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Planar force-constant models and internal strain parameter of Ge and Si
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The phonon-dispersion relations of Ge and Si along [100] and [111] are accurately fitted with
planar force-constant models, including a generalization that treats electronic as well as ionic
degrees of freedom. Expressions for the internal strain parameter ¢ as a function of the planar
force constants for longitudinal phonons propagating along [111] and for transverse phonons
along either [100] or [111] are derived. It is shown that these expressions lead to inconsistent
values of (¢ if the electronic degrees of freedom are omitted. Their inclusion restores consistency
and leads to values of ¢ equal to 0.57740.027 for Ge and 0.564+0.030 for Si.

I. INTRODUCTION

Planar force-constant models have been successfully
used to describe phonon-dispersion relations of Si, Ge,
and GaAs,! as well as different kinds of superlattices®~®
along high-symmetry directions of K space. The cor-
responding force constants can be obtained either by fit-
ting experimental dispersion relations!'® or, theoretically,
by means of total-energy band-structure calculations.”
These constants can be used to estimate the elusive in-
ternal strain parameter ¢ first introduced by Kleinman®
to describe relative sublattice deformations under the ac-
tion of uniaxial strain along [111]. This parameter plays
a crucial role in the elastic and lattice dynamical prop-
erties (for an excellent review of work on ¢ prior to 1981
see Ref. 9).

The planar force-constant models used so far include
only interactions between atomic planes. It is well
known, however, that electronic degrees of freedom can
help to improve the fits to phonon dispersion rela-
tions, thus reducing the number of required parameters.
Among these models we mention the shell® and bond-
charge models.!%:1! In this paper we introduce electronic
degrees of freedom into the planar force-constant models
and fit the phonon dispersion relations of Ge and Si. We
compare the fits with those obtained without electronic
degrees of freedom and show that the fits are improved
by the inclusion of the electron-electron and electron-ion
force constants. In particular, excellent fits are obtained
for the rather difficult TA phonon-dispersion branches.

We also derive analytic expressions for the ¢ parame-
ter as a function of the planar force constants, including
electronic degrees of freedom. This is possible for lon-
gitudinal vibrations along [111] and for transverse ones
along either [111] or [100]. The fitted planar force con-
stants that include electronic degrees of freedom give val-
ues of ¢ which agree with reliable theoretical values (e.g.,
from total-energy calculations'?:13) and with the most re-
cent experimental results.!* However, without electronic
degrees of freedom large discrepancies between the ob-
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tained values of ¢ and the accepted ones are found. The
(’s obtained without electronic degrees of freedom from
phonon data for various directions of propagation and
polarization are not consistent with each other.

The planar force-constant models possess the advan-
tage of being easier to handle than the full three-
dimensional calculations (a reduction from a three-
dimensional problem to a one-dimensional one is per-
formed; the resulting 2x 2 secular equations can be solved
analytically). They present, however, the drawback of
being obliged to fit the different dispersion curves inde-
pendently, i.e., independent sets of parameters are ob-
tained for the different directions of propagation and po-
larization; not surprisingly, the obtained fits are excel-
lent.

In Sec. II we present two models of planar force
constants: a simple one with only the common pla-
nar force constants to fourth nearest neighbors; and a
more elaborate one that includes the electronic degrees
of freedom by setting bond-charge planes midway be-
tween the ionic planes, and incorporates the three pos-
sible sorts of interactions arising from this two different
plane types: ion—ion, bond-charge-bond-charge, and ion—
bond-charge. The latter model, in the spirit of Weber for
the three-dimensional case!® but considering neither the
Coulomb interaction nor a Keating parameter for bond-
charge-bond-charge interaction, offers the advantage of
fitting remarkably well the TA modes.

Not only very accurate fits are reported for this sec-
ond model but the differences in the quality of the fits
and the errors associated with each free parameter are
summarized in Sec. ITI. Section IIT A considers the Ge
case and, due to the lack of recent and faithful inelas-
tic neutron-scattering data for silicon, a type of scaling
data generation!®16 is introduced to obtain a set of re-
liable data for the Si at 80 K (Sec. III B) using the best
available results for Ge at 80 K.17:18

In Sec. IVA we discuss the determination of ¢ (the
internal strain parameter) by means of our model. It
is clearly shown how important the electronic degrees of
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freedom are in order to reproduce, within such a simple
planar model, the more recent and accepted results ob-
tained with full-energy calculations (see Sec. IV B), keep-
ing the predicted uncertainty at a reasonable level. Fi-
nally, Sec. IVC is devoted to the discussion of the re-
sults, in particular why within our model only the inter-
nal strain parameter associated with the ions needs to be
considered and no similar parameter for the bond charges
can be introduced.

II. PLANAR FORCE-CONSTANT MODELS

A symmetry analysis'® of the group of the K vector
inside the Brillouin zone (BZ) shows that when K is
parallel to [100] (A line), the phonon symmetries are
A1(A) (LA, nondegenerate), A, (O) (LO, nondegener-
ate), As(A) (TA twofold degenerate), and As(O) (TO
twofold degenerate). At the edge of the BZ in this direc-
tion (point X), where it becomes necessary to deal with
projective representations?’:?! due to the fact that O] is
a nonsymmorphic space group, the A;j(A) and A, (O)
modes become degenerate and their symmetry is labeled
X1. The other two sets of phonons remain doubly degen-
erate, being labeled X3 (TA) and X4 (TO).

Similar analyses can be performed for the group of the
K vector along the [111] direction (line A). The number
and degeneracy of the phonons are the same as along
A. Here the symmetry assignments are A;(A) (LA),
A1(0) (LO), Az(A) (TA), and A3(O) (TO). However,
at the BZ boundary (the L point) no degeneracy oc-
curs between Aj(A) and A1(O). Therefore four phonon
frequencies, corresponding to L, (LA), L1(LO), L3(TA),
and Ly (TO) symmetries should be considered.

Symmetry guarantees the decoupling of the 6x6 dy-
namical matrix into two 2x2 ones: one for the longitu-
dinal and another (doubly degenerate) for the transverse
modes. Along high symmetry directions, such as [100]
or [111], there is no coupling between longitudinal and
transverse modes. Consequently, the vibrations of planes
perpendicular to [100] or [111], which move as rigid units,
may be described as those of linear chains. This trans-
formation of the three-dimensional dynamical problem
is exact and entails the diagonalization of similar matri-
ces for both longitudinal and transverse modes along the
high symmetry lines. Although the secular equations are
formally the same, different sets of force constants k,, are
expected to fit the experimental data for each direction.

The first model we present involves ion-ion planar force
constants k(I,n;1l’,n’), giving the restoring force

F(l,n) = —k(l,n;U',n")u(l', n’), (1)

which is produced at the [ plane of the = planar unit
cell by a displacement of the I’ plane of the n’ planar
unit cell . Using Bloch’s theorem, it becomes possible to
relate any plane displacement to a displacement inside
the primitive planar cell

v(l,n) = v(l,0)e'Kn (2)
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where K is the magnitude of the K vector along the
symmetry direction under study and a corresponds to
the projection along this high symmetry direction of the
shortest out-of-plane lattice vector. We allow the inter-
actions between planes to reach the fourth nearest neigh-
bors for both [100] and [111] directions [see Figs. 1(a) and
2(a)]. This approach can be achieved with six constants
for both the [111] tranverse and longitudinal modes and
for the [100] transverse ones, due to the fact that k,=k_,
if n is even. Only three constants are needed (up to third
nearest neighbors) for the [100] longitudinal modes be-
cause k,=k_,, for any n.

The dynamical matrix?? (D) for K along a high sym-
metry direction and a given phonon polarization (longi-
tudinal or transverse) has the matrix elements
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FIG. 1. Planar interactions included in the present mod-
els (see text) for the K vector along [100]. In (a) only in-
teractions between atomic planes up to the fourth neighbors
are considered; in (b) interactions between ionic planes up
to second neighbors, interactions between bond-charge planes
(BCP) and the nearest ionic planes, and between nearest BCP
are introduced. For the longitudinal case the number of pa-
rameters is reduced due to symmetry (ki=k_1, ks=k_3, and
g1=¢-1). The planes are labeled with two indices: (I, ). The
first one describes the plane inside the planar primitive unit
cell we deal with and the second one corresponds to the planar
primitive unit cell. (b) has the horizontal scale expanded by a
factor of 2 with respect to (a), although the planar primitive
unit cell is identical.
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FIG. 2. Planar interactions of the presented models (see

text) for the K vector along {111]. The description is the
same that of Fig. 1, however, no simplification occurs in the
longitudinal case on account of symmetry.

and
N/2+40-1
(Dha=(D)sy= D kyjpre™, (4)
j:—N/?—U

where N represents the farthest nearest-neighbor plane
we consider, and o=3[1 — (-1)]. N different planar
force constants appear in the [100] longitudinal case,
while for either [111] L, [100] T, or [100] T, (3N/2) + &
constants appear due to the symmetry properties already
mentioned. Diagonalization of D provides the eigenval-
ues and eigenvectors of the corresponding acoustic and
optical vibrational modes.
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For three-dimensional lattice dynamical models it has
been shown!® that the introduction of electronic degrees
of freedom (bond charges) considerably reduces the num-
ber of parameters required to fit the experimental phonon
dispersion curves, in particular the TA branches. In the
same spirit, we introduce here planes of near zero mass
midway between atomic (Zonic) planes, perpendicular
to the propagation direction, and call them bond-charge
planes (BCP). Such modeling of the electronic degrees of
freedom does not allow the BCP to behave independently
of the ionic lattice because not only the BCP-BCP inter-
actions are considered but also those between the BCP
and ionic planes. The BCP contain the bond charges of
Weber’s model, therefore our model is closer to it than to
conventional shell models. Thus it is more adequate than
the latter in representing covalent bonding effects. The
bond charges connected by the BCP have site symme-
try Dzq. In three-dimensional bond-charge models elec-
trostatic long-range lattice sums have to be performed
(however, Weber showed that for Ge a purely short-range
bond-charge model, without electrostatic long-range in-
teractions, gives almost the same results as that with
long-range forces!!). The inclusion of long-range inter-
actions in planar models is not necessary since the field
of a periodically charged plane decays exponentially nor-
mal to it, corresponding to the fact that the field of an
uniformly charged plane is independent of distance.

As shown in Figs. 1(b) and 2(b), our BCP model in-
cludes three kinds of interactions: ion-ion planes up to
second nearest neighbors (k), ion planes-BCP (gq), and
BCP-BCP (r), the latter two up to first nearest neigh-
bors. For both the [111] longitudinal and transverse
modes and for the [100] transverse ones this requires six
parameters: ky, k_1, k2, q1, ¢—1, and 7; because of the
S4 axis only three parameters are needed for the [100]
longitudinal modes (up to first neighbors): ki1, ¢1, and 7.
Each primitive cell contains four planes: two ionic and
two BCP. Their displacements are v_1 n, v1,n, and vg s,
vy, respectively. The use of Bloch’s theorem transforms
the lattice dynamical problem (for whichever range of the
ion-ion plane interaction) into the following 4x4 eigen-
values problem

N/2-0o N/240-1
|:Mw2 — (QI +q_1+2 Z koj (1 — cos Kaj) + Z (k2j+1 + k_(2j+1))>] V0,0
Jj=1 j=0
N/24+o0-1
+ Z kojr1e vy 0 4+ qrv10 + g-1v-1,0 =0, (5)
j=—N/2-0
N/2-0 N/2+0-1
[sz - (ql +q1+2 Y ky(1—cosKaj)+ Y (kajp1+ k_(zm)))] 2,0
j=1 j=0
N/240-1
+ Z kojrie %o o 4+ qivio + go1v_10eK =0, (6)

j=—N/2-0
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q1v0,0 + q1v2,0 + [mw? — 2(q1 + )] vip + 7 (1 + EHKG) v_1,0=0, (7)
and
g—1v0,0 + q,le_iK“vz,O + [m(.u2 - 2(q-1 + r)] Vo104 T (1 + e_iK“) v1,0 =0, (8)

where M is the atomic mass, m is formally the mass of
the BCP, and both o and N are defined as in Egs. (3)
and (4). The substitution of Egs. (7) and (8) into (5)
and (6), i.e., the decimation of the electronic degrees of
freedom, results in renormalized force constants for the
ionic motion which depend on the frequency. This de-
pendence disappears when the limit m—0 is taken; this
implies that the BCP do not stay fixed but move adiabat-
ically. The phonon frequencies are again found by solving
a 2x2 eigenvalues problem with renormalized force con-
stants which depend on K but not on w, i.e., a quadratic
equation.

III. FITS TO THE PHONON-DISPERSION
RELATIONS MEASURED ALONG [100]
AND [111] DIRECTIONS

In order to adjust the free parameters of both mod-
els described in Sec. II, inelastic neutron-scattering data
have been fitted using computer codes?® (see Table I).
The function to be minimized is x%, defined as

X2 _ 1 T (Vexpt' - Vtheor,)2
R=
Ne—~ (ervecpe,)’

Poy=1

where T is the number of fitted experimental frequencies
(typically around 20), Vexpt, and Vtheor, are the experi-
mental and theoretical frequencies (v = w/2w) for the ¢
point of the BZ in a high symmetry direction, ervexpt,
is the experimental error associated with veypt, (errors
should be assumed to be normally distributed to give
full statistical meaning to x%), Ng4 is the number of ex-
perimental points, and N, is the number of fitting pa-
rameters. The error given in Table I for each free pa-
rameter represents the square root of the corresponding
diagonal term of the covariance matrix (calculated by
inverting the second derivative matrix evaluated numer-
ically by the finite difference method?3), multiplied by
a numerical factor which depends on the desired confi-
dence interval [v/10.65 (or v/6.25) for the 90% confidence
interval taken for all the cases, using six (or three) free
parameters, respectively].?® Table II displays the values
of x% [see Eq. (9)] for the best fits obtained in each case.

Lack of information concerning the estimate of errors
in Refs. 17 and 18 restricts the use of x% as a meaningful
statistical indicator of the quality of the fits.?” We thus
do not discuss whether each fit is statistically represen-
tative or not. Assuming that errors have been properly
estimated, a value of x% close to ~1 (the exact value
depends on the number of degrees of freedom?®) should
be taken as the most probable one if x% is evaluated for
new experimental points and the same fitted parameters.
A moderate decrease of x% can be considered as indica-

)

[
tive of improvement in modeling the lattice dynamics.
However, the best indication of a model improvement
arises from the values of { obtained (see Sec. IV). They
are rather close to each other regardless of the different
polarization branches and compare well with the most
reliable information available from other sources.

A. Germanium

Nilsson and Nelin’s data!”!® for Ge longitudinal
phonons along the [100] (A line) at 80 K can be fitted
equally well with both models, whereby only three pa-
rameters (Table I) are required to obtain very high qual-
ity fits to the data (see Fig. 3 and Table II). This results
from the fact that both LA and LO curves are rather
smooth and that there is an extra symmetry-imposed
constraint for this polarization, namely the degeneracy
of both acoustic and optical modes at the X point. In
spite of the relatively large x% value for this case, the fit

PHONON FREQUENCY (THz)

| SN N S SR TN S T T N

0
00 02 04 06 08 10

r X

Kuoor

FIG. 3. Phonon dispersion relations v(K) of germanium
for the longitudinal (dashed lines) and transverse (solid lines)
modes along [100] determined by fitting the experimental data
(Refs. 17 and 18) with the three and six parameters of the
BCP model (Table I), for the longitudinal and transverse po-
larization, respectively. This fit is almost identical for the
planar ionic force-constant model using only the three and
six corresponding constants of Table I and, for this reason,
it has not been plotted. The error bars are ten times larger
than the experimental ones.
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TABLE 1. Fitted and calculated planar force constants for Ge and Si. Errors are given in parentheses. The values in
brackets are characterized by an error larger than 100%. This error arises from the insufficient information which is carried by
very smooth longitudinal mode dispersion curves when too many parameters in the BCP model are taken to fit the experimental
data. All constants are expressed in S.I. (N/m).

100 L 100 T 111 L 111 T
Ge

k3 99.73(0.50) 164.31(0.64) 108.84(5.6) —~7.6(1.6)
k_q 99.73(0.50) 1.7(1.6) 86.3(7.0) 179.3(1.5)
ko 12.37(0.41) —4.85(0.44) 8.52(0.86) —2.1(0.7)
ka {0.06(0.28)} 21.8(1.8) {1.5(6.9)} 5.28(0.93)
k_s {0.06(0.28)} 8.52(0.79) {1.2(5.5)} 20.6(1.8)
ks —1.62(0.40) {0.2(0.5)} —1.0(0.5)
q° 3246(22) 1.061(0.001) —6.8(2.1) 59.8(3.1)
g-1 3246(22) 121.0(3.8) 41.(23.) 8.93(0.15)
T 50.1(1.5) —1.044(0.001) 11.9(5.5) —7.19(0.11)
ks —1523(11) 156.3(0.62) 107.4(1.9) —9.5(1.8)
k_y —1523(11) —20.6(2.5) 74(13) 173.3(1.5)
ks : 2.90(0.45) 9.3(2.0) 3.35(0.74)
ks 105.0¢ 169.5¢ 114.2°¢ 10.1°

b1 105.0 20.3 90.0 189.9 X
k2 8.3 —8.6 5.4 —4.8

ks {0.6} 3.5 2.0 4.4
k_a {0.6} 9.4 2.9 2.4

k4 {—1.4} —2.9 —2.0 {-2.1}

ks 0.7
ks 2.3

ke {-1.5)}

Si

ki 116.71(0.67) 185.32(0.86) 124.6(6.2) —9.3(2.2)
k1 116.71(0.67) 5.3(2.9) 99.1(7.7) 204.8(1.9)
k2 15.02(0.55) —4.80(0.59) 9.8(1.2) —2.19(0.94)
ks {0.10(0.37)} 23.4(3.1) {1.7(7.6)} 6.4(1.3)
k_a {0.10(0.37)} 9.51(0.98) {1.3(5.8)} 24.7(2.4)
ka —2.06(0.51) {0.21(0.63)}  —1.13(0.67)
@ ® 3246(28) 1.052(0.001) —7.8(2.8) 74.6(7.1)
g-1 3246(28) 130.3(4.3) 48(30) 10.33(0.27)

r 61.0(1.5) —1.036(0.001) 13.7(7.9) —8.43(0.18)
k1 —1506(14) 175.71(0.76) 123.0(2.5) —12.6(4.3)
k1 —1506(14) —18.1(2.9) 85(18) 197.7(1.9)
ks 3.99(0.53) 10.7(2.8) 4.5(1.0)
k1 94.24 111.3¢ 149.0¢ 181.9° 183.0f 121.38 18.68

k_1 94.2 111.3 29.0 32.5 33.0 101.7 204.9

ka2 16.3 13.0 —4.0 —6.93 —8.0 2.8 —4.9

ka 0.8 1.28 1.0 0.62 1.0 0.1 4.5

k_s 0.8 1.28 8.0 8.84 8.0 6.1 0.7

ka 0.25 —1.10 0.1 —0.7

ks 0.0 0.6

k_s 0.4 0.1

ke 0.0 —0.1

2 Present work without BCP.

® Present work with BCP.

¢ Reference 24, local-density function (LDF) ab initio calculation.

4 Reference 7, LDF ab initio calculation.

¢ Reference 6, fit to shell and bond charge model fit.

{ Reference 1, planar force-constant fit.

8 Reference 25, fit to bond-charge model of Ref. 10. This contains also k’s for Ge.
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TABLE II. Values of the minimized x% function [see
Eq.(9))], for germanium and silicon along A and A lines.
100 L 100 T 111 L 111 T

germanium
3.45° 0.96* 1.98% 0.84%
3.46° 0.66° 1.61° 0.30°
silicon

2.87* 2.65% 1.48* 0.72*
2.88° 0.77° 1.20° 0.33°

® Present work, fit without BCP.
b Present work, fit with BCP.

should be considered fairly good because basically only
three constants are used. The x%’s value obtained with
BCP for [100] L modes is essentially the same and no par-
ticular advantage of the BCP model appears in this case;
the fitted curves are indistinguishable for both models
and only one has been plotted in Fig. 3. The fit with the
BCP model in the [100] T" case improves x% by 30% (see
Table II), even though the difference in the fits cannot be
appreciated in Fig. 3. Comparing with the longitudinal
(100] fit, the x% is reduced provided that six parameters

10 T T T T T T
Ge, A0 Ly

L -1
S ]
N
N

T T T

N
T
L—./ 8 ~ L‘|
O 1
Z 4
w 6t s
2 MA) &7 L2
o t T
%e
4 K .
L ' .,f
2,
Z 2 p'/ Ast) ]
o / L3
I .
& 0 IJ 1 1 1 11 1 L 1
00 02 04 06 08 10
r Kin L

FIG. 4. Phonon-dispersion relations v(K) of germanium
for the longitudinal and transverse modes along [111] deter-
mined by fitting the experimental data (Refs. 17 and 18) with
the six parameters of the BCP model (Table I). Dashed and
solid lines correspond to longitudinal and transverse modes,
respectively. This fit is almost identical for the planar ionic
force-constant model using the six constants of Table I and,
for this reason, it has not been plotted. The error bars have
been drawn ten times larger than the experimental ones.
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are fitted instead of three.

In the [111] cases six parameters are also introduced
for either longitudinal or transverse modes, although the
longitudinal ones can be fairly well fitted taking into ac-
count only first- and second-neighbor ionic planar inter-
actions (see Table I). In Fig. 4 the best fits for longitudi-
nal and transverse modes along the A line, obtained with
BCP (see Table II), are plotted. Better fits (lower x%)
are obtained for the BCP model, especially for the [111]
transverse modes. The improvement of x% produced by
the inclusion of the BCP is nearly a factor of 3 for the
[111] T case.

In order to provide a feeling for this general improve-
ment, the difference between the fitted curve for the first
model and for the second one (with BCP) has been plot-
ted versus the K vector along A for the transverse case
in Fig. 5. These differences are of the order of 0.3% or
smaller for all of our fits.

Reasonably good agreement is found between some ab
initio calculations?4:2% for the planar force constants and
our fitted results with only ionic planar interaction for the
longitudinal polarization. Since the dispersion curves cal-
culated by Kunc and Gomez Dacosta?* do not reproduce
the characteristic flattening of the TA phonons, also their
force constants and our fitted values without BCP show
significant differences (see Table I). Some ionic force con-
stants for nearer neighbors are found to be smaller than
some for farther neighbors, thus raising the question of
convergence and whether interactions with farther planes
should not be included. However, a larger number of free
parameters makes the model useless since not enough
experimental information is available for their determi-
nation. The introduction of the BCP seems to avoid this
disturbing increase of the absolute value of the planar
ionic force constants with interplanar distance.

B. Silicon

Due to the fact that the available inelastic neu-
tron-scattering data at 296 K for silicon?® are not as ac-

30—
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00 02 04 06 08 10
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FIG. 5. Difference between the two different fitted phonon
dispersion curves (with and without BCP) for the transverse
polarization along the [100] direction.
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curate as Nilsson and Nelin’s results for germanium at
80 K (Refs. 17 and 18) interpolation and scaling method
has been developed based on the similarities between the
frequency dispersion curves of silicon and germanium.
The hypothesis that silicon and germanium have dimen-
sionless dispersion curves of rather similar shape in re-
duced units has been discussed by introducing the sim-
plest possible combination of the atomic mass m, the
lattice constant @, and the electron charge e, which has
the dimensions of a frequency!®:16

Ve2/mad. (10)

The frequencies for different crystals are thus reduced to
dimensionless values 7, where

v =+/(ma3/e?)v, (11)
and the K’s to their
K=(a/27)K.

These substitutions allow us, in principle, to obtain the
phonon dispersion curves for silicon by scaling the ger-
manium results.!”1® When comparing these predictions
with the few and not too precise data available for sili-
con, however, small but significant differences are found.
Hence we have introduced four different factors in or-
der to center the generated data for each phonon branch
around Dolling’s room-temperature results?® scaled by a
temperature coefficient (1.006) so as to represent data
at 80 K. The additional factors, which increase slightly
and not uniformly the frequencies predicted by the sim-
ple scaling of Eq.(11) are, for the [100] direction, 1.023
(LA), 1.018 (LO), and 1.001 (TO), and for the [111] di-
rection, 1.008 (LA), 1.007 (LO), 1.055 (TA), and 1.007
(TO). More accurate data exist for the transverse acous-
tic branches (TA) for Si along the [100] direction at room
temperature.l® We scaled them by the temperature fac-
tor (1.006) to obtain transverse acoustic data at 80 K.
This nonuniform scaling procedure should lead to a larger
and more accurate set of experimental data compared to
Dolling’s results,?® although centered around them for
each branch. These phonon frequencies are rather close
to those predicted by scaling the germanium ones, al-
though some minor but significant deviations from the
uniform scaling are found. Note that a uniform scaling
from Ge data will produce identical ¢ values for Si as for
Ge on account of the invariance of ¢ with respect to an
uniform scaling of all force constants [see Egs. (16)—(18)].

dimensionless counterparts

IV. INTERNAL STRAIN PARAMETER
AND PLANAR FORCE CONSTANTS

When a macroscopic stress is applied to a solid with
more than one atom per primitive cell, the possibil-
ity of relative displacements of these atoms (internal
strains) arises.3°~32 In the case of the diamond lattice
the only possible internal strain is a displacement of the
two sublattices by a vector §. Well known symmetry
conditions3°~32 reduce such possibilities. For instance,
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a pure longitudinal internal strain is only possible for
a [111] uniaxial stress. Only for directions of applied
uniaxial stress within a (001) plane, between [100] and
[110], pure perpendicular internal strain (along [001]) is
obtained; it is zero for [100] and maximum for [110].%°
For all other cases internal strains with both parallel and
perpendicular components to the applied uniaxial stress
are found. Internal strains appear also with the macro-
scopic shear strains which accompany long-wavelength
TA phonons along either [100] or [111]. In the diamond
structure the internal strain is related to the macroscopic
strain through only one parameter labeled ¢.8

A. Theoretical approach

It is possible to determine the value of the internal
strain parameter ¢ using the planar force-constant results
which fit the experimental phonon-dispersion curves.!
Essentially, an affine transformation, which produces
a parallel or perpendicular displacement of each plane
whose magnitude is proportional to the distance to a
fixed plane (plane 0 in Figs. 6-8), can be decomposed into

(a) , N V J ’\\/1_:— -
_,,Q/ /, an
\’ - \w\\ . __-(’:
,/ /7—_. y \‘>——’ -
,G»K/ F » u .
TFE-T ko - <
A . \:r" r
j 2 1 0o 1 2 3
L -3 -2 -1 0 1 2 3 4
(b) L1 i I b
< y e
K <8
S [e |
e 4 ] 6 T
S 4T .
18 ~d-
j -2 -1 0 1 2 3
[0‘”1 TRANSVERSE

(1001

FIG. 6. Planar projections of the diamond lattice when
an affine transformation which moves the (100) planes with
a perpendicular displacement proportional to the distance to
a generic plane labeled 0 is performed (see text). (a) corre-
sponds to the case (=0: the lattice transforms everywhere fol-
lowing the affine transformation pattern and (b) reproduces
the behavior for (=1; the internal strain neutralizes totally
the affine transformation within each unit cell, i.e., the bonds
between the ionic planes: ...,(-2,1),(0,1),(2,3),. .. remain un-
strained. The ionic planes are labeled with jand the BCP with
L
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a shear strain €5, a rotation €r, and a hydrostatic com-
pression or dilatation €¢ (ecij=€céij). The expression
for the total strain tensor is €=€g+ €r+ €¢.33 Such an
affine transformation can be constructed easily by look-
ing for the expected displacement of the parallel planes
with respect to an arbitrarily fixed plane. The relation
between such a transformation and a phonon is provided
by taking, for example, for the [100] transverse case, the
phonon displacement components uz ~ 0, uy ~ etz
and u, ~ e¥=% in the limit K, ~ 0. In this case, [100]

transverse, we obtain
(0 0 0
0
1
1

11
0 o
0 0

—

€="€s+€r=

2
L V2
a

Il
N
— = O
S O i
S O

(12)

where a is the lattice constant and a particular normal-
ization of the phonon amplitude has been taken. Due to
internal strains, not all the ionic positions will remain at
the positions given by an affine transformation. We con-
sider only the internal displacement 8 of one sublattice
with respect to the other and linear3* in the components
of the shear matrix €s. The diamond symmetry of the
lattice dictates3%36 that

a
bi=—7¢ 1mije] €5k, (13)

L -4 -3 -2 -10 1 2 3
(a) - 2 “
- \ TR
N A\ Y § -
N\ G Ej:"
\\\\ ] .(’/
] -3 -2 -1 0 1 2
L -4 -3 -2 -10 1 2 3
(b) ) <
- S Y
. . [\ U
\ h N 8 Y 4o
X - Z
N -9’ P L
/ v\g .
\\\ /: 4
-3 -2 -1 0 1 2

LONGITUDINAL

(1721 I

[l

FIG. 7. Planar projections of the diamond lattice for (a)
¢=0 and (b) (=1 when an affine transformation is performed
moving longitudinally along the (111) planes (see Fig. 6 cap-
tion and text).
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where ¢ is the internal strain parameter, 7;;; the Levi-
Civita tensor, and ¢;; the components of the strain ten-
sor. Using Eq. (13) and the strain matrix for a given
phonon we find the relation between |§| and ¢. In the
example of Eq. (12),

6] = —C. (14)

Imposing the static equilibrium condition at the men-
tioned arbitrary plane, around which we produce the
affine transformation, provides an equation for ( as a
function of the planar force constants (see Ref.1 for the
cases [100] transverse and [111] longitudinal with planar
ion-ion force constants only). Including the electronic
planar force constants we find for the [100] transverse
phonons (see Fig. 6)

S G+ 18Nk + Z ( - Sgn(l) lgl) a=0, (15
jodd

which can be solved for |§| and related to ¢ with Eq. (14),
obtaining

ij'"i'zlm—‘
jodd
Zk' + 22111

jodd

sgn(l)q

C[loo]T = - |6| =

(16)

The constants k; and ¢; are commonly labeled with inte-
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FIG. 8. Planar projections of the diamond lattice for (a)
¢=0 and (b) (=1 when an affine transformation is performed

moving along [112] the (111) planes (see Fig. 6 caption and
text).
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ger numbers corresponding to the plane number on the
right (positive label) and on the left (negative label ex-
cept if kj=k_j, q1=q_;) as can be seen in Fig. 6. The
term sgn(l) represents the sign of 1.

Similar expressions are found for the [111] direction
and the longitudinal (Fig. 7) and transverse (Fig. 8)
modes, respectively:

DG+ ki + D> {1+ 33 —sen(D}ar

jodd I

ij + ‘%ZQI

jodd ]

i =

(17)

and

Do =1—20k + ) lsen(l) - 3 — 2la
jodd 1
D ki3

jodd 1

Cur =

(18)

Note that the expression on the right-hand side of Eq.
(18) is equivalent to that for Eq. (17) multiplied by —2.
The values of ¢ calculated with both expressions should,
however, be the same within the errors of the planar force
constants used. The errors in the (’s were calculated us-
ing the error propagation expressions,?® which involve the
diagonal and nondiagonal covariance matrix elements so
as to take into account correlation between the fitting
parameters. In Figs. 6-8 limiting behaviors of the in-
ternal strain for [100] transverse, [111] longitudinal, and
[111] transverse, respectively, are depicted. They corre-
spond to (=0 in (a) and (=1 in (b). (=0 implies that all
the atoms and bond charges sit at the positions induced
by the macroscopic strain giving the affine transforma-
tion. In the opposite case, (=1, the bond lengths behave
rigidly because the internal strain applied to the second
sublattice neutralizes the affine transformation. Only the
ions of the first sublattice are then localized at the places
predicted by the affine transformation (this should al-
ways happen due to the translational invariance of the
crystal).

B. Results

In Table IIT the values of { obtained with our fitted
planar force constants are compared with those obtained
with other models, ab initio theoretical calculations, and
experimental results. Only for the estimate from longi-
tudinal [111] phonons does the introduction of BCP not
change ¢ within the error bars. Estimates from trans-
verse phonons lead to a very different ¢, depending on
whether the BCP electronic degrees of freedom are in-
cluded or not. On the whole, the values obtained with
the BCP model are consistent for the three phonon dis-
persion curves within the estimated errors, in spite of a
possible systematic discrepancy involving lower ¢ for the
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longitudinal [111] parameters. This and the fact that
much larger discrepancies appear if no BCP are included
(only k; force constants) lend considerable support to
the BCP model. Good agreement of the BCP model
with the total-energy calculations of ¢ also exists.!?:13
Intriguing agreement also appears between the revised
x-ray measurements,' especially with the BCP internal
strain parameter obtained from longitudinal polarization

TABLE III. Fitted, theoretical, and experimental values
of the internal strain parameter ¢ for germanium and silicon.

100 T 111 L 111 T

germanium
0.619 + 0.049*
0.548 &+ 0.039°
0.603°¢
0.4440.02¢ 0.51> 0.52% 0.53" 0.546
0.5440.04’ 0.64+0.04% 0.7630.04'

1.031 + 0.036*
0.594 &+ 0.012°
0.600°

1.356 + 0.093?
0.588 =+ 0.030°

silicon
0.992 + 0.55 0.618 =+ 0.055% 1.373 +0.110*
0.579 + 0.013° 0.547 + 0.043° 0.566 & 0.044°
0.53™ 0.57"

0.38° 0.45° 0.50% 0.5+0.1P 0.519
0.53%f 0.5337 0.54° 0.546" 0.55"
0.557" 0.58" 0.61"
0.52+0.02% 0.54=40.04 0.62/0.65*+0.04*
0.7240.04% 0.71/0.75%+0.07" 0.7440.04%

* Present work, fit without BCP.

> Present work, fit with BCP.

¢ Reference 24, local-density function ab initio calculation.

d Reference 37, local-density function pseudopotential calcu-
lation.

¢ Reference 38, deformation potential calculation.

f Reference 39, ab initio pseudopotencial calculation.

8 Reference 11, adiabatic bond-charge calculation.

" Reference 40, Keating model fit.

! Reference 41, Keating and Coulomb interaction fit.

J Reference 14, x-ray diffraction, review of Ref.9.

X Reference 30, x-ray diffraction. Asterisk denotes value re-
vised in Ref.9.

! Reference 42, x-ray diffraction. Asterisk denotes value re-
vised in Ref.9.

™ Reference 1, using data from Ref.7.

" Reference 1, planar force-constant fit.

® Reference 43, ab initio pseudopotential calculation.

P Reference 44, deformation potential calculation.

9 Reference 13, linear muffin-tin orbital fast full-potential cal-
culation.

" Reference 45, valence-force-field model fit.

® Reference 6, shell and bond-charge model fit, ion (.

‘ Reference 45, using data from Ref.46.

" Reference 6, shell and bond-charge model fit, shell ¢.

¥ Reference 12, linear combination of atomic orbitals calcula-
tion.

Y Reference 47, estimated value from eigenvectors phase func-
tions ¢, comparing with bond-charge model and valence-force-
field model fits.

* Reference 9, x-ray diffraction.

¥ Reference 48, x-ray diffraction.
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along [111] (i.e., uniaxial stress along [111] used in the
determination of ).

C. Discussion

The site symmetry of charges placed at the center of
the bonds (Dsq, with a center of inversion, the same as
that of O atoms in cubic SiOj, i.e., cristobalite) rules out
additional internal strain parameters associated with the
electronic degrees of freedom: both in Weber’s model'°
and in our BCP model, the atomic displacements of the
bond charges, odd under inversion, cannot couple to the
even strains. This is not the case in models with elec-
tronic shells centered on the ions. In this case one can
define a ¢ associated with the ions and another describing
the center of the electronic shell. The former would be
measured with neutron diffraction while the latter would
contribute, together with the former, to x-ray measure-
ments. It has been shown in Ref. 6, by fitting a shell and
bond-charge model, that both (’s are rather close for Si
[((ion)=0.54, ¢ (electronic shell)=0.58].

V. CONCLUSIONS

The internal strain parameters ¢ for Ge and Si have
been determined by using two different planar force-
constant models: one including electronic degrees of free-
dom (BCP) and the other without them. Although both
models produce nearly perfect fits to experimental data
(see Table II), the introduction of the BCP in order to
simulate the electronic degrees of freedom midway be-
tween the ionic planes leads to slightly better fits for all
the cases except for the longitudinal phonon dispersion
curves along A. Our BCP model implies the equivalence
of the internal strain parameter ¢ for electrons and ions
and provides consistent values of ¢ for different propaga-
tion and polarization directions of the fitted dispersion
curves. Thus reliable values of ¢ around 0.57 for both Ge
and Si are determined, in agreement with most existing
theoretical estimates.

The planar force constants obtained here can be
used advantageously for the investigation of the lat-
tice dynamics of Ge- and Si-based superlattices?® with
either [100] or [111] growth axes, in particular, of
the effects of electronic degrees of freedom. The in-
ternal strain parameter is rather important for cal-
culations of elastic constants,! phonon-phonon inter-
action constants (anharmonicity),*®® and electron-
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phonon constants.38:44.50 Nevertheless direct experimen-
tal determinations of { (so far only through x-ray diffrac-
tion) yield values ranging from 0.54 to 0.76 for ger-
manium and silicon. The last reported value is { =
0.5440.04.1* These values were obtained from nominally
larger ones by noticing an increase in uniaxial strain near
the sample surface and appropriately correcting for it.1*
While this increase was determined with x-ray scattering
techniques, it remains obscure how such increase (and
not the opposite, i.e., strain relaxation) can build up. In
view of the unsolved experimental situation one has to
look for the guidance of theoretical calculations, in par-
ticular those based on minimization of total energies ob-
tained from ab initio band structures (only available for
Si).12:13 A number of other, more indirectly calculated
values are also listed in Table III; the calculated values
of ¢ cluster around 0.51 in Ge and 0.52 in Si.

As already mentioned, consistency between the three
values of ( obtained from planar force constants for
phonons propagating along [100] and [111] is only ob-
tained if electronic degrees of freedom (BCP) are in-
cluded. The average value of { found in this manner is
0.577 £ 0.027 for Ge and 0.564 £ 0.030 for Si. These val-
ues agree with most of the theoretical estimates given
in Table IIl and rule out reported experimental data
higher than 0.7. They are reasonably accurate and reli-
able enough to be used as a data base in calculations for
which they are required, until better experimental data
become available. The latter could result from neutron-
diffraction experiments in which the whole stressed sam-
ple contributes and the surface problem is thus avoided.

The differences in the BCP-model values of ¢ for the
various directions of phonon propagation and polariza-
tion, while marginal within the error bars, could be re-
lated to the poor convergence of Egs. (16)—(18) in which
the force constants appear multiplied by j, the neighbor-
hood order of the plane under consideration.
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