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Extended x-ray-absorption fine-structure study of alkali-metal halides under high pressure
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The extended x-ray-absorption fine structure (EXAFS) of three alkali-metal halides (NaBr, KBr,
and RbCl) is investigated at pressures ranging from 0 to 8 GPa. Parameter fitting is used to extract
the change of the nearest-neighbor distance and thus the pressure, as well as the absolute values of
the second cumulant as a function of pressure, 0. (p), and the third cumulant at zero pressure,
0'"(0). For all three materials, a sharp reduction with pressure of 0. (p) is found. Classical statisti-
cal mechanics is then invoked to calculate the first, second, and third moments of the nearest-
neighbor distance and thus their second and third cumulants. The integration is done with the
Monte Carlo technique. For the potential energy U in the Boltzmann factor, the generalized
Huggins-Mayer pair potential is used along with a three-body potential term due to charge transfer.
Generally, model calculations and EXAFS data match well. High-pressure EXAFS data can there-
fore be regarded as a help to assess, and even exclude, potential parameters from the literature.

I. INTRODUCTION

The study of the extended x-ray-absorption fine struc-
ture (EXAFS) of materials under high pressure has been
limited to a few research groups worldwide. It differs
from zero-pressure EXAFS studies insofar as a large frac-
tion of the incident radiation is absorbed by the anvils
that exert pressure on the sample. This has two conse-
quences: (i) low-Z elements cannot be studied; (ii) very
high Auxes are required for the other elements. This ex-
cludes laboratory x-ray sources, leaving only
synchrotron-radiation sources. Since the loss of photons
is so great and the samples are so small, the signal-to-
noise ratio is less favorable than with zero-pressure ex-
periments.

Notwithstanding these adverse limiting conditions,
successful high-pressure measurements of the x-ray-
absorption near-edge structure (XANES) and the EXAFS
(together referred to as x-ray-absorption fine structure, or
XAFS) have been reported in recent years. A list of
high-pressure EXAFS papers since 1986 is given in the
reference section. ' The studies concentrated on
pressure-volume relations and on the structural changes
accompanying pressure-induced first- and second-order
phase transitions. Quantitative analysis of the EXAFS
was concerned mostly with determining the nearest-
neighbor distance, coordination number, and second cu-
mulant cr [or EXAFS Debye-Wailer factor,
exp( —2k cr )]. Multiple-scattering contributions to the
structural specification of the next-nearest neighbor have
also been considered. '

Recently efforts ' have been made to understand the
pressure dependence of the second cumulant of the
nearest-neighbor distance. The second cumulant is relat-
ed to the first and second moments as given by Eq. (2a)
below. It has been conjectured that three-body exchange

interactions have to be introduced to obtain a full under-
standing of the second cumulant of solid krypton.

In this paper we extend the connection between cumu-
lants and interatomic potentials. We have already shown
in a previous paper ' that the introduction of three-body
interactions is helpful to understand the deviation of the
amorphous germanium bond compressibility from that of
crystalline germanium. We will show here that Monte
Carlo calculations of the second and third cumulants of
three alkali-metal halides (NaBr, KBr, and RbCl) depend
on the parametrization of the pair potential and that the
introduction of a three-body interaction makes a
difference.

At the present time we still fall short of fitting potential
parameters from high-pressure EXAFS data, but the
strong dependence of the second cumulants on interatom-
ic potentials suggests that this will be feasible in the fu-
ture with the advent of higher-Aux x-ray sources, thus
rendering high-pressure EXAFS a new probe in solid-
state physics.

The plan of this paper is as follows. In Sec. II we sum-
marize the experiment and indicate data-analysis pro-
cedures. For brevity, definitions and equations pertaining
to EXAFS and the cumulant expansion have not been re-
peated. The reader is referred to our previous paper on
copper. The experimental results are given in Sec. III.
In Sec. IV the cumulants are calculated using the Monte
Carlo technique. Different models used for the potential
energy of the crystal are described. Finally in Sec. V, the
extent to which the second cumulant is sensitive to the
potential parameters is shown.

II. EXPERIMENTATION AND DATA ANALYSIS

The setup of our high-pressure XAFS experiment was
described in previous papers. ' The samples in the ex-
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periments described here consisted of finely ground
powders of NaBr, KBr, and RbC1 mixed with epoxy. We
had some samples with two alkali-metal halides
(KBr+RbCl and NaBr+RbC1) and some samples with
one halide and another substance (NaBr+X and
RbC1+X). Since our interest in alkali-metal halides ori-
ginated in the need to have a pressure calibrant, the
former samples were used to check our ability to extract
pressures correctly from the reduction of nearest-
neighbor distances. The latter samples, on the other
hand, did act as pressure calibrants for the study of the
other materials X.

Absorption spectra were taken in transmission at the K
edges of bromine (NaBr and KBr) and rubidium (RbCl).
All experiments were performed at beamline 4-1 of the
Stanford Synchrotron Radiation Laboratory (SSRL) over
a period of 10 years. The data were taken with either
Si(111)or Si(220) crystals. For the Si(111)crystal, there is
negligible intensity beyond about 17 keV; so higher-
harmonic contamination is not a problem. For the
Si(220) crystal, the monochromator was always detuned,
typically by 50%, by slightly misaligning the second crys-
tal.

The extraction of a single-shell EXAFS spectrum is a
nontrivial operation that requires considerable trial and
error. We first checked whether the EXAFS amplitude is
affected by a convolution with the spectrum of the nomi-
nally monochromatic radiation impinging on the sample
in spite of our setting the entrance slit width to only 1

mm. We assumed a Gaussian spectrum of half-width 8'
and did successive deconvolutions with increasing 8'un-
til spurious noise started to emerge in the deconvoluted
data (at about W=0. 5 eV). Since no change of the am-
plitude was noticeable up to that point, deconvolution is
not a necessary step in our data analysis. The data were
then deglitched and the high-energy tails truncated in or-
der to facilitate the background removal. k=0 was al-
ways set at the maxima of the XANES.

The post-edge background removal requires careful at-
tention since it determines the quality of the Fourier
transform at low r which is essential for a good back-
transform over as wide an r range as possible. We found
the IMSL subroutine IcsscU, as described by Cook and
Sayers, the most suitable choice. The two free
parameters —the weighting factor and the smoothing
parameter —were chosen interactively and the back-
grounds as well as their first derivatives were plotted on
screen before a decision was made. After background
subtraction, the data were divided by the step height in
the usual fashion to obtain the X(k ) spectrum.

Data sets pertaining to one pressure were then aver-
aged and the amplitudes were renormalized with the
McMaster tables: The McMaster coefFicients of the
pre-edge absorption were extrapolated, subtracted from
the McMaster post-edge absorption, and normalized to
unity at the absorption edge. The data were then divided
by that function. It produced a 1 —3% decrease in o. for
the alkali-metal halides considered (and can be much
higher in other materials and at the L edge).

Further data analysis went as follows.
NaBr: The X(k) spectrum (Fig. 1) was weighted with
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FIG. 1. EXAFS interference function g(k) of NaBr at 0.0
GPa (solid curve) and 5.9 GPa (dashed curve).
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FIG. 2. EXAFS interference function g(k) of KBr at 0.0
GPa (solid curve) and 6.1 GPa (dashed curve).

k . The exponent x of the weighting is determined by
the consideration that the amplitude of the X(k )k spec-
trum should be symmetric in the k range used or, con-
versely, the amplitude should be minimal at the cutout
points. A Gaussian window with full height at 4.8 A
and 10%%uo heights at 1.3 and 8.3 A was then applied and
the Fourier transform into r space was performed. The
fact that NaBr remains in the B1, or NaCl, structure
throughout the pressure range investigated makes the
separation in r space of first and second shells easy. The
backtransform into k space was performed after applica-
tion of a boxcar window to the first shell, taking the full-
width at 25%%uo of the maximum as a guideline.

KBr: The X(k) spectrum (Fig. 2) of the 81 (B2) struc-
ture was weighted with k (k ) and the Gaussian window
was again applied over the entire range of the spectrum
with full height at 4.9 A ' (6.4 A ) and 10%%uo heights at
1.4 and 8.4 A ' (11.4 A '). This data preparation tech-
nique produces a resolution in r space that allows separa-
tion of first and second shells even in the B2, or CsCl,
structure which KBr assumes above 1.7 GPa. In the
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g(k) = A (k)sin[%'(k )],
with the amplitude
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Here, N is the coordination number; F( k, vr ), the back-
scatter amplitude; f, an as-yet-undetermined amplitude-
correction factor; R, the distance to the shell; A, (k), the
electron mean free path; o. , the second cumulant; o' ',
the third cumulant; and C&(k), the combined central-atom
and backscatter phase shift. k is the electron wave vec-
tor. Since it depends on a convenient but nonetheless ar-
bitrary choice of zero& it must be related to the real wave
vector k' (in units of A ') by
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FIG. 3. EXAFS interference function g(k) of RbC1 at 0.0
GPa {solid curve) and 7.7 GPa (dashed curve).

CsC1 structure the ratio of second- to first-nearest-
neighbor distances, R2/R„ is only 1.15, as opposed to
1.41 in the NaC1 structure. At the highest pressure of
this study, R2 =3.65 A and R i =3.16 A.

RbCl: The data (Fig. 3) were weighted with k and the
Gaussian window was placed in a way analogous to those
for NaBr and KBr, with a k range from 1.5 to 10.5 A
Again, the fact that RbC1 undergoes the 81-82 phase
transition at 0.5 GPa had no inAuence on our ability to
extract single-shell data. Without single-shell data
several more parameters would have to be fitted, render-
ing the fit results less reliable.

The single-shell data thus produced were fitted to the
single-scattering EXAFS formula including cumulants up
to third order,

k= (k' )—
3.81

(ld)

III. EXPERIMENTAL RESULTS

Generally, we have not put much emphasis on observ-
ing the B1-82 phase transition since it is rather difficult
to apply exactly the right pressure. In most cases the
Fourier transforms jump from the 8 1 phase into the 82
phase as shown in Fig. 4(a), with the position of the first
shell remaining almost stationary but the second-shell po-
sition of RbC1 changing from 4.66 A at 0 GPa to 3.91 A
at 0.5 GPa. As usual, the peaks in the Fourier trans-
forms are shifted to smaller distances due to the central-
atom and backscatter phase shifts in the EXAFS phase.
Only in one instance did we actually observe the phase
transition of RbCl [Fig. 4(b)], i.e., Fourier transforms
that are intermediate between the B1 and 82 phases.

In Fig. 5 pressures determined from samples contain-
ing KBr and RbC1 (cross symbol) or NaBr and RbC1 (dia-
mond symbol) are plotted. Ideally, all symbols should be
aligned along the diagonal, shown by a solid line. At first
we tried to set o equal to zero in the second round of
parameter fitting, as described above. The result, depict-
ed in Fig. 5(a), indicates considerable random errors.
When o' ' is taken into account [Fig. 5(b)], the random
scatter of the points is sharply reduced. However, a
slight systematic deviation from the diagonal remains:
The upper (lower) dotted hne represents the straight-hne
fit of the KBr+RbCl (NaBr+RbC1) symbols. It seems
that the pressures determined from RbCl are slightly

where b,E (in units of eV) is the shift between the as-
sumed and the real zero of the free-electron states.

While X is known, J (k, 7r), A(k), and @(k) were taken
from the F,s calculations (version 3.23) of Rehr, Albers,
and Mustre de Leon. This leaves f, R, o, o' ', and bE
as fit parameters. We fitted the data in two steps.

(i) f, R, o, and bE were fitted, with o' ' set equal to
zero. f and bE were then averaged over all NaBr data
sets and separately over all 81- and 82-structure data
sets of KBr and RbC1. The fitting was done by producing
a model y(k), subjecting it to the same Fourier forward
transform and backtransform as the experimental y(k),
and then successively changing the parameters until the
model y(k) and the experimental y(k) converge. f was
found to be 0.64, 0.48, and 0.70 for NaBr, KBr, and
RbC1, respectively.

(ii) R, o, and o' ' were fitted, with f and bE taken as
constants. We found that different values for AE have to
be used when a structural phase transition is observed
(KBr and RbC1) because the XANES changes, and with
it the reference point that we pick to denote the zero of
the free-electron states (k =0).

Once the changes in the nearest-neighbor distances
have been extracted, the Murnaghan isothermal equation
of state is used along with the compression values of
Vaidya and Kennedy to determine the pressure. More
recent references ' ' confirm the 81-82 transition pres-
sures quoted by them.
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higher than those determined from KBr and NaBr, espe-
cially at higher pressures. We determined the average
distance of the symbols from the diagonal to be 0.3 GPa
and assigned this value to the error bars in the diagrams
to follow.

Figures 6—8 show second cumulants 0. of the nearest-
neighbor distances. Single experimental results are
represented by diamonds, weighted-least-squares fits of
the experimental results are shown by continuous lines of
cross symbols. The inverse of the goodness-of-fit parame-
ter was used as a weight. The standard deviations of all
zero-pressure data sets (7 for NaBr, 3 for KBr, and 11 for
RbC1) were calculated and serve as error bars. Standard
deviations for nonzero pressures could not be calculated,
since most of the nonzero pressures occurred only once.
Nonstatistical errors due to different types of data
preparation (background removal, Fourier forward trans-

form and backtransform) are about (0. 1 —0.2) X 10 A,
i.e., negligible. Note that further systematic errors can-
not be excluded due to the correlation of o. with the F,ff
values for F(k, m)e ~ ' ' and due to the fact that f is
an unknown quantity that might depend on k.

For all three materials, o. decreases with pressure in
accordance with the expectation that with increasing
pressure the amplitude of atomic oscillations decreases
and with it the variance of the nearest-neighbor distance,
or "bond length. " When the B1-B2phase transition sets
in (indicated by vertical dotted lines), o jumps to larger
values. This is associated with an increase of the
nearest-neighbor distance of a few percent. The next-
nearest-neighbor distance, however, decreases consider-
ably so that the overall volume decreases. The other
curves in Figs. 6—8 are model calculations of o from in-
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FIG. 4. Magnitudes of the Fourier transform of y( k)k for

RbC1 below and above the B1-B2 structural phase transition at
0.5 GPa. In (a) only pure phases are shown. The dash-dotted
and dashed curves in (b) show the RbC1 system in the middle of
the transition as the second shell moves to a smaller distance
and the first shell moves to a large distance. The positions of
the second shell are indicated by arrows. The EXAFS phase
shift has not been removed.

FIG. 5. Pressures determined from samples containing KBr
and RbC1 (crosses) and NaBr and RbC1 (diamonds), respective-
ly. Third cumulants were ignored in (a), included in (b). The
dotted lines in (b) are straight-line fits of the KBr+RbC1 and
NaBr+ RbC1 data, respectively.
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FIG. 8. The second cumulant 0. (p) of RbC1. Comparison of
EXAFS measurements (diamonds and crosses) with classical-
statistical-mechanics calculations (lines), as described in the
text.
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teratomic pair and three-body potentials, detailed in the
following section.

It is debatable whether the absolute values of the third
cumulants o' ' can be extracted from EXAFS. The fit re-
sults of o' ' differ quite considerably between experi-
ments, even when the data preparation is the same for all
sets. As opposed to o. , changes of the Fourier forward
transform and backtransform parameters and the fit
range change o' ' markedly, namely by about
(1—2) X 10 A, i.e., by about as much as the absolute
value itself. Since zero pressure is the only pressure that
was repeated often enough to allow averaging, results for
o' '(0) are the only ones presented in Table I. The error
margins include statistical and systematic errors. Also
shown in Table I are model calculations of o' ', as ex-

plained in the next section.
The nearest-neighbor distances R, , with and without

inclusion of o' ' in the fitting, along with the accurate
literature values, are also included in Table I. Statistical
and systematic errors are of approximately the same size
and are included in the error bars. Note that pressures
were not determined from the absolute values of R

&
but

from the differences between the absolute values bR,
which can be determined much more accurately. It is ob-
vious that inclusion of o' ' into the fitting procedure re-
sults in numbers for R

&
closer to the correct values. It is

also interesting to note that the difference between fitted
and literature values of R, is particularly large for KBr.
Since KBr also had the smallest amplitude-correction
factor f we suspect that the F,fr calculations of the potas-
sium backscatter phase and amplitude have a problem.

We conclude this discussion with the statement that, in
fitting cumulants to the experimental data, there must al-
ways be concern about their uniqueness. If third and
higher cumulants exist, then the magnitudes of the cumu-
lants will depend upon the fitting range. This occurs be-
cause the cumulant expansion is an expansion about
k =0 and will diverge at sufficiently high k values.
Caution must be exercised in attributing physical
significance to the cumulants. For the alkali halides, tests
with various fit ranges indicate that o (p) is physically
meaningful, but, as indicated above, there is concern for

(3)

I I
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I I I I I I I I I I I I

4 6

p (GPa) IV. MODELING OF CUMULANTS

FIG. 7. The second cumulant o. (p) of KBr. Comparison of
EXAFS measurements (diamonds and crosses) with classical-
statistical-mechanics calculations (lines), as described in the
text.

The absolute values of cr (p) and o' '(0) having been
extracted as described above, we now want to turn our at-
tention to theoretical attempts to model these quantities.
Two methods to calculate the relative changes of the
second cumulant have been expounded in our previous
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TABLE I. Third cumulants at zero pressure, o' '(0), from EXAFS and from potential-model calcu-
lations, as well as the inAuence of o'"(0) on the correct determination of the nearest-neighbor dis-
tances. Error margins of experimental and theoretical results include statistical and systematic contri-
butions.

NaBr

0
Third cumulants at zero pressure ( 10 A )

KBr Rbcl

EXAFS experiment
Boswarva
Boswarva + three-body
Tosi and Fumi
Tosi and Fumi + three-body

9.6+6
7.0+5
9.8+5

11.0+5
29.8+7

6.0+1
9.0+5

11.5+5
10.7+5

3.9+3
8.7+5
9.5+5
9.3+5

0
Nearest-neighbor distances at zero pressure (A)

NaBr KBr RbC1

Without third cumulant
With third cumulant
Literature value (Ref. 31)

2.964+0.005
2.978+0.005
2.987+0.000

3.218+0.015
3.243+0.015
3.300+0.000

3.266+0.005
3.275+0.005
3.295+0.000

paper. Here we want to go beyond some of the simpli-
fying assumptions underlying these calculations and try
to derive the absolute values of the second and third cu-
mulants from first principles.

The second and third cumulants are expressed in terms
of the first, second, and third moments (pi, p, z, and p&, re-
spectively) by

0 —Pp P)

0 p3 3p~] +2p] (2b)

The nth moment of the distance between two atoms at
positions r& and r2 in a crystal consisting of X atoms is
defined as

f . f Irz —
ril "expI —[p ~l'(ri, . . . , r~)+~U«i, . . . , r~)I/k~&I «i ' ' «~

v. V»= f f expI —[phV( ,r, . . . , „r) +b, U( „r. . . , „r)j/ ksTj dr, . dr~

where p and V are pressure and volume, respectively, and
U is the potential energy of the crystals, which will be
discussed in detail later. The integrations are over all 3N
dimensions of configuration space. The only assumption
entering this ansatz is the classical approximation (sum-
mation replaced by integration) which is generally
justified above the Debye temperature, OD. With OD be-
ing 173, 224, and 165 K for KBr, Naar, and RbCl, re-
spectively, no problems should arise. Note that in our
previous paper four rather restrictive assumptions had
to be made at this point.

The integral is obviously too complicated to be solved
analytically and so a Monte Carlo technique is employed.
Monte Carlo integrations of liquid and solid
alkali-metal halides can be found in the literature. In or-
der to facilitate convergence within a finite time, an extra
integration variable, volume, is usually introduced in
such a way that a tentatively assumed lattice constant is
multiplied by a randomly chosen constant factor. Then
the integration ranges of the atom positions, r; are re-
stricted to the immediate vicinities of their equilibrium
positions. In our case, the pressure-volume relation is

perfectly well known, and it would be uneconomical to
rederive it with this calculation. Therefore, we take the
lattice constant as a function of pressure as a fixed input,
which eliminates the p 6 V terms from the numerator and
denominator in Eq. (2). Then we assign random positions
to the atoms in the vicinities of their equilibrium posi-
tions.

Three technical problems remain: (i) How large should
X be? (ii) Does the integration then have to extend over
all 3N variables? (iii) How large should the integration
range be for each variable r, ? The answer to question (i)
depends strongly on the potential energy of the crystal.
Therefore we want to discuss the best choice of the po-
tential energy first.

As long as the ions are considered rigid, i.e., undeform-
able and unpolarizable, the Hamiltonian can be broken
down into X(X—l)/2 pair potentials. Each pair con-
sists of an electrostatic part, a repulsive part due to core-
core overlap, and a van der Waals part. The latter has to
do with the fact that both cations and anions have closed
electronic shells like noble-gas atoms. When averaged
over the entire crystal, the ratios of these three energies
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are about ( —100):15:(—5). The contribution of ion i to
the total electrostatic energy, U„„ofthe crystal is given
by

(4)

power of the distance, and a dipole-quadrupole term pro-
portional to the inverse eighth power. The contribution
of a positive or negative ion i to the van der Waals ener-

gy, U,d~, of the crystal is given, respectively, by

provided the chemical binding is purely ionic.
No exact formulation is available for the core-core

repulsion term (also called Born repulsive energy), giving
rise to a multitude of empirical formulations and parame-
trizations. The most often quoted paper is that of Tosi
and Fumi presenting the generalized Huggins-Mayer
form of the Born repulsive energy. The contribution of a
positive or negative ion i to the repulsive energy U„, of
the crystal is given, respectively, by

1 r+ +r —r;
U,+, =—g c+ bexp

2
1 p

1

Uvdw
2 j=1

+
6
IJ

1%2 C+—g
k = 1 rik

D++
8

D++
rlk

6
1J

D
+

rlJ

D

2k 1 rk r

(6a)

(6b)

2

+—g c++ b exp
k=1

2r+ r

and

1

U„, =—g c+ b exp
2

r+ +r r;.

] 2

+—g c bexp
2 k=1

2r rIk
(Sb)

where N1 and N2 are the numbers of nearest and next-
nearest neighbors, respectively; c++, c+, and c, the
Pauling coefficients; ' b, the repulsive strength parameter;
r+ and r, the basic radii; and p, the hardness parame- '

ter. For clarity, nearest and next-nearest neighbors were
indexed with different variables, j and k, respectively.

Several similar such repulsive-energy formulations can
be found in the literature; we made our choice for
the generalized Huggins-Mayer form which is most often
used in the literature. Repulsive strength parameters,
basic radii, and hardness parameters (and similar such
parameters in the other formulations), are generally
determined from fitting experimental data. For example,
the bulk modulus, its temperature and pressure deriva-
tives, and the volume thermal-expansion coefficient can
serve as inputs for the vibrational Hildebrandt equation
of state and its volume derivative at constant pressure. "
Or the dielectric constants, e0 and e, and the transverse
optic frequency, co, can be used in a different formal-
ism. Many other possibilities exist. Different parame-
trizations, i.e., parameter values, for a given core-core
repulsion term are the result. Parametrizations for the
generalized Huggins-Mayer potential, e.g. , were reported
several times, ' ' ' the one by Boswarva being con-
sidered as particularly reliable for the calculation of the
isothermal equation of state and the equation of state.
We chose Tosi's and Boswarva's for comparison (see
Table II).

Finally, the van der Waals contribution to the potential
energy is usually written as a sum of two terms: a
dipole-dipole term proportional to the inverse sixth

The C's and D's have to be calculated from theory, but,
depending on the assumptions underlying the theories,
the results differ vastly. We used the values calculated by
Boswarva and Murthy but refer to Shanker and
Agrawal for a thorough comparison of van der Waals
coefficients.

In addition to pair potentials, many-body interactions,
in particular, three-body interactions, have been invoked
in recent years to improve the accuracy of potential-
energy formulations. The most notable example for the
necessity of higher-order terms in the Hamiltonian is the
so-called Cauchy deviation, 6=C,2

—C44, where C, 2 and

C44 are elastic constants. 6 is invariably zero when
many-body interactions are disregarded. Nonzero values
are observed experimentally. A comprehensive review of
many-body interactions in binary ionic solids is given by
Singh, along with heuristic attempts to visualize the
physics involved. Our freedom in choosing a three-body
formalism was limited by the availability of parametriza-
tions. We found readily available parameters only for the
deformation shell model and for the charge-transfer
model, which dates back to the classic paper of
Lundqvist and was applied several times. ' It is
difFicult to judge to what extent the different many-body
formalisms are complementary. We chose to use the
charge-transfer model exclusively.

The idea of charge transfer is the following: Consider
a cation with Y'protons and Y —1 electrons and an anion
with Z protons and Z+ 1 electrons. As the cation moves
toward the anion a transfer of c. electronic charge occurs,
the cation being described by ( Y—1 —e) and the anion by
(Z+ I+8) electrons. Since the charges determine the
Coulomb interaction, charge transfer gives rise to a
correction term to the Coulomb energy, as follows:

e' 1 ' rIk
N

U„,+3b= & I+—2f, & exp — '
t+3b 2 4 0

(j&I )

(7)

The summation in the correction term is over the nearest
neighbors of atom i Equation (7) in.dicates that charge
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transfer is not even zero when the ions are in their equi-
librium positions. The parameter fo can either be calcu-
lated from parameter fitting, ' similar to the pair-
potential parameters mentioned above, or from an evalu-
ation of the overlap integral. The results are vastly
different, suggesting that parameter fitting is unreliable
when it comes to a small correction term like fo. So we
chose the theoretical values.

We can now return to the three open questions about
the implementation of the Monte Carlo integration.
Since U„, U,dw, and the term that gives rise to the
three-body potential are dependent on nearest- and next-
nearest-neighbor interactions only, the number of ions X
required to model the crystal potential energy satisfacto-
rily is determined by our ability to get a good representa-
tion for the Coulomb energy over as small a crystal
volume as possible. Note that a value of the Madelung
constant does not solve the problem because the ions are
not at their equilibrium positions. While the Ewald
method seems to be required for (liquid or solid) alkali-
metal halides at high temperatures, the simpler Evjen
method is satisfactory for our purpose. It is a double

summation in real space and avoids the lack of conver-
gence of such a summation by using fractional charges
along the faces of the crystal. The application of this
method to the NaC1 structure is trivial. In the CsC1
structure, two different limits are approached, depending
on whether or not the faces consist of ions with the
charge of the central particle. The actual limit is then the
average of these two limits. When the Evjen method is
applied to a grid made up of 5XSX5 ions (NaC1 struc-
ture) or 5 X 5 X 5 bases of 2 ions each (CsC1 structure) the
electrostatic energy can be calculated with an accuracy of
0.24% and 0.21%, respectively, for the ion at the center
in a crystal at rest.

The problem of having to deal with a large number,
i.e., 3N, integration variables cannot completely be over-
come with the Monte Carlo technique. If m steps are re-
quired to get a reasonable approximation for the integral
of a smooth function in one dimension, m steps are re-
quired in 3X-dimensional space. Therefore, only a small
number of dimensions can be kept variable or, in physical
language, only some atoms at the center of the crystal
can be allowed to oscillate in a fixed grid of neighbors.

TABLE II. Input for the potential-energy models used: c++, c+, and c are the Pauling
coefticients; b, the repulsive strength parameter; r+ and r, the basic radii; p, the hardness parameter;
C++, C+, and C, the van der Waals coe%cients for the dipole-dipole term; and D++, D+, andD, the van der Waals coeKcients for the dipole-quadrupole term fo is. the three-body potential pa-
rameter.

c++
C+

NaBr

1.25
1.00
0.75

Pauling (1928)
KBr

1.25
1.00
0.75

RbC1

&.25
1.00
0.75

Tosi and Fumi (1964)
NaBr KBr Rbcl

Boswarva (1981)
NaBr KBr RbC1

b ( 10 ' J/bond)
r+ (A)
r (A}
p (A)

0.338
1.170
1.716
0.340

0.338
1.463
1.716
0.335

0.338
1.587
1.585
0.318

0.203
1.339
1.754
0.328

0.203
1.638
1.754
0.341

0.203
1.755
1.608
0.327

C++ (10 " JA /bond)
C (10 ' J A /bond)
C (10 ' J A /bond)
D++ (10 ' J A /bond)
D (10 ' J A /bond)
D (10 ' J A /bond)

NaBr

3.80
22.2

216.7
3.35

48.9
715.7

NaBr

11.44

Boswarva and Murthy (1981)
KBr

36.4
78.9

253.0
54.4

197.3
715.7

Shanker, Jain, and Singh (1980)
KBr

17.82

Rbcl

69.9
85.0

153.8
120.0
211.3
372.0

Rbcl

10.65
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Table III shows six model calculations for RbC1 with
different degrees of freedom. In the two-ion model all
spatial coordinates of two neighboring ions at the center
of the crystal are kept variable. In the first four-ion mod-
el the same is done with 4 ions in a line. The second
four-ion model reduces the degrees of freedom from 12 to
8 by freezing the y and z coordinates of the ions at the
end of the line (with the ions being aligned along the x
axis), and so on. All six models were calculated with the
same sequence of random configurations. Therefore the
differences between the results are free from randomness
and represent exclusively the differences between the
models. The potential parameters of Boswarva were
used without a three-body term.

Table III presents the second curn ulants of the
nearest-neighbor distance o at 0 and 8 Gpa, along with
error bars representing random errors. It seems that o.

depends somewhat on the number of ions, but for 6 and
more ions the systematic error decreases suSciently and
is not more than (0.5 —1.0) X 10 A . Together with a
random error of the same size, the six-ion model in 10 di-

0
mensions produces a total error of about 1.5X10 A
and was chosen for our calculations. Similarly, the total

0
error for o' ' was determined to be about 5 X 10 A and
entered in Table I. The final choice for the crysta1 sizes
was therefore 10X 5 X 5 for the NaC1 structure and
7 X 7 X 7 ( X 2 ions each in the bases) for the CsC1 struc-
ture, with the ions being lined up a1ong the x axis in the
former and along the diagonal in the latter.

Finally, the best choice of integration range for the in-
tegrals in Eq. (3) must be discussed. Figure 9 shows the

result for o of RbC1 at p =0, with each diamond symbol
representing the average of 5000 random configurations.
o. first increases with increasing integration range, indi-
cating that it is still too small and configurations with
non-negligible statistical weights (Boltzmann factors)
have been omitted. After a certain critical value (desig-
nated by a dotted line), o remains constant, but its vari-
ance is increasing as more and more configurations with
small weights are sampled. The correct result for o is
then obtained by averaging over all results above the dot-
ted line (i.e., a total of 140000 configurations) taking the
appropriate Boltzmann factors as weights. This average
is shown by the dashed line.

V. MODELING RESULTS AND DISCUSSION

Figures 6—8 and Table I show the results of the cumu-
lant modeling. Calculations of ~ (p ) were made for a few
points along the pressure axis and joined with polynomi-
als, as shown in the figures. The solid lines show the re-
sults for the generalized Huggins-Mayer potential with
the parametrization of Boswarva. When the three-body
potential of Singh is added, the dash-dotted lines are
obtained. Use of Tosi's parametrization of the general-
ized Huggins-Mayer potential gives the dashed lines as
result. Finally, the dotted lines are obtained by combin-
ing Tosi's parameters and Singh's three-body term. The
sequence of random configurations was repeated identi-
cally for a11 pressures and all curves. This eliminates ran-
dom errors between the curves and minimizes random er-
rors between the pressures.

TABLE III. Monte Carlo results of the second cumulants of the nearest-neighbor distances, o. at 0
and 8 GPa. Calculations were made for RbCl with the Boswarva parameters of the pair potential. No
three-body potential was applied. The models differ by the number of ions that are allowed to move
freely in the directions specified.

Model

2 ions

Coordinate Degrees of freedom

o. (0 GPa)
(10 A )

20.1+0.3

o. (8 GPa)
(10 A )

10.1+0.4

4 ions 22. 1+0.5 9.0+0.6

4 ions 21.6+0.6 10.4+0.7

6 ions 19.1+0.4 9.5+1.1

6 ions 18.6+0.7

8 ions ++++++++
++
+ +

20.1+1.6
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FIG. 9. Calculation of o. at p=0 for RbC1 with the pair-
potential parameters of Boswarva and without a three-body po-
tential. Each point represents the weighted average of 5000
configurations. The ions are free to assume any position inside
the integration range, as specified. For too small integration
ranges, statistically significant configurations are omitted, thus
producing too smail values for o. . For integration ranges above
the dotted line, more and more statistically insignificant
configurations increase the spread of the points. The final result
for o. is then the weighted average of all points above the dot-
ted line, as indicated by the dashed line.

Let us now compare experimental and model results.
An inspection of Fig. 6 (NaBr) shows that the four curves
are further apart than the total error in the modeled cr

( l. 5 X 10 A ) would allow. This indicates that the
model calculations are sensitive to the potential models
and parameters used. The experimental data match the
modeled ones only moderately well with the absolute
values of o being similar but the slope being markedly
larger. A different formulation of the pair potential
and/or the three-body potential may be required to ob-
tain a larger slope and improve the match with the exper-
iment.

For KBr (Fig. 7), differences between the two pair-
potential-parameter calculations and the three-body cal-
culation are a little bit smaller than in NaBr. Experiment
and one model calculation match closely in the B2 phase.
However, a systematic offset exists between the experi-
ment and the model calculations in the B1 phase. Since
the slopes of experimental data and model results are fair-
ly similar, it may well be that the existing potential for-
mulation along with different parameters can fit the ex-
perimental results in both phases.

Finally, a reasonable match of experiment and model
calculations exists for o. of RbC1 (Fig. 8). This may be
due in part to the fact that we made more experiments
with RbCl than with NaBr and KBr. But, interestingly
enough, there is also little disagreement between the
model calculations themselves.

Experimental and modeled values of a' '(0) agree well
for NaBr, with the exception of the Tosi-Fumi pair po-

tential combined with the three-body potential. This
combination gave already unacceptable results for
o' '(p). For KBr and RbC1, experimental and model re-
sults differ by about a factor of 2. Since the absolute
values of o. (p) are not too different between the three
materials investigated, we expect the same to be true for
o' '(0) and therefore tend to dismiss the low EXAFS re-
sults.

We observe that high-pressure EXAFS, due to its sen-
sitivity to interatomic potentials, can permit assessment
of existing interatomic-potential-parameter formulations
and parametrizations. Many attempts have been made to
evaluate and fit potential parameters from a knowledge of
the cohesive energy. But the cohesive energy does not
depend strongly on potential parameters. The sensitivity
on potential parameters increases with the order of the
spatial derivative of the potential energy: Second-order
elastic constants (second derivative; SOEC), third-order
elastic constants (TOEC) and first derivatives of SOEC
(third derivative), and finally fourth-order elastic con-
stants along with first derivatives of TOEC and second
derivatives of SOEC (fourth derivative) are successively
more sensitive to the forces between atoms. That is why
elastic constants and their derivatives have been calculat-
ed repeatedly from alkali-metal halide poten-
tials ' ' ' ' 6 ' 8 and compared with results from
ultrasound measurements. Also, dielectric constants and
their derivatives, ' phase-transition pressures,
and other parameters have been found useful. All the
above-mentioned calculations share one common charac-
teristic: Physical quantities are calculated for one ther-
modynamic condition, mostly STP. In other words, no
continuous functions of pressure or temperature are cal-
culated.

The only continuous function of pressure that is calcu-
lated from potential parameters is the pressure-volume
relation (isothermal equations of state). ' ' ' ' Since
volume depends only on the first moment (which is iden-
tical to the first cumulant) of the nearest-neighbor dis-

tance, we can also call a pressure-volume relation the
pressure dependence of the first cumulant. Following the
logic of our previous paper, the second cumulant is pro-
portional to the first pressure derivative of the first cumu-
lant [Eq. (19)].Calling to mind that this relation is based
on rather restrictive assumptions, we want to use it only
qualitatively to show that the second EXAFS cumulant is
more sensitive to potential parameters than the pressure-
volume relation.

Eggenhoffner et al. 's ' comparative study and evalu-
ation of various pair-potential models concludes with the
words, ".. . it is clearly difficult to say which, if any, of
the new potentials. . . is to be preferred over the others.
It is also difficult to say whether the new potentials taken
as a whole have truly improved our knowledge of the
effective short-range pair interaction potentials in the
alkali-metal halides. " While we have no indication that
our knowledge of alkali-metal halide potentials has im-
proved in the decade since this remark, we can now offer
an additional sensitive physical parameter, o (p), to as-
sess existing pair potentials and, possibly in the future, to
calculate better ones.
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