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We present a theoretical study of the far-infrared response of doped tunneling superlattices
using the d-parameter formalism. The d(u) functions provide both the position and coupling
strengths of all possible infrared-active modes in the superlattices and our model calculations
reveal single-particle-like transitions as well as intraminiband and interminiband plasma modes.
A series of surface excitations, related to charge depletion in the end layers of real tunneling
superlattices, are distinguishable from the corresponding bulk modes. The spatial variation of
the induced charge density in these additional modes is quite difkrent from that of the bulk
modes. The surface-mode energies are sensitive to details of the depletion-density profiles, which
in turn are easily modified by an applied gate voltage, thereby shifting the surface absorption
frequencies.

I. INTRODUCTION

Developments in molecular-beam epitaxy have made
possible the growth of high-quality GaAs-Al Ga~ As
superlattices with abrupt interfaces and very thin layers.
At the simplest (idealized) level, one can view the layers
as identical, uncoupled, and extending forever along the
growth axis. However, real systems are of finite length
and (if the layers are thin enough) allow tunneling of
charge carriers between layers as well as nearly free mo-
tion within layers. In addition to this three-dimensional
(but anisotropic) conduction, the near-surface layers dif-
fer from those in the bulk by having a reduced, position-
dependent charge density. These carrier-depletion re-
gions are due to semiconductor surface states (associated
with dangling bonds, defects, and impurities) which pro-
vide a reservoir of electronic traps near the ends of the
superlattice and strongly pin the Fermi level to the semi-
conductor midgap. The net result is that finite doped
superlattices possess considerable anisotropy and inho-
mogeneity, which, on the one hand, can be conveniently
modified by growth conditions and gate voltages to tai-
lor the system's response but, on the other hand, present
a considerable challenge to theory for a quantitative de-
scription.

Self-consistent calculations of the electronic-level
structure in such systems have been presented earlier
and we use these results here to build a theory of in-
frared absorption. Brief reports of our initial results
have already been published. ' Although there have
been numerous theoretical papers discussing plasmons
in superlattices, none of them considers simulta-
neously all the complications noted above. The previ-

ous work has also been mainly directed towards inelas-
tic light scattering since experimental studies of super-
lattices using that probe are available. We have
chosen to examine infrared absorption because it repre-
sents a complementary experimental probe and because
it provides an interesting application of the d-parameter
formalism, which was originally developed to describe
nonlocal screening effects at the surface of clean (jel-
lium) metals. This theory has had several recent
successes and calculations can now be done at a
fairly sophisticated level. The original formalism has
been generalized, opening up a wide range of poten-
tial applications and in addition the essential equiv-
alence of this approach to several alternative formalisms
has been established. 3 For finite superlattice systems,
we will show that the d(io) functions yield the excitation
strengths and energy positions for all possible infrared
absorptions.

After a brief overview of this approach, we derive in
Sec. II the equations necessary for its application. This
is done at various levels of sophistication, ranging from
imagining the superlattice response to be given by scal-
ing down (to less than a micrometer in length) the bulk
response of a very long superlattice to including the self-
consistent interaction of excitations from and to both
bulk (but finite sized) and surface (Tamm) states in the
realistic inhomogeneous system. Then in Sec. III a series
of model calculations are presented illustrating the pos-
sible spectra and their physical content. As expected in
the long-wavelength limit, intraminiband and intermini-
band plasma modes carry most of the excitation strength,
although interminiband excitations with a predominant
single-particle character are also present with significant
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weight. One can distinguish surface from bulk modes
in the absorption spectrum and we discuss their diAer-
ent behaviors with respect to variations in structural and
other parameters. Finally in Sec. IV we sumarize our cal-
culations and compare their evaluations and content to
inelastic light or electron scattering.

II. FORMULATION

A. d-parameter formalism

We shall treat a semiconductor superlattice as N quan-
tum wells separated by finite potential barriers and im-
mersed in a semi-infinite (z ) 0) uniform medium of
(local) dielectric function e. Since the superlattice struc-
tures we consider are less than a micrometer in total
length, it is reasonable to view these electronic multi-
layer systems as a surface modification of the substrates
on which they are deposited, given that the excitations
of interest only absorb light whose wavelength is much
greater than the superlattice thickness. In this long-
wavelength regime one can describe the changes in the
optical behavior of the surface due to the superlattice by
d parameters in a spirit similar to the study of adsorbate-
layer systems. 3

Consider first light incident from vacuum on the flat
surface of a uniform substrate characterized by e. If ~
is the light frequency and 0 the angle of incidence with
respect to the surface normal, then

2pQ

p.~+ p —~p. (1 —~)(p d((+ Q'd~/&. )
' (7)

where the only additional quantities are the two d pa-
rameters dI~ and d~, which are complex-valued functions
of frequency with units of length. It is important to re-

mark that the d's do not depend on 0 or on any of the
wave-vector components in (1)—(3). Hence the angular
variation of r and t is easily found from that of Q, p„,
and p . The appearance of only two d functions in (6)
and (7) is a consequence of the presumed symmetry of the
system: the growth axis of the superlattice is along the
surface normal and each layer has a (two-dimensional)
isotropy and translational invariance.

This isotropy and homogeneity for motion parallel to
the surface makes dII easy to find. It is formally given by
the integral along the surface normal

where we have used a subscript 0 for these Fresnel an-

swers.
Next one can ask how these equations change if the

optical response of a thin region near the surface is mod-
ified. In the limit that the thickness of this region is

small compared with c/w and the inverses of (1)—(3), the
modified reflection and transmission amplitudes can be
expressed (again for p polarization) asss

p. ~ —p —~p. (1 —&)(p "(( —Q d~/p )
p„~+ p ip„(1 —e)(p~d((+ Q'di/p„) '

Q = —sin 0
C

(1 —c) d(( = dz [~(((z) —e], (8)

p„= —cos 0
C

(2)

is the projection of the incident wave vector on the sur-
face plane and

where the difference between q((z) and e is determined
by the extra conductivity due to the carriers in the su-
perlattice moving parallel to the surface, which in turn
is well approximated by a Drude expression. Thus

is its normal component in vacuum. Both the reflected
and transmitted beams have the same wave-vector pro-
jection in the surface plane as (1), but their normal com-
ponents differ from (2). That for the reffected wave is

simply —p„while the transmitted wave has

with

4xi
~(((z) —~ = o.(((z)

inze~ rn

(3)

which in general is complex valued. One should use the
root that makes the imaginary part of p positive. The
Fresnel predictions for reflection and transmission ampli-
tudes of the electric field are determined by c and the
wave-vector components (2) and (3). Their explicit form
depends on the polarization of the incident wave, which,
like Q, is preserved through the interaction process for a
flat interface. If the electric field vector lies in the plane of
incidence (p polarization), one has, from classical optics,

pe& pm
Pp

pe&+ pm

2pQ
tp

pe&+ pm

dz n(z) (12)

is the total (two-dimensional) density of carriers in the
superlattice. In the limit of long-wavelength pertur-
bations the current response parallel to the surface in-
volves negligible phase diA'erences between different lay-

where ~ is the driving frequency, n(z) the equilibrium
(three-dimensional) carrier density, m an effective mass,
and 1/r a (transport) scattering rate. Combining (8)—
(10) we obtain

(
4vrN, e2/m

~(~ + i/~) '

where
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ers within the superlattice. Hence the currents induced
by an electric field parallel to the surface can be simply
lumped into an effective current sheet involving N, .

This physical interpretation is more evident if we use

o, = I dz o.~~(z) instead of d~~ in (6) and (7). For instance,
rewriting (7) for the case of normal incidence (so Q = 0
and d~ is irrelevant) yields

B. Formulas for d~

(1 —I/e) dh— dz'[ e~'(z, z')

-(I/~) ~(z —z')l (»)

A general equation for d~ due to a finite superlattice
is36

which shows the classical reduction of to due to a current
sheet of conductance o,

A perhaps more interesting consequence of the d~~ of
(11) occurs on the other side of the light line; i.e. , for

Q ) u/c, which can be realized, say, by using a prism
coupler near the surface in a frustrated total reHection
geometry. To find a simple result, we imagine Q ))~/c
so both p„and p may be replaced by i Q. Then the
denominators in (6) and (7) will vanish when

4~%, e Q
m(a+ 1)

'

where we have neglected both 1/7 and d~. The resulting
singular structure in r and t thus occurs along the dis-
persion of the (nonretarded) two-dimensional plasmon of
a charge sheet characterized by N, and rn and located
on the surface plane of the substrate.

The calculation and interpretation of d~ are much
more involved. Before plunging into details, consider
how the infiuence of d~ would appear in experiments.
One might be looking for small changes in the reQec-
tion coefFicient, R = ~r ~, or the transmission coefficient,
T = ~t+e~ +e, due to excitations in the superlattice. Ex-
panding (6) and (7) we find to first order in the d's [which
is the limit of formal validity of (6) and (7) (Ref. 36)] for
the relative changes in R and T

where we have allowed for nonlocality in the response
along the growth axis. If we neglect t, his feature, (17)
reduces to a close analog of (8):

(1 —I/e) d~ = dz [I/e~(z) —I/e] .

However, the jump from (17) to (18) is a quantitatively
important approximation due to the system's strong in-
homogeneity along z. Hence we return to (17) and reex-
press it as

dz z Ap(z)/Di (0),

where Kp(z) is the induced carrier density and D~(0) is

the (essentially constant) normal component of the dis-
placement field of a long-wavelength perturbation. We
calculate Ep(z) from the linear response formula

Ap(z) = y(z, z'; ~)V«&(z') dz', (20)

where the perturbing potential energy seen by the super-
lattice, which is embedded in the dielectric, is

V,„t,(z) = ezDg(0)/e —. (21)

X(z, z') = Xo(z, z')+ yo (z, z) V(z, z') y(z', z') dz dz',

The susceptibility y is found in a mean-field approxima-
tion by solving

Q e(dpi
—d~ )XII/II ——dp„Im (dtll + EP~'

dT/T = 2p„Im (p dll+q dz/p ))&pe + pm

(16)

(22)

where yo is the independent-particle susceptibility and
various terms can be included in the interaction potential
energy V(z, z'). At the simplest (random-phase approx-
imation, RPA) level one keeps only the direct Coulomb
(Hartree) interaction and an image term:

where Im denotes "imaginary part of." The value of (15)
and (16) is that they provide explicit relations between
measureable quantities, AR/R and AT/T, and calcula-
ble quantities, d~ and d~~. Hence our numerical estimates
of the d's can be readily converted into predictions of
signal strengths, or vice versa. This utility of the d's
continues to hold true for more complicated geometries
than considered here, as long as the inhuence of the su-
perlattice can be treated as a small perturbation on the
overall optical response. One need only solve the system
optics first using ro and to at the interface where the
superlattice will reside, and then substitute a first-order
expansion of r and t into the final results.

V = VII + &r,

where

(23)

and

2ze
VH(z, z') = — iz —z'i

E
(24)

27i C 6 —1
VI(z, z') = — (z+ z') .~+1

However, the latter term produces no net effect, since in
the present long-wavelength limit its integral with Ap(z')
yields only a position-independent result because there is
no net induced carrier charge: Jo dz' Ap(z') = 0.
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14„k,(r„„,z) = exp(ik, r„„)4„(z),
A

(26)

To calculate yo requires a description of the single-
particle structure of the superlattice. We assume free
motion (with an eff'ective mass) in the x-y plane and
tunneling motion along z. An electronic eigenfunction
is written as

2(E„—E„~)"(E„—E„)2 —h~(h~ ~ ip)
' (33)

Here s is a compound index which stands for (i, n, j, P)
and y is a phenomenological damping parameter which
takes into account the impurity broadening of levels. The
factor

where A is a quantization area and 4„(z) is expanded in
a Wannier representation N„= 2 (Ey —E„)f„,

xh
(34)

(27)

with P; (z) the Wannier function for the nth miniband
centered on the ith layer. The eigenvalue associated with
the product state (26) is

E„„,= E„+h'k,'/2m.

The energy-level structure (E„}and associated eigenvec-
tors (b," } can be obtained from the tunneling Hamilto-
nian for the superlattice, given in a tight-binding approx-
imation by

with the Fermi energy E~, is an effective two-dimensional
density associated with the nth state for motion along z,
and f„ is the Fermi factor for that level.

The YVannier representation makes it possible to
decouple and solve the mean-field equation (22)
exactly. ~'42 We obtain

y(z, z';sr) = ) A, (z)[B(l —VB) ]„A, (z'),
s, s'

where

H, =) [(e +v~)Ct C~ —t Ct+, C, A, (z)U(z, z') A, (z') dz dz'. (36)

-~.C,'.C, +, .]+ ) V. ..C,'.C, .
j,nfl'

~.(z, z') = ) II„„.C„(z)e„.(z)C„( ')e„( ')
n n

=) A, (.)B„.A, .(.'),
s,s'

(3o)

with

A. (z) =&;( )&, ( )

n, n'

I I

b,
" b"~~„,„,b;, b (32)

where C~ is the destruction operator associated with
the Wannier state P;, the t are the nearest-neighbor
hopping matrix elements for each band, and the e are
related to the energy minigap parameters. The term
with Uj ~ ~1 represents the miniband mixing induced by
the gradient of the inhomogeneous self-consistent poten-
tial, vj, which in turn takes into account the electron—
donor-ion and electron-electron interactions in a Hartree
approximation. (Exchange eft'ects are discussed below
in Secs. II C and III D.) The inhomogeneous potential
obeys Poisson's equation with boundary conditions which
simulate the efI'ects of the Fermi-level pinning producing
charge depletion in a realistic superlattice. Further de-
tails of the calculation of the level structure and eigen-
functions can be found elsewhere. '

The ingredients (27) and (28) determine Zp(z, z )
through

Correspondingly, the induced carrier density in Eq. (20)
can be written as

Ap(z, cu) = ——D~(0) ) A, (z)[B(1—VB) ']„iH, ,
E

s, s'

(37)

where H, = f zA, (z) dz is a dipole matrix element be-
tween Wannier functions. Finally, combining Eqs. (19)
and (37) leads to the convenient expression

4vre2
di = ) H, [B(l —VB) ]„H, ,

e(~ —1)
)

which is the basis of the numerical calculations described
in Sec. III. The explicit form of the Wannier functions
used in the evaluation of the various matrix elements in
these expressions is obtained from the numerical solution
of a Kronig-Penney problem with appropriate parame-
ters; see the Appendix for details. The definite-parity
and highly localized behavior of the various P, , which
results from carefully Fixing the phases of the Bloch wave
functions, 3 greatly simplifies calculations of the matrix
elements B„and V„. For instance, it sufFices to in-
clude no further than nearest neighbors in the calculation
of elements of V„l.

To end this subsection we remark that in a polar ma-
terial like GaAs and over the frequency range of inter-
est, the optical phonons are active and should not be
ignored. This effect, however, is reasonably treated by
simply making the background e frequency dependent
according to
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( )
(d —(dL + 2fpgGJ

4) —MT + 2pph4)
(39)

where u~ and ~L are the transverse and longitudinal
optical-phonon frequencies, respectively. We use for the
parameters in (39) h~T = 33.6 meV, her, = 36.8 meV,
E = 10.4, and humph

——1 meV. For qualitative
insights we occasionally keep just the static limit of (39),
where e(cu ~ 0) ~ eo ——12.5.

C. Excitonic effects

2
v. = ——(3m p~/a)'~ (40)

where p& is the electron areal density in well j and a
is the superlattice period. The resulting electronic-level
structure shows, however, no significant change with re-
spect to previously obtained results (shifts of less than
0.'2 meV).

More important is the incorporation of exchange eAects
into the dynamical response function of the system.
These are included in our calculation by adding a term
to the two-dimensional interaction potential of Eq. (23)
of the form 13,1,18,2o, 44

V (z, z') = V
6(z —z'), (41)

It is well known in the st, udy of strongly interacting
systems that the Hartree approximation overestimates
the effect of Coulomb repulsion between carriers, which
exchange and correlation elfects tend to compensate. 44

Beginning with the work of Ando on quantum wells 5 it
has been realized that this countering of Coulomb eff'ects
in the optical response of systems with reduced dimen-
sionality can be substantial. In order to estimate its effect
on the various excitation modes for our system, we use
a local-density approximation for the exchange energy
functional, as has been done before in the study of other
heterojunction and superlat tice systems.

First, we include the exchange potential v in the z-
motion Hamiltonian of Eq. (29) by adding a term to the
local potential v& of the form

pendix). Results of including this interaction will be dis-
cussed in Sec. III 0 below. However, for simplicity, and
because we will show them to be unimportant, we will

ignore the effects of both v and V„, until that section.

D. d parameters in a continuum limit

C i(z) oc ) e'""P, (z), (44)

such that the corresponding eigenvalues for a two-
miniband model are (to within a constant shift)

Ei (k) = [1 —cos(ka)],
2

(45)

E2(k) = Es & + Ai + Aq — [1 —cos(ka)],
2

(46)

where Ai (= 4ti) and A2 (= —482) are the (positive)
bandwidths and Egzp is the miniband gap. The Bloch
wave vector k runs between +~/a. 1gnoring local-field ef-
fects, the electronic contributions to the long-wavelength
dielectric response is given in this continuum model by

In order to provide a natural comparison with the be-
havior of a finite system with depleted end layers, we

consider approximate evaluations of (18). At the sim-
plest level one could cut oK the z integral at I = Na
and replace e~(z) with c + be~. A further approxima-
tion would then be to guess a functional form for the
frequency dependence of the (bulk) superlattice contri-
bution, beg, introducing thereby various transition and
plasma frequencies, oscillator strengths, etc. , to repre-
sent the presumed spectrum of optical response. Most of
these parameters can be reasonably estimated if we use
the model set up here for a finite superlattice to calculate
the (local) dielectric function of an infinite superlattice.

To carry through such a calculation we keep only the
e and t terms in (29) and extend the sum on j to
infinity. Imposing periodic boundary conditions allows
us to write the wave functions for the tunneling motion
in the simple form

where n is the eAective three-dimensional local electron
density ( p&/a). The corresponding matrix elements
V„I in Eq. (36) have an additional exchange term given
by

2e sn

7l

—2e 2

beg(~) =—

x/a

x/a

(cIEi /Ok) 2

(hcu)'

dk II(k) iS(k) i

(42)

where the density weights are integrated over one su-
perlattice period to account for the discretization of the
problem,

A 2 2
(intra) g

k~) =-
2h ~2 (48)

where we have assumed that the Fermi energy lies in the
miniband gap; i.e. , 0 ( E+ 41 ( Egzp The first term
is due to intraminiband processes and integrates to

C„i—
(l+ 1/2) a

l —1/2)a
A, (z)A, (z) dz. (43)

The second term is from interminiband excitations and
involves

Most matrix elements C,', , are small due to the well-
localized character of the Wannier functions (see the Ap-

2 [Ei(k) —E2 (k)]
[E,(k) —E2(k)]2 —her(h~ + ip)

'
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N(k) = [E —E, (k)]
vr 6' (50)

an effective two-dimensional density analogous to the N„
of (34) and

where the sum on j converges quickly. The k integral
of these factors is numerically straightforward, yielding a
~ (inter)(

)
Finally one substitutes into (18) to obtain

dg ——I, (52)

whose frequency dependence is easily related to that of
e and be~. For example, there are (bulk) plasmon con-
tributions from the zeros of e+ be~ and (52) describes
(approximately) both their location and strength. Com-
parisons with the simple results from (52) will aid the un-
derstanding of the complex spectrum predicted by (38).

III. RESULTS AND DISCUSSION

We have calculated d parameters for an n-type doped
semiconductor superlattice with typical structural pa-
rameters using the various expressions derived in Sec. II.
The superlattice structures we have in mind consist of X
periods deposited on an undoped bufkr layer (-1100A)
which in turn is followed by a semi-infinite dielectric sub-
strate. We present explicit calculations for N = 10 and
20, in a GaAs-A1GaAs system such that m/m, = 0.067,
and a = 188 (well)+ 38 (barrier) A= 226 A, with vari-
ous bandwidths A' and Az (achieved experimentally by
varying the Al concentration which changes the poten-
tial barrier height). The configuration chosen and some
of the parameter values model a system similar to those
used in recent quantum Hall-eA'ect experiments.

The ground-state energy-level structure and wave func-
tions for the different systems were obtained using the
tight-binding envelope-function approximation described
above, where the potential associated with the inho-
mogeneous charge-depletion regions is incorporated self-
consistently for a two-miniband model. " The Fermi-
level pinning which produces the depletion regions at
the ends of the superlattice gives rise to surface-localized
states lying in the miniband midgap with wave functions
strongly peaked in one period and with a fast-decaying
tail. For the doping densities used (p+ 1.9 x 10
cm ), the Fermi level lies within the miniband gap and
only the first z-motion miniband is occupied in the peri-
odic undepleted system. In the case of Fermi-level pin-
ning, however, the corresponding depletion regions ex-
tend over two layers an the buffer end and over four
layers at the free end. As more layers are added, they
join the "bulk" region, and affect very little the exten-
sion and energetics of the depletion regions (as long as

20—

10—

LJ
I

C
LLJ

—20
—0.2

I
~

I I I I
[

1 I I I

[
I I

—0.1 0.0 0.1

Vgole (V)
0.2

FIG. 1. z-motion electronic states E„vs ga te voltage,
plotted with respect to the Fermi level E&, in a system v~ith
ten periods. Notice surface-localized states, dashed lines, de-
tached from miniband level groups. p+ ——1.9 x 10 cm
Dq ——2.48 meV, A2 ——10.4 meV, and Eg p —26.2 meV.

X ) 7). The resulting surface-localized states (shown as
dashed lines in Fig. 1) are related to the depletion regions.
They lie close to the Fermi level, but detached from the
main group of levels (the remnant of the miniband in
this small system with few energy levels), and are very
sensitive to the conditions of the surface, such as an ap-
plied gate voltage. Figure 1 shows the electronic-level
structure (with respect to the Fermi level) plotted versus
a gate voltage applied across the superlattice. As men-
tioned before, the exchange-potential term has a negligi-
ble eA'ect on the levels on this energy scale. The presence
of a gate voltage is simulated by varying the values of
the surface-potential parameter appearing in the bound-
ary conditions. For simplicity, we have kept one end of
the superlattice fixed, modeling the application of a gate
voltage to the "free" end of the structure (where now a
gate probe is attached). As shown in Fig. 1, the surface-
localized states associated with the depletion region near
the free end are drastically shifted down in energy as the
gate voltage is increased. Simultaneously, the extension
of the corresponding wave function is greatly increased,
changing the character of the level from surface localized
to bulklike. ~

Possessing now the ground-state levels and wave func-
tions we can proceed to calculate the optical response of
the system using d parameters. The various excitation
features are described in what follows, beginning with
those common to all superlattice systems, with and with-
out depletion regions taken into consideration. We then
discuss the excitations unique to systems with depletion
regions, where the surface-localized states play an im-
portant role. To emphasize the significance of different
features appearing in the more realistic (although corn-
plex) model, we present in Fig. 2 the functions d~(~)
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for the various model superlattice systems. The result-
ing individual features are identified and discussed below
according to the diA'erent physical characteristics of each
mode. Notice that the real and imaginary parts of d~
obey a I&ramers-Kronig relation, such that the collec-
tive modes of the system are characterized by a peak in
Im(d~), occurring simultaneously with a zero in Re(d~).

A. Intraminiband plasmons

We begin with Fig. 2(a) which shows d~ for a
uniformly charged (no depletion regions) "bulk" super-
lattice, with structure parameters as specified above
and 4i, A2, and Es ~ given by 2.48, 10.42, and

tme a)'
to;ntra =

I( 2eh ) (53)

26.2 meV, respectively (corresponding approximately to
a GaAs —Al& isGao s~As system with a barrier height of
134 meV). "The curves in Fig. 2(a) have been obtained
from Eq. (52) with e = eo —12.5 and E~ = 16.6 meV
(corresponding to N, /N = p+a). The first peak in the
imaginary part of d~ (at 2.5 meV) corresponds to the
so-called intraminiband plasmon. This identification can
be verified by looking for the zero of eo + b~&""' (cu) at
low frequencies, where be&" " (io) has been neglected. In
that case, the intraminiband plasma frequency is given
by
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as presented previously. 2 The tunneling motion in
the z direction allows for intraminiband plasmons in
the long-wavelength limit such that the plasma fre-
quency is proportional to the miniband width, in con-
trast with the situation of a purely two-dimensional sys-
tem where the plasma frequency vanishes for Q ~ 0.io 22

This result can also be viewed as the remnant in an
anisotropic three-dimensional (3D) system of the well-

known finite value of the plasma frequency in the long-
wavelength limit. Indeed it is possible to show for the
case of E~ lying within the first miniband [rather than
in the gap, as assumed in Eq. (47)] that the expres-
sion for the intraminiband mode is given by ~;„&,
Ei ((me a /2ch ~) [k~a —

z~ sin(2k~a)]) ii 2. This expres-
sion reduces to the (isotropic) 3D result in the limit of
a —+ 0, and Ai —+ oo, while keeping a Ai ——2h /m, so
that the intraminiband plasmon becomes the well-known
expression w;„i,~ ~ (4+e nB/me)i~2. Notice that for
the parameters used, Eq. (53) yields ~;„t, 2.65 meV,
which is slightly shifted from the resonance feature in Fig.
2(a) (at 2.5 meV), due to the coupling between minibands
ignored in (53).

Figure 2(b) shows d~ for a superlattice with a finite
number of periods but otherwise the same parameters as
those in Fig. 2(a). We impose periodic boundary condi-
tions on the wave functions to make the charge distribu-
tion uniform throughout and use five periods so the sys-
tem has (nearly) the same total electronic density N, as
in the case with depletion discussed below. The collection
of sharp peaks in Im(d~), produced by the discrete spac-
ing of energy levels, clearly follows the overall shape of
Fig. 2(a). In particular, the resonance frequency and line
shape of the intraminiband plasmon are nearly the same
for these two systems, showing that the "bulk" behavior
is reached even for rather few layers in the structure.

Figure 2(c) shows d~ for a ten-period system (X = 10)
with the same Hamiltonian parameters as for Fig. 2(b)
but now allowing charge depletion in the superlattice
surface regions. Notice that due to the strong deple-
tion of layers at both ends (approximately four and
two on the free and buA'er side, respectively), the ef-
fective number of populated layers is approximately five

(K, = P. p&
——4.71p+a). [This explains our choice

above for a more quantitative comparison with the fi-
nite undepleted system of Fig. 2(b).] The intrarniniband
plasma frequency is basically the same, depending as it
does on the tunneling probability in the system (Ai).
Notice, however, that the intensity of the intraminiband
plasmon in this system with depletion regions is slightly
smaller than the results for the undepleted system, Fig.
2(b), due to the existence of additional excitations in the
case of Fig. 2(c), which carry some of the total excitation
strength. As the tunneling coefFicient decreases, and the
miniband widths are reduced, the resonant frequency of
the intraminiband plasmon is shifted down. For example,
if the miniband widths are reduced by half (Ai —1.24
meV, A2 —5.20 meV, and Ez &

= 31.0 meV), the in-
traminiband plasmon is shifted to 1.2 meV, while its ex-

citation strength is greatly decreased [see Fig. 2(d)]. This
pattern of smaller excitation strength continues for still
weaker tunneling systems, in agreement with the vanish-
ing plasma frequency value of 2D systems, as discussed
above

B. Interminiband excitations

In quantum-well systems as well as in superlattices
with fiat minibands (multiple-quantum-well limit), a col-
lective excitation (i.e. , a zero of the dielectric function)
associated with interminiband energies is called an in-
terminiband prasmon. Such a resonance can be viewed
as a single-particle transition which has been shifted
by the so-called depolarization eA'ects. These shifts of
the transition energies are proportional to a (dirnension-
less) Coulomb integral, called f, and to the effective vol-
ume charge density n~, ' such that the resonance fre-

quency is given by ~~„„l„=(cuz+ f~&~)i~2, where ~, is the
interlevel separation, and ~~ = (4irezn~/me) ~2 is the
plasma frequency for the equivalent three-dimensional
system (n~ ——N, ja) On th.e other hand, in the tunnel-
ing superlattices considered here, the miniband widths
are comparable to the miniband gap, which causes sig-
nificant changes in the spectrum of excitations of the
system. As shown in Fig. 2(a), the single-particle ex-
citations expected for Eg & & hu ( Es z+ Ei + A2 (i.e. ,

26 ( hu & 39 meV) form a broad continuum, while the
collective excitation yields a much stronger peak at a fre-
quency ~;„t,-„40meV, immediately following the edge
of the single-particle continuum. This strong peak would
be expected to dominate experimental excitation spectra,
which indeed is observed in two-dimensional cases.

In a finite superlattice system discrete peaks replace
the single-particle interminiband continuum, as could be
expected from the level "graininess" [Fig. 2(b) no deple-
tion; 2(c) with depletion], although they follow the over-
all envelope of Fig. 2(a). The corresponding intermini-
band plasmon is shifted slightly to ~ —42 meV. This
diII'erence is likely due t,o the ignored local field terms
in the calculations of beg above, while they are included
to a degree in the tight-binding calculations of Eq. (38).
The interminiband plasmon in the system with depletion
regions of Fig. 2(c) is shifted even further (to 42.5 meV),
and shows smaller intensity in comparison with the other
finite-size system, an eAect again of sharing the excita-
tion strength with the surface-related modes.

As the bandwidths are reduced by half from those in
Figs. 2(a)—2(c), the overall background related to the
single-particle interminiband excitations becomes nar-
rower (expected to lie between 31 and 37 rneV) and
weaker. However, the feature corresponding to the in-
terminiband collective excitation becomes stronger, and
approaches the behavior of a Oat-miniband system, where
it carries all of the excitation strength. Notice also
that the "relative depolarization shift" (defined as the
separation between the interminiband plasmon and the
upper edge of the single-particle background) increases
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for the narrower bandwidth system, indicative of the ob-
served larger effective oscillator strength, and expected
in general for a more localized system.

As mentioned before, in the results presented so far
the semiconductor background was assumed to have a
s/atic dielectric constant ~o ——12.5. This is a valid as-
sumption for excitations occurring at frequencies far from
the LO phonon (az, = 36.8 meV). However, that is not
the case for the interminiband transitions in the systems
considered here, where E& & 30 meV. As an illustra-
tion of the possible effects, Fig. 3(a) shows Im(d~) ver-
sus cu for the system with depletion regions of Fig. 2(c),
when the dynamic electron-phonon coupling is restored
by replacing the static dielectric constant with e(~) of
Eq. (39). Notice that all the electronic modes lying

(a) ten periods

200—

I

—200—

above the phonon resonance frequency are shifted up-
wards and enhanced due to the reduced screening by
the background (e~ = 10.4). This is especially true for
the interminiband plasmon, whose resonance frequency
shifted to u 45 meV since, as a result of the reduced
screening, the effective electron-electron interaction in-
creases, making depolarization eAects stronger.

For the most part, the spectrum corresponding to the
interminiband single-particle excitations overlaps with
the LO-phonon resonance, which appears as a strong
peak in the opposite direction. This "negative" peak
appears because the doped electrons present in the sys-
tem would reduce the strong absorption of the dielec-
tric background at that frequency. It is of course clear
that by making use of the ability to change the elec-
tronic level structure over a wide range by varying a
number of physical parameters (one of the main advan-
tages of synthesized semiconductor systems), it would be
possible to decouple the electron and phonon modes (by
increasing Ez &, for example). Moreover, one could in
principle also change miniband and gap parameters as
the means to carefully study the electron-phonon mode
coupling. ' The d-parameter formalism could be
used to study theoretically this phenomenon in a conve-
nient fashion. Indeed, we have observed the anticipated
anticrossing behavior of nearby modes for diA'erent struc-
ture parameters (not shown), with significant transfer of
excitation strength taking place, especially in the case of
crossing with the interminiband plasmon.
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FIG. 3. (a) Im(d~) vs frequency for ten-period system
of Fig. 2(c), tuith phonon dynamics included. Two surface-
depletion modes associated with each end of superlattice are
distinguishable, u 42 and 43 meU. (b) d~ for twenty-
period system with same parameters. Note scale change,
as strength for "bulk" plasmons increases while intensity of
surface-related modes remains constant.

C. Surface modes

The most important differences between Figs. 2(a) and
2(b) and Fig. 2(c) are those features associated with the
surface depletion regions present in a real system and de-
scribed in the model of Sec. II B.These excitation modes
in Fig. 2(c) are especially prominent as the structure in
the absorption midgap (ur 11 meV), and in the shoul-
ders of the intraminiband plasma peak and the inter-
miniband broad background (~ = 5 and 23 meV, respec-
tively). These features arise from excitations between the
minibands and the surface-localized states shown in Fig.
1 as dashed lines. The surface-depletion peaks in Im(d~)
have a dominant single-particle character, and are only
slightly shifted from the corresponding transition energy
by depolarization effects (( 0.5 meV). By analyzing the
gate-voltage dependence of the level structure in Fig. 1,
which is especially strong for surface-related states, one
expects that the position of the midgap peak is rather
easily changed by the applied gate voltages. During these
voltage-driven shifts, moreover, the intensity of the peak
remains fairly constant, an indication of its single-particle
character with constant excitation strength.

An important feature to notice in the depletion-region
system is the strong peak at u —39.8 meV in Fig. 2(c),
which is absent in the curves for the bulk system. This
strong feature (half as high as the interminiband plasmon
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peak) is actually composed of two closely spaced peaks,
resolved only for smaller values of the broadening pa-
rameter p (= I meV here). These modes clearly possess
interminiband character and large depolarization shifts,
in analogy with the main collective-excitation peaks. We
will see below that they are also characterized by pecu-
liar oscillations of the induced charge density at these
frequencies, with some similarities to the bulk modes.

As shown in Fig. 2(d), the position of the midgap
surface-depletion peak for the narrower-band system is
basically unchanged. The surface state giving rise to this
transition has approximately the same energy with re-
spect to the lower miniband in both cases, depending
as it does mostly on the local potential values near the
superlattice surface.

As the electron-phonon interactions are introduced in
the calculation, Fig. 3(a), the high-frequency surface-
depletion modes are enhanced and shifted to higher fre-

quencies, similar to the interminiband plasmons, due to
a weaker screening by the background. Furthermore, the
two closely spaced surface modes in Fig. 2(c) are split and
form clearly different peaks at ~ 42 and 43.2 meV. No-
tice, however, that the surface-related features at lower
frequencies are nearly unchanged, while their rela]iee in-
tensities are reduced in comparison with the intermini-
band plasmon peak.

In order to study the eA'ects of system size on the
surface-mode features, we have also calculated d parame-
ters for a twenty-period system [Fig. 3(b)j with the same
structural parameters as in Fig. 3(a). Since the deple-
tion regions are situated within two or three layers near
each end, increasing the total number of periods only
increases the relative size of the bulklike region in the
middle of the structure. This increases the ratio of ex-
tended to surface-localized states approximately as the
bulk to surface ratio. As a result, the basic features in

(a) ~=2.35 meV (b) u =11.3 meV
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FIG. 4. Induced-charge-density distribution Ap(z, (d) for system of Fig. 3(b) at (a) cu = 2.35 meV, (b) &j« = 11.3 meV, (c)
w = 42 meV, and (d) cu = 45.4 meV. Superlattice extends from free end (z = 0) to buffer (z = 20a). Notice surface modes, (b)
and (c), showing dipolelike oscillations in depletion regions. Real (imaginary) part of Ap shown dashed (solid) in all plots.
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d~ remain qualitatively the same, with the intensity of
the intraminiband and interminiband plasma modes in-

creasing, while the intensity of the surface modes remains
unchanged. This is clear in the modes with u 42 meV,
while the mode at u —11 meV is hardly visible (although
still present) due to the scale change.

The difFerent character of the surface-related modes
may be further distinguished by inspection of the asso-
ciated induced carrier density distribution of Eq. (37).
Figure 4 shows induced carrier distributions 4p(z, u) for
the twenty-period system of Fig. 3(b), at resonant fre-
quencies corresponding to two of the surface modes and
to both the intraminiband and interminiband plasmons,
all including the electron-phonon coupling. The imag-
inary part of Ap for both plasma modes (at ~ = 2.35
and 45.4 meV) exhibits strong spatial oscillations of al-
ternating sign which extend throughout the superlattice,
while the corresponding real part shows smaller ampli-
tudes [Figs. 4(a) and 4(d)]. Notice that the oscillations
for ~;„t, are much weaker than for ~;„t„,an indication of
their relative excitation strength. The strong density os-
cillations permeating the system at a resonance are rem-
iniscent of similar behavior in metals. 4

On the other hand, surface-depletion modes exhibit
strong dipolelike structures in the imaginary part of Ap
near the end layers of the superlattice, which rapidly de-
cay into the bulk region. For example, Fig. 4(b) shows
the induced charge density at u = 11.3 meV, which cor-
responds to the midgap peak absorption [see Fig. 2(c)].
This Im(Ep) exhibits its dipolelike feature near the free
end of the superlattice, with a much weaker amplitude
than the oscillations in the collective mode [contrast
4(b) and 4(d)]. Figure 4(c) shows the surface mode at
~ = 42 meV, which is related to the depletion region on
the end attached to the bufFer. This plot shows a dipole-
like structure similar to that in Fig. 4(b), although small
oscillations remain throughout the superlattice in this
case. This is a signature of the bulklike contribution in-
cluded in this surface-level —to—miniband transition. The
mode at ur = 43.2 meV (not shown), displays similar Ap
behavior but with the dipolar feature on the opposite
(free) end of the structure. This explains the appearance
of the doublet in d~ as due to surface modes at each end
of the superlattice.

Finally, since the various surface-related features ap-
pearing in d~ are rather sensitive to the conditions of
the surface, they are also strongly afFected by applied
gate voltages. In order to explore this sensitivity further,
we plot in Fig. 5 the rate of change of Im(d~) with re-
spect to gate voltage for both cases shown in Fig. 3. The
gate voltage is assumed to be applied with respect to the
layers in the middle of the structure such that it only af-
fects the surface near the free end (which has now a gate
deposited on it). Comparing the ten- and twenty-period
results in Fig. 5, one finds that all the modes associated
with the electron depletion in the "free" end appear as
clear features in these curves, even those modes over-
lapped by "bulk" transitions and the phonon peak. The

(a) ten periods
0.5—

0 V Y ~ P V

—0.5—

1
~&3
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(b) twenty periods
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FIG. 5. Rate of change in Im(d~) with respect to gate
voltage (about the point Vz t, ——0) for the (a) ten-period and

(b) twenty-period superlattices in Fig. 3. Large feature at
11 meV is due to miniband —to—surface-state midg;ap excita-
tion.

D. Excitonic shifts

In the results presented so far, we have ignored the
excitonic efFects discussed in Sec. II C. As an illustra-
tion that, this neglect is unimportant, we show in Fig.
6 the Im(d~) function resulting when V„, in Eq. (42)
is included in the calculation of d~, together with the
corresponding change in the energy levels by including
v in the Hamiltonian, for the system of Fig. 2(c). The
corresponding curve without exchange efFects included,
Fig. 2(c), is also shown dashed. Neither curve includes
phonon efFects. It is clear that, as expected, t,he exchange

large feature at u 43 meV results from the depletion
mode at that frequency, while that at ~ 45 meV arises
from a surface-to-surface interminiband tr ansition. This
excitation, which can be calculated from the energy lev-
els in Fig. 1, is hidden in Fig. 2 by the interminiband
plasrnon. The midgap peak present at u ll meV gives
rise to a noticeable feature. It is greatly enhanced by
this differential technique, regardless of the number of
periods. Notice also that the features appearing in the
range 18—30 meV, which correspond to the shoulder and
main part of the interminiband transitions, decrease in
size but increase in number in the larger system. This
is understandable since these excitations arise from sur-
face to bulk (single-particle-like) transitions, and their
overall excitation strength is then divided into more por-
tions when the system increases in size. The significant
enhancement of the various surface-related features by a
gate voltage difFerential technique suggests utilizing it in
the study of these systems. VVe would anticipate these
experiments to need as much sophistication but to be as
interesting as those performed in two-dimensional sys-
tems with similar techniques.
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peak. Their location can be attributed to lower depolar-
ization shifts associated with the reduced local density in
the surface regions. The general sensitivity of the vari-
ous surface-related modes to the details of the depletion
profiles suggests that observations which simultaneously
vary the gate voltage should allow one to control and
identify these modes. Optical experiments in finite-size
tunneling superlattice systems displaying these modes
will be of great interest.

Our calculations have been directed towards quantita-
tive measurements of infrared absorption but the basic
ingredients can also be used to estimate signal strengths
in other spectroscopies. We briefly indicate how this
could be done and what additional features would ap-
pear. For inelastic scattering of either light or
electrons the basic measureable quantity can be
written as

FIG. 6. Exchange potential eR'ects on d& for the system
in Fig. 2(c). Results of including both v~ and V... (solid line)
compared with results which neglect them (dashed line).

potential shifts back the excitation modes in the system,
opposite to the depolarization up-shifts. 3 7 4 However,
these excitonic shifts are much smaller than the corre-
sponding depolarization ones, being typically less than 1
meV in this case. Perhaps more significant is the slight
shift in strength between modes, although this does not
produce qualitative changes in the relative intensities.
[We also remark that the midgap peak at u II meV
has been shifted up by exchange effects ( 0.2 meV) but
this is due to a shift of the originating surface-state level
when v is included. ]

IV. SUMMARY

We have used the d-parameter formalism to study the
infrared absoption of doped tunneling semiconductor su-
perlattices. The d parameters are determined by the sys-
tems induced polarization in response to (nearly) uni-

form external fields and provide the excitation strengths
of all modes that can be excited in this limit. The drastic
changes in the electronic density profile in the depletion
regions of the superlattice are incorporated in our calcu-
lation, and give rise to interesting surface modes. Some
of these, with strong single-particle character, appear in
the minigap region due to surface-localized Tamm super-
lattice states. Others, with stronger coupling strengths,
are found to lie close to the bulk interminiband plasmon

P(Q, ~) = dz dz' tv(z) Imp(z, z', Q, ~) rv(z'),

(54)

where Q is the wave-vector transfer parallel to the sur-
face, and the weight factors rv(z) depend on the partic-
ular external probe being used. For electron-energy loss
(via long-range dipole coupling), one has

u)(z) = e

with Q =!Q!,while for light scattering

~(z) —er(J '+i .)»

where p; and p, are the normal components of the light's
wave vector inside the substrate before and after the in-
elastic scattering, respectively. These m's should be con-
trasted to the simple factor of z leading to the H's of
(38) which is the only surviving z dependence in the long-
wavelength limit.

The susceptibility evaluated in Sec. II is the Q = 0
limit of that required in (54). The latter can be analyzed
in the same way as before if one formally includes a Q
dependence in yo and then in V and B. For instance (24)
and (25) change to

VH(z, z'; Q) =

2z'c c —1
(

I. Q)
—q(»+» )

c 6+1

and the II„„Ithat determines B in (32) becomes

(2k. o + Q'))2 E„—E„

—h~(h~ + iy)

II„,„(Q,cu) = —) O(Ey —E„„,)
E„—E„('2k, . Q —Q2)

2ln,

(59)
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These various modifications do not change the mathe-
matical structure of the calculation, but the diAerent in-
tegrands will certainly lead to changes in the predicted
spectra.

What should one expect on physical grounds. The
response to parallel fields will undergo the greatest qual-
itative changes as one leaves the long-wavelength limit
in that the various layers of the superlattice will cease
to respond in phase and instead of the single plasmon
described by (14) there will be a series of losses to a
(developing) band of plasmons. The surface ef-
fects of interest here would then influence the dispersion
and coupling strength of these additional modes. De-
tailed calculations would be necessary to quantify this
influence, such as have been done for electron energy
loss from accumulation and depletion layers at the sur-
faces of (otherwise) homogeneous semiconductors. 54

Further numerical work would also be needed to learn
how the interminiband excitations would change with in-
creasing Q, but one can expect since couplings become
of shorter range at larger Q that the sensitivity of the
spectra to surface eKects can be varied by changing the
scattering configuration. Another degree of freedom that
is available with inelastic light scattering arises from the
polarization vectors of the propagating fields. By requir-
ing the incident and scattered radiation to have orthog-
onal polarizations one can suppress the appearance of
the Coulomb interactions described by (22) so the signal
probes yo alone. Such spectra can also be easily cal-
culated. In summary, the use of alternative probes will

provide complementary views of these systems and their
analysis can be done in terms of a common physical pic-
ture using the quantities that underlie the calculational
scheme developed here for infrared absorption.

( ())
'p (k) (A2)

to a rea/ number. This forces the conditions of Kohn's
theorem to be satisfied and the resulting Wannier func-
tions to be real, with definite symmetry (even for the
first miniband, odd for the second, etc.), and well local-
ized (97.9'%%uo of the normalization integral within a unit
cell). In Fig. 7 we show the resulting Wannier functions
for the first two minibands of a system with the same pa-
rameters as those in Fig. 2(a). As a consequence of the
symmetries of P, the dipole matrix elements between
Wannier functions H, in Eq. (55) can be shown to have
a simple form. For the same-miniband case, they are
given by

Pi (z)P, (z)z dz = lab(, .

(A3)

louin zone, and y~(k) is a phase function. Because of
the arbitrary phase of the Bloch states, one can see that
Wannier functions are not uniquely determined, yielding
functions which have entirely difFerent localization prop-
erties. It is of course in our interest to find the phase func-
tion which produces the best localized Wannier state. A
variational method which minimizes the normalization
integral over a finite region of space (typically a unit
cell) yields multiple solutions, some of them with very
poor symmetry properties. 59 In fact, only one phase fac-
tor yields a real, well-localized, symmetric wave function
in this one-dimensional problem, as discussed by Kohn.

The Kronig-Penney potential was arranged to possess
inversion synunetry, V(z) = V(—z), and the phase factor

(k) was chosen so as to reduce the integrand factor in
Eq. (Al) at the origin,
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APPENDIX

The explicit Wannier functions needed in the calcu-
lation of the various matrix elements in the text were
calculated numerically from the Bloch wave functions for
a Kronig-Penney potential with the appropriate struc-
ture parameters (widths of well and barriers, and height
of barrier). The Wannier function is defined by

U+

5 O
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where III' (z) is a Bloch function, n (j) is the band
(site) index, k is a wave number within the first Bril-

FIG. 7. Wannier states for a Kroni0;-Penney model mith
parameters as in Fig. 2(a). Solid (dashed) line Shows function
for the first (second) band $0 ($0).
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For the interminiband transitions, on the other hand, one
obtains numerically that H(t & t s) ——( Pt ~

z
) P& )=

0.1873a (same site), H(t q t~q s) —— —0.0365a (nearest
neighbor), H&t t t~2 2) = 0.0048a (next-nearest neighbor),
and quickly decaying (and oscillating) values thereafter.
The rapidly converging series of dipole matrix elements is

a by-product of the optimal localization of the Wannier
function. This allows one to keep the various matrices
involved in the calculations of the response functions rel-
atively small. Indeed, the matrix elements of V, B, and
C beyond nearest neighbors proved to be negligible in
the calculations of the different excitation modes.
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