to
separate the two different relaxations. Another impor-
tant issue, the origin of the P relaxation, is still not clear.
One explanation of this phenomenon in molecular glasses
has been in terms of local motion, internal to a single
molecule, which remains active even when the transla-
tional motion of the molecules has been frozen out. Al-
ternatively, Goldstein' has suggested that P relaxation is
an intrinsic property of the glass state and is due to local
rearrangements in some minimum of the potential-energy
surface in random close-packed systems. This model pre-
dicts that the a- and P-relaxation rate should merge
above Tg. We have found that the loss peak of the P re-
laxation, after separating the contribution of the +-
relaxation processes, has a very broad log-normal form
and that the temperature dependence of the P-relaxation
time is of Arrhenius form. At high temperatures it
crosses the curve for the a-relaxation processes.

At high temperatures a third relaxation process due to
the conductivity of mobile ions in the liquid becomes im-
portant. It has been suggested that the mechanism for
ionic conduction and for the mobile cation self-diffusion
coefficient (responsible for the viscosity) are identical. '

This was seen in the motion of small molecules in the su-
percooled liquid. ' Thus this conductivity relaxation (c
relaxation) provides another tool to help us understand
the physics responsible for o, relaxations. We have been
able to use these data to extend our range of frequency
and temperature for the primary-relaxation phenomena.

In this paper we present the frequency-dependent
dielectric response of a liquid mixture of benzyl chloride
and toluene. The data cover a wide temperature range,
from the high-temperature liquid state to far below the
glass transition temperature. This paper is organized as
follows. In Sec. II we describe the experimental tech-
niques used to measure ihe dielectric response over a very
broad frequency range. We also describe the sample
preparation. Section III contains the main experimental
results along with a detailed discussion of the data
analysis which includes the a, P, and c relaxations. In
Sec. IV we compare the data for different chlorotoluene
molecules in order to explain the origin of P relaxation.
Finally we will report the results of a nonlinear
dielectric-susceptibility measurement in Sec. V.
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the gap between two coaxial metal cylinders. The capaci-
tance is about 20 pF in vacuum. The frequency-
dependent dielectric susceptibility gives both the mean
relaxation time and the shape of the relaxation. The sam-
ple is in the liquid state at room temperature. To fill the
capacitor we simply immersed the coaxial cylinders in
the liquid. The outer cylinder was wrapped with a Ni-
chrome heating wire. Two different thermometers were
used. A Au-Fe thermocouple was placed in the liquid and
a calibrated platinum resistance thermometer, which has
higher accuracy at high temperatures, was embedded in
the temperature control. The temperature difference be-
tween two thermometers gave the temperature gradient
across the sample and also provided a method to deter-
mine whether or not the liquid was in equilibrium. The
entire assembly was mounted in a copper can, which was
cooled in a He Dewar. A computer both controlled the
temperature and logged the data.

Depending on the frequency range, the data were taken
by different methods. For measurements between 10 kHz
and 10 MHz, we used a Hewlett-Packard 4275A multifre-
quency four-probe LcR meter, which measures the capac-
itance and dissipative factor, proportional to e and
e"/e', respectively. Over the range 1 mHz to 10 kHz, we

employed a digital lock-in technique' to measure the
currents through the sample. A sinusoidal voltage was
applied across the capacitor with a Hewlett-Packard
3326A frequency synthesizer. A Keithley 427 current
amplifier was used at the output of the capacitor. The
signal was measured by a Keithley 194A high-speed digi-
tizer. The computer stored the voltage readings and per-
formed the Fourier transformation to calculate the in-
phase and out-of-phase signals proportional to e" and e',
respectively. The digital lock-in technique is described in
detail elsewhere. ' A schematic diagram for the experi-
mental apparatus is shown in Fig. 1.

We took data by ramping the temperature at a con-

II. EXPERIMENTAL TECHNIQUE

A. Technique

We measured the complex dielectric constant
a=e'+i e" by placing the sample in a capacitor formed in

FIG. 1. A schematic diagram for the experiment. The dou-
ble lines indicate IEEE-488 interface cables. The heavy lines in-
dicate coaxial cables and the light lines indicate thermometers
and/or heater wires.
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der to get a better idea of the underlying physics of the
relaxation phenomena. Benzyl chloride (a-
chlorotoluene) is a good candidate. The structure of this
molecule is similar to toluene except that one hydrogen in
the CH3 group is replaced by a chlorine atom. We will
show later that the experiments suggest that P relaxation
is due to the rotation of this CH2C1 group. The sample
we used is a mixture of benzyl chloride and toluene. This
mixture is used because it readily forms a glass even at
very slow cooling rates. We found that the mixture of 25
vol% benzyl chloride with 75 vol% toluene (in volume)
is the best glass-forming composition. The purities for
toluene and benzyl chloride are greater than 99.7% and
98.5%, respectively.

0.0 III. DATA ANALYSIS AND DISCUSSION
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FIG. 2. Temperature-domain dielectric data for 25 vol jo
benzyl chloride in toluene. Graphs show (a) the real part e', (b)
the imaginary part e", and (c) log&o(e") vs T for three frequen-
cies. The inset of (b) has been multiplied by a factor of 100 so
that we can see the P relaxations.

stant rate for a fixed frequency. The data above the glass
transition temperature were taken as the sample was
cooled down at a rate between 2 and 0.1 K/min. The
rate depended on the measuring frequency and the tem-
perature range. It is easier to avoid crystallization during
cooling than during heating. The lower-temperature data
were taken by warming up from liquid-He temperature.
Upon warming, the sample always crystallized at 150 K,
which is 25 K above Tg. Except within a few degrees
Kelvin of T~, the data are identical for the cooling and
warming runs as long as no crystallization occurs. Close
to T~, the sample can be out of equilibrium. In that re-
gion, the warming runs were used. Representative plots
of temperature-domain data are found in Fig. 2. We nor-
malized the raw data to have e"=0 and to have the same
value for e' at liquid-He temperature since the gain and
phase of the amplifier varies slightly with frequency. The
frequency-dependent dielectric data can be taken by mak-
ing constant-temperature cuts through the temperature-
domain data.

B. Sample

The structures of molecular glasses are very complicat-
ed and diScult to deal with theoretically owing to our ig-
norance of their microscopic local structure. Neverthe-
less we still wish to find a simple molecular liquid in or-

A. General

M*=
(e')'+ (~")'

=M'+iM" .(~')'+ (e")'

The real and imaginary parts of the temperature-
dependent modulus for one frequency (0.1 Hz) are shown
in Fig. 3. Three different relaxation peaks —namely, con-
ductivity relaxation (c relaxation), a relaxation, and I3
relaxation —can be discerned very clearly in the imagi-
nary part.

The frequency-dependent data have been obtained by
making constant temperature cuts through the
temperature-domain data. One example for M" versus
logto(v), is shown in Fig. 4. The c relaxation has a Debye
form. The a relaxations are wider than the Debye form
and can be fitted to a stretched-exponential function for
low frequencies. In Fig. 4(b) the data are plotted on a
logarithmic scale in order to make the /3 relaxation more

We have measured the dielectric response of a mixture
of 25 vol% benzyl chloride with 75 vol% toluene. The
data cover the ten decades of frequency from 1 mHz to
10 MHz. The real, e', and imaginary, e", dielectric
response as a function of temperature are shown in Figs.
2(a) and 2(b), respectively, for three diff'erent frequencies,
100 mHz, 100 Hz, and 100 kHz. Since the magnitudes
for the different relaxations vary enormously, we plot e"
on a logarithmic scale in Fig. 2(c) so that all three relaxa-
tion phenomena are visible. For each type of relaxation,
the lower-frequency loss peaks are always at lower tem-
peratures. The primary relaxations approach T as the
frequency is decreased. Just below the a relaxation there
is a broader P relaxation. The P relaxation is about 100
times smaller than the o. relaxation and is shown in the
inset of Fig. 2(b). At high temperatures, the imaginary
part of the dielectric response increases rapidly and is in-
versely proportional to the frequency. As we mentioned
above, this is due to a small concentration of mobile im-
purity ions which are free to move in response to an elec-
tric field. The conductivity term wi11 contribute to the
imaginary part of dielectric response as o. /co. In order to
analyze this conductivity relaxation, we work with the
complex electric modulus. ' We define M'=1/e* so
that
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FIG. 3. The real part M' and the log of the imaginary part,
log&o(M"), of the modulus vs temperature at 0.1 Hz. Three
different loss peaks, corresponding to c, n, and P relaxations, are
seen in (b) ~
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FICi. 5. The real e' and imaginary e" parts of E' vs
log, o[v(Hz)] at the labeled temperatures for the a relaxations.
The curves are the best fits to the data using the stretched-
exponential function.
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FICx. 4. Frequency domain data of M". (a) has conductivity
relaxation and a relaxation at the labeled temperatures. (b) is
plotted on a logarithmic scale since the P relaxation is two or-
ders of magnitude smaller than the a relaxation.
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apparent. The high-frequency P relaxations are much
broader than the others. They appear to be symmetric
functions so that they cannot be fitted by a stretched-
exponential form. A detailed analysis of these different
peaks is described below.

B. a relaxation

In Fig. 5 we present e' and e" for 25 vol% benzyl
chloride in toluene close to the glass transition tempera-

ture where the primary, or o., relaxation is important.
The frequency range covers from 1 mHz to 1 MHz.
Clearly the peaks in e" are broader than a Debye func-
tion which has a frequency width of 8D =1.14 decades.
The peaks in the data are also asymmetrical. The solid
curves drawn through the data are fitting curves using
the stretched-exponential function. The fitting is reason-
ably good around the peak position. The fits become
poor in the high-frequency tails; in this region, there is
also a contribution from the Il relaxation.

For the a relaxation we do not show any plots of the
modulus versus log, o(v). Basically they are quite similar
to the plots for e' and can also be fitted by a stretched-
exponential form fairly well at the peak. (In such plots
the peak position is shifted by rM = r,

mole�„).

Even though the stretched-exponential fit cannot de-
scribe the relaxation response over the whole frequency
range, we can still obtain useful information from the
fitting parameters. The peak frequency (v ) and normal-
ized width w = W/WD (where W is the full width at half
maximum in decades, and WD = 1.142 is the Debye
width) can be obtained from the fitting parameters
(I/r, 13) very accurately over the range of P we used by'

logic(v ) =logic(1/r) 0 ~ 26(1 P)

1 —to '=0.955(1—/3) .

The plot of log, o(v ) versus (1000 K)/T for the a relax-
ation is shown by the squares in Fig. 6. The solid curve is
a fit to the data with the Vogel-Tamman-Fulcher form,

v =voexp
k (T —To)
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FIG. 6. Plot of log&o(vp ) vs (1000 K)/T for both c relaxation
(triangles) and a relaxation (squares). The circles show the
values of vp for the c relaxation multiplied by a constant as dis-
cussed in the text. The curves are the best fits to the Vogel-
Tamman-Fulcher form and the parameters are listed in Table I.
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FIG. 7. The inverse of the normalized width, w ', vs (a)
(1000 K)/T and vs (b) log&o(vp ).

The fitting parameters are listed in Table I.
We show the inverse of the normalized width, ur,

versus (1000 K)/T in Fig. 7(a) and versus log, o(v~ ) in Fig.
7(b). The width of the peaks increases when the tempera-
ture is cooled toward the glass transition. If we extrapo-
late the data in Fig. 7(b) to a typical phonon frequency,
10' Hz, we find that the normalized width approaches 1

(i.e., a Debye form).
Recently it was shown that the dielectric susceptibility

for molecular glasses can be scaled onto a single universal
curve. This universal form of the a relaxation does not
depend on the sample or the temperature. We plot our a
relaxation data using the same scaling procedure and
compare with the master curve in Fig. 8. The data can be
scaled very well on this plot from far below zero in the
scaled frequency units up to a high-frequency value of
about 4. The deviations from the master curve (dashed
line) at the high-frequency range depend on the tempera-
ture. These bumps are the 13-relaxation peaks which ap-
pear in the same frequency range as the a-relaxation
spectra.

C. c relaxation

The conductivity relaxation due to mobile ions in
viscous liquids has been studied in ionic glasses. ' The

relaxation appears similar to the primary relaxation. Ac-
tually the conductivity relaxation can be observed in al-
most any liquid or glass, since the ionic impurities always
contribute to the conductivity in the dielectric measure-
ments at high temperature. The ionic motion can be de-
scribed by the Stokes-Einstein equation D =kT/6mgr, in.
which q is the viscosity, D is the diffusion coeKcient of
the ions, and r is the ionic radius. The electrical conduc-
tivity due to the ionic diffusion can be derived from the
Einstein-Nernst equation, which relates ionic conductivi-
ty to the diffusion by o /D =ne /kT This sugge. sts that

CL

u3

C)

O

Relaxation loglo(vo) E/k (K) To (K)

TABLE I. Fitting parameters for three different relaxations.
The c and n relaxations are fitted by the Vogel-Tamman-
Fulcher form v= voexp[ E/k ( T —To)]. Th—e P relaxation is
Atted by an Arrhenius form v= voexp( —E/T).

w "(1+w ") logl0(v/vp)

c relaxation
a relaxation
P relaxation

3.5
12.2
14.5

525
610

2805

113
108

FIG. 8. The scaling plot of the frequency-dependent dielec-
tric data (see Ref. 4). The solid line is a universal curve found
for many glasses in Ref. 4 which have no p relaxation. The de-
viation from the master curve is due to the P relaxation.
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there is a connection between the primary-relaxation time
and the electrical-conductivity-relaxation time. Each re-
laxation time is defined by the ratio of the ordinary
linear-response coefficient (viscosity or resistivity, respec-
tively) to the appropriate modulus:

r, =g/G„, r =p/M„,
and

&s ne' M-
6mr G

where G is the infinite-frequency shear modulus, and
M is the electrical modulus, M =e

In our measurement of the c relaxation, we find that
M" can be fitted to a Debye function as has been shown
in Fig. 4(a). This implies that the ionic relaxation is
decoupled from the a relaxation and that only the dc
conductivity is important. For this case the dielectric
response can be written as

E' —6'~ l C7 /CO

and the imaginary part of modulus has the Debye form

M"=M
1+(ror )

The significant feature of M" is that it exhibits a peak
centered at co~ =1. The apparent relaxation time here is
r =e /o. M" has a simple Debye form independent of
whether or not there is a distribution of microscopic re-
laxation times.

In Fig. 9 we have shown the dielectric data for
different temperatures as a function of frequency. The
abscissa is scaled by the peak position of the n relaxation.
The conductivity contribution on the low-frequency side
of the figure can also be scaled on a straight line. This in-
dicates that the conductivity relaxation is the same as the
structural relaxation. The slope of the straight line is

—1, suggesting that the conductivity is frequency in-
dependent and that the intercept at log, o(v/v~ ) =0 gives
the ratio of the c to the a relaxation. We find
(6vrr/ne )G /M =3X10 . The peak frequencies for
the c relaxation are shown in Fig. 6. If we multiply these
values by this factor 3X10 (which ainounts to a rigid
vertical shift on this log-log graph), we get the circles
which are a smooth continuation of the a-relaxation be-
havior. The Vogel-Tamman-Fulcher fit parameters are
listed in Table I and compared with the a-relaxation pa-
rameters. The values of To and E obtained from both
sets of data are very close to each other, from which we
infer that both sets of data measure the same relaxation
phenomena.

D. p relaxation

Even though p relaxation has been observed for many
years in many different glasses and polymers, there has
been little analysis of the data in the frequency domain as
we have done for the a relaxation. Because the p relaxa-
tion is very broad, one needs to cover a very wide fre-
quency range, e.g. , more than eight decades, to see the
entire shape of the curve. Our digital lock-in technique
enables us to cover more than ten decades. Another
difficulty is that the f3 relaxation is much smaller than the
a relaxation (in our sample it is 100 times smaller) and it
overlaps with the o. relaxation. One cannot separate
them cleanly unless we know the exact functional form
for the o. relaxation at high frequencies. Here we will use
the master curve obtained in other glasses for the shape
of the a relaxation. In Fig. 10 we plot log, o(e") versus

log, o(v) for one temperature. We first measure the peak

frequency and width of the main peak which is due to the
a relaxation. This gives us the parameters (log, o(v~), w).
With these same parameters we get the pure a-relaxation
curve from the master plot, which is shown as the solid

u3

C)

O

u)
C)

O

I I .I I

lag ) 0(V/Vp)

FIG. 9. The normalized imaginary part of the dielectric data
e"/b, e has been scaled by peak frequency of the cz relaxation.
Note that the ionic conductivity contributions are also scaled
onto a single line.

I

lag ) 0(V)

FICs. 10. The circles show the e" data for one temperature.
The solid line shows the form obtained from the universal curve
for the values of peak frequency and width given by the main
peak of data. The diamonds show the result of subtracting the
solid line from the e" and show contribution of the p relaxation.
The dashed line is a log-normal fit to the P-relaxation data.
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line. We subtract this a-relaxation curve from the data
and obtain the pure P-relaxation peak. For the low-
temperature data (T( To), the P relaxation does not
overlap with the a relaxation (which does not exist in
that temperature range). We found that both the low-
and high-temperature /3-relaxation peaks have a similar
shape, i.e., very broad and symmetrical. A log-normal fit
has been used to fit the /3-relaxation peaks in a glassy
crystal' '" and has the form

~ og 10( v) log 10( &p ) j
e(co) = — exp 8'

The /3-relaxation peaks in our sample can be fitted by this
same log-normal function and are shown as a dashed line
in Fig. 10. We fit all of our P-relaxation data with this
same form in Fig. 11. Clearly the width becomes broader
as the temperature decreases. This log-normal form can
be obtained' '" from a Gaussian distribution of energy
barriers. We write

—(E —E ) lo.
e(co, T)=e +(eo—e ) J dE — e

1

1 —i~)co eE/kT

8

o 4
O

0
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6-

C
LLkk~
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(IOOO K)/T

I

14 16

FIG. 12. The fitting parameters (a) log&0(v~) and (b) the
width w vs (1000 K)/T for three different relaxation processes.
Notice that in (a) the o. relaxations intersect the Arrhenius ex-
trapolation of the /3 relaxation at high temperature (156 K).

The width of energy-barrier distribution can be found
from o.= WkT ln10 and the peak energy Eo can be found
from the slope of the Arrhenius plot.

The log-normal fit parameters are shown in Fig. 12.
We also plot the peak frequency and width of a and c re-
laxations in the same figure for comparison. For the /3 re-
laxation the log, o(v ) versus (1000 K)/T has an Ar-
rhenius form v =voexp( E/kT). T—he width linearly
decreases with 1/T and is much larger than for the a re-
laxations and the Debye function (w= 1). In Fig. 13 we
plot o. versus T. We find that o. is almost constant with a
small linear temperature dependence. The best fit is
given by o =1214—4. 55T/(1 K). A similar decreasing

width of the energy-barrier distribution was found' "for
the /3 relaxation in the glassy crystal (KBr)i (KCN)
The static susceptibility strength (Eo e ) does not de-
pend on the temperature and has a value of 0.038+0.001.

We emphasize that the peak frequencies and widths are
consistent with both the high-temperature data (where
the /3 relaxation was separated from the a relaxation us-
ing the master curve) and the low-temperature data
(where no deconvolution was necessary). This gives us
confidence in our subtraction technique using the master
curve.

Another important issue is how the a and /3 relaxations
merge at high temperature and frequency. We find that
the two curves for log, o(v ) versus 1/T will cross at high
frequency if we extrapolate the /3-relaxation curve to a
frequency slightly higher than was experimentally acces-
sible. This crossing temperature is about 156 K as com-
pared with Tg =124 K (at ~=10 sec) and To=108 K.

0.6
1 500

u) 0.3
1000

& S00-

FIG. 11. e" vs log»(v) for the P-relaxation data at different
temperatures. Above 110 K, the data were obtained using the
procedure shown in Fig. 10. All of the data could be fit to log-
normal form (the solid lines).
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80 100 120
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FIG. 13. Width of the energy-barrier distribution o. vs T.
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This implies that the two relaxations have different ori-
gins. This result is in disagreement with the often-shown
schematic diagram where the two relaxations merge.

1.0

0.8

IV. COMPARISON
OF DIFFERENT CHLOROTOLUENE LIQUIDS:

THE ORIGIN OF THE P RELAXATION

0.6

0.4

(x-chlorotoluene
(benzyl chloride)

2-chlorotoluene 4-chlorotoluene

FIG. 14. The illustration of the molecular structures for a set
of chlorotoluenes. The arrows indicate the various rotations
that would contribute to the dielectric response in each mole-
cule.

In order to understand what causes the P relaxation in
this glass, we have studied a few different chlorotoluene
molecules which have similar structures. The molecular
structures are shown in Fig. 14. In each case the chlorine
substitutes for a hydrogen atom at a different site in the
toluene molecule.

We measured the dielectric response for the three
different samples, a-, 2-, and 4-chlorotoluene. As shown
in the figure, the dielectric response for the 4-
chlorotoluene comes from the Hip of the entire molecule.
The response for the 2-chlorotoluene has a contribution
from the rotation of the whole molecule along the long
axes. a-chlorotoluene (benzyl chloride) has, besides this
same contribution due to the rotation of the entire mole-
cule about the log axis, an additional mode which comes
from the rotation of the CH2C1 subgroup.

In Fig. 15 we show e" versus T/T for different sam-
ples at one frequency (10 kHz). The temperature is nor-
malized by the melting temperature. Significant
secondary relaxation is found only for benzyl chloride
and is due to the rotation of the CH2C1 group. Since 2-
chlorotoluene and 4-chlorotoluene do not have such a
peak, we conclude that the rotation and Aip of the whole
molecule is very unlikely in those samples. This suggests
that the P relaxation of the glass is mainly due to the ro-
tation of the CH2C1 subgroup. We also find that the
energy-barrier distribution in the sample we have studied
in the rest of this paper, 25 vol% benzyl chloride in to-
luene, is much broader than for pure benzyl chloride.
Presumably this is due to the greater disorder in the mix-
ture than in the pure liquid.

0.2

0.0
0.6 0.7 0.8 0.9 1.0

FIG. 15. The dielectric loss e" for several similar molecular
liquids: 2-chlorotoluene, 4-chlorotoluene, a-chlorotoluene (ben-
zyl chloride), and 25 vol% benzyl chloride in toluene. The
abscissa is the temperature normalized by melting temperature,
T/T . The graph shows that the p relaxations are due to the
rotation of the CH2C1 group rather than due to the flip or rota-
tion of the whole molecule.

V. NONLINEAR DIELECTRIC SUSCEPTIBILITY

where e is the linear dielectric response and e„& is the
first nonlinear term. When a large sinusoidal electric
field at frequency v is applied to the sample, one can get,
in addition to a signal at v, higher harmonic signals at 3v,
Sv, etc. These higher-harmonic terms are much weaker

It is still not clear whether the transition from a super-
cooled liquid into glass is a true underlying phase transi-
tion as has been suggested by some theories' or
whether it is just a dynamical freezing as explained by
mode-coupling theory. ' If there is a true underlying
phase transition, some correlation length should diverge
at the glass transition. In disordered systems it is some-
times necessary to measure the nonlinear susceptibility in
order to couple to correlation length. For example, in
spin-glass systems, higher-order terms in the expansion
of the equation of state in powers of the magnetic field

M/H =go y„iH +0(H—
)

are related to the correlation length. Both the nonlinear
susceptibility and the correlation length diverge at the
transition temperature:

X„,= [(T—Tf )/Tf ]

g= [(T—Tf )/Tf ]

In order to look for a divergence of the correlation
length, we have measured the nonlinear dielectric
response in our sample, 25 vol% benzyl chloride in to-
luene. We define the nonlinear dielectric constant in the
same way as in the magnetic susceptibility:

D /E =e* e„&E +0 (E —),
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than the fundamental and for small electric fields only the
fundamental can be measured. When the electric field is
high enough, we can observe a 3v signal which corre-
sponds to the nonlinear susceptibility. In order to get
good-quality data, one needs a very large electric field. A
simple way to do this is to place two capacitor plates
close to each other with a very small gap in between. The
capacitor plates have to be very stable since any vibration
or drift of the plates can overwhelm the signal. In our
experiment we coat a window glass with a specially
designed chromium pattern. The structure consists of
two tiny needles very close together with a gap of 2 pm.
Since one pair of needles does not produce sufficient sig-
nal, we place about one million such pairs on a single
chip and immerse the chip in the sample liquid. We
found the capacitance is very stable. We apply a 10 V
sinusoidal voltage across the gap which produces a very
large electric field of 5 X 10 V/m. We measure both the
1v and 3v harmonic current through the sample by digi-
tal lock-in techniques.

The result for a frequency of 1 Hz is shown in Fig. 16.
The nonlinear term does not diverge as the temperature
is decreased. This is consistent with an earlier experi-
ment which also found no divergence of the nonlinear
susceptibility in a glass. Monroe has argued that the
correlation length will not be seen in the nonlinear sus-
ceptibility of the glass and electron glass systems. These
results are consistent with his argument.

A divergent correlation length in a glass has not yet
been observed. An experiment which employed poly-
styrene spheres of various sizes in order to probe the
viscosity of an organic glass former at different length
scales also gave a negative result. Recently a computer
simulation of the glass transition has been used in order
to look for a correlation length in both the density-
density and bond-orientational correlation functions.
The results show that neither type of order yields any evi-

dence of a length-scale-dependent freezing as the simulat-
ed system is cooled towards T .

VI. SUMMARY

We have measured three different relaxation phenome-
na in an organic molecular liquid. We found that the +-
relaxation time diverges as the temperature decreases to-
wards To in a Vogel- Tamman-Fulcher fashion. The
width of the relaxation peak is narrower at higher fre-
quency and approaches a Debye form if extrapolated to a
typical phonon frequency.

Mobile ionic impurities exist in the liquid above the
glass transition. Their motion gives rise to conductivity
relaxation at a frequency eight decades lower than is seen
in the u relaxation. The two relaxations diverge at the
same temperature. A scaling plot shows that the
difference between the relaxation times determined by
these two probes is a constant factor and indicates that
both phenomena are governed by the same relaxation
mechanism. We have used the data in the c relaxation in
order to extend the high-frequency range of the a-
relaxation data.

In the past year, a universal scaling behavior for the u
relaxation in glass systems has been discovered. The
master curve is different from any of the theoretical
forms suggested in the literature (which always depart
from the experimental data at high frequencies). This
master curve of a relaxation enables us to identify and
separate cleanly the p relaxation in the region where the
a and p relaxations overlap. The p relaxation is due to
the rotation of the subgroup CHzC1 over a distribution of
energy barriers. The results show that the response of
the p relaxation has a log-normal form, which indicates
that the distribution of these energy barriers is Gaussian.
The relaxation time for the p relaxation exhibits an Ar-
rhenius behavior in its temperature dependence. We can
extrapolate this behavior to slightly higher temperatures
and find that a and P relaxations cross. This is in
disagreement with the often-shown schematic diagram
where the two relaxations merge at high temperatures
and frequencies. Similar behavior has been observed in
ionic glasses where the fast and slow modes in the con-
ductivity relaxation cross at some temperature. '

The high-field dielectric measurement shows that there
is no divergent nonlinear dielectric response as the tem-
perature is decreased to the glass transition temperature.
Other experiments and computer simulations also fail to
find evidence for a divergent correlation length. Howev-
er, one may argue that because the phase transition tem-
perature To is far below the glass transition temperature
T, the correlation length may still be short in the region
that is experimentally accessible. There is no experimen-
tal evidence to preclude this possibility so that we must
consider whether there is a true underlying phase transi-
tion to be an open question.

FIG. 16. The linear (e') and nonlinear (e„,) susceptibility of
25 vol% benzyl chloride in toluene. The curves labeled "no
sample" show the background signal due to the substrate hold-
ing the capacitor film.
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