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Path-integral treatment of the large-bipolaron problem
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%'e derive analytical expressions for the upper bound of the ground-state energy Eo and an esti-
mate for the effective mass of a large bipolaron using path-integral methods.

I. INTRODUCTION

The possibility of formation of a bipolaron structure in
some crystals or polar semiconductors was first con-
sidered by Pekar' and subsequently by Schultz. Normal-
ly two identical electrons or holes in a solid do not form a
bound state due to Coulomb repulsion between their
screened charges. However, the presence of electron-
phonon coupling in a lattice gives rise to additional
effects. In particular, this coupling can be strong enough
in an ionic crystal to overcome the Coulomb repulsion,
resulting in the formation of a stable electron or hole
pair, called the bipolaron. Thus the possibility of creat-
ing a bipolaron in solids depends on the competition be-
tween the Coulomb repulsion of electrons or holes and
the attractive interactions due to the distortions of the
lattice induced by them. This problem has been con-
sidered extensively in the literature.

The importance of bipolarons in semiconductor tech-
nology was first pointed out by Anderson. ' In order to
explain the anomalous behavior of amorphous semicon-
ductors, Anderson' introduced the idea of a negative-U
center, where two electrons can bind to form a bipolaron
in the singlet state. This idea was explored by many oth-
ers subsequently, giving several examples of negative-U
centers. ' ' The original concept of the intersite singlet
bipolaron has also been extended to the intrasite singlet
bipolaron. ' The issue of stability of such a bipolaron has
also received some attention. ' Alexandrov and colla-
borators ' have also explored the possibility of super-
conductivity of singlet bipolarons. The current interest
in bipolarons is due to the role they might play in under-
standing the mechanism of high-temperature supercon-
ductivity. A plausible mechanism proposed ' is that
the bipolarons of high enough density undergo a Bose-
Einstein condensation leading to the superconducting
state.

The bipolaron may be "small' or "large" (Frohlich
type), depending on the details of the electron-phonon in-
teraction. There is both theoretical' and experimental'
evidence for the formation of small bipolarons in polar
materials. A large number of theoretical calculations, in-
cluding the recent one by Adamowski, predict the stabil-
ity of Frohlich bipolarons. There seem to be no experi-
mental observations so far supporting the theory. The is-
sue is still open and it may be of interest to probe it fur-
ther.

In the present paper we consider the problem of the

binding of two electrons or two holes in an ionic crystal
or a polar semiconductor. In this material the dominant
coupling with the phonons is that with the longitudinal-
optical (LO) phonons described by the Frohlich interac-
tions. We study the problem by an extension of the
path-integral variational method employed by Feyn-
man ' in the polaron problem. The advantage here is
that the bipolaron energy and the effective mass can be
obtained for arbitrarily coupling strength of the
electron-phonon interaction. We obtain analytically an
estimate for the ground-state energy for the bipolaron
both in the weak- as well as the strong-coupling limit.
We examine the stability of the bipolaron based on these
estimates. For arbitrary coupling, a numerical evaluation
might be necessary. We define the bipolaron effective
mass by generalizing the definition for the polaron
effective mass given by Saitoh. The definition is based
on the response of the bipolaron when its center of mass
is coupled to a small perturbative force and seems to be
adequate. ' We mention here that Hiramoto and Toyo-
zawa have also calculated the bipolaron energy with the
help of the path-integral method and obtained the bind-
ing energy of the bipolaron in the strong-coupli. ng limit.
These authors have, however, used a truncated Fourier
expansion of the Coulomb potential between the pair of
electrons (holes). Also, their definition of effective mass is
different from ours, being similar to what Feynman used
in his work on polarons. The form of the Hamiltonian
used in Ref. 32 also precludes the possibility of obtaining
analytical results for quantities of interest.

The basic formulation of the problem is presented in
Sec. II. This is used in Sec. III to obtain the ground-state
energy and effective mass of the bipolaron. A discussion
on the stability of the bipolaron is also included. Con-
cluding remarks are added in Sec. IV.

II. BASIC FORMULATION OF THE PROBLEM

For the three-dimensional Frohlich bipolaron problem,
the classical Lagrangian consists of a sum of the Lagrang-
ian of the free phonons, the Lagrangian of the two elec-
trons, and the Lagrangian corresponding to the interac-
tion between electrons and phonons. The electronic La-
grangian consists of the sum of the kinetic energies of the
two electrons and the potential energy due to their mutu-
al Coulomb repulsion. The action integral may therefore
be written in the form similar to that of the polaron prob-
lem as
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S=f [(x,+x, )/2+5/ x, —xz ]dt+g(qk+qk)/2+(a~&2)' g(q&/k)[(exp(ik x, )+exp(ik. x2)] .
k k

(2.1)

Here x, and q& are the coordinates of the electrons and the phonons, respectively; a is the coupling coefficient for the
interaction between electrons and phonons, and 5 measures the strength of the Coulomb repulsion between the elec-
trons; k is the wave vector of a phonon mode. The units chosen are m =co=%=1, where m is the Block effective mass
of the electron and co is the optical-phonon frequency assumed to be dispersionless. The dynamics of this system is then
described by a path integral over electron and phonon coordinates. Since the Lagrangian is quadratic in phonon coor-
dinates, the path integration over these coordinates can be performed exactly. Further, after eliminating the phonon
end points, the problem reduces to the path integration of a two-time (nonlocal) effective action functional S,~ involving
only the electron coordinates and the phonon kernel G (t —s)

S,tr= f [(x,+x2)/2+6/~x, —x2{]dt—S, , (2.2)

where

S, =~a&2f dt f ds f [d k/(2~) ]G(t —s){exp[ik x, (t)]+exp[ik xz(t)]] {exp[—ik x, (s)]+exp[ —ik.xz(s)]] .

(2.3)

The first term in (2.2) is the action for the motion of the electron pair under their mutual repulsion. The second term S,
defined in (2.3) is the nonlocal contribution to the effective action arising from the electron-phonon interaction. The ex-
plicit form of the kernel G (t —s) depends on how the phonon end points are eliminated from the joint electron-phonon
density matrix. If we perform an average by taking the traces of the total density matrix over the phonon coordinates,
we obtain the so-called finite-temperature kernel:

G ( t —s ) =cosh(/3/2 —
~
t —s

~
) Isinh(/3/2 ) .

Note that the kernel G (t —s) is symmetric in t and s. It is convenient to introduce the following transformation:

x)+ x2 =+2p

xi xp =+27],

so that the effective action S,z takes the form

S,s.= f dt[ ,'(p +g —)+5/&2q~] —S, ,

(2.4)

(2.5)

(2.6)

with

S, =~a&2 f dt J ds f [d k/(2~) ]G(t —s)exp{ ik. [p(t) —p(s)]/&2]
0 0

X(exp{ik [g(t) —
i(l)s]//2] +e px{i k[ (rt/) g+( )s]/& ]2+c.c. ), (2.7)

where c.c. denotes the complex conjugate of the quanti-
ties in the curly brackets. The subsequent calculations
are in the spirit of Feynman's variational formulation of
the polaron problem. By using a suitable trial action, we
invoke a variational principle to obtain an approximate
form for the bipolaron density matrix (BPDM). We can
then determine the main properties of the bipolaron, viz. ,
its ground-state energy Eo and its effective mass m *. The
choice of the trial action for arbitrary coupling strength
o; depends on two basic requirements. First, it must
mimic qualitatively the nonlocal character of the effective
action S,z. Second, it must be easy to path integrate,
yielding preferably an exact analytical form for the densi-
ty matrix. In this work, we choose the following trial ac-
tion:

So = f dt[(p +r/ )/2+co g /2]

+(0 /4/3) f f [p(t) —p(s)] dt ds, (2.8)
0 0

where cu and A are variational parameters. The action

So is a sum of the action for a three-dimensional isotropic
harmonic oscillator and a nonlocal quadratic action. The
density matrix for each of these actions is known in
analytical form. The density matrix for So is therefore
the product of the density matrices of the two individual
actions.

For obtaining the effective mass m* of the bipolaron,
we need a further modification. Vr'e assume that the sys-
tem is coupled to a constant force f so that the linear po-
tential due to this force is simply given by f p. The
effective action (2.2) is then modified to

S, =s,Ssi+f f pdt,
0

(2.9)

where S,tr is as in Eq. (2.6). A similar term must also be
added to the trial action So.

For obtaining the estimates of the ground-state energy
and the effective mass of the bipolaron, we evaluate the
BPDM in the so-called first curnulant approximation.
This implies that the BPDM has the form
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p(/
" ~" p'n'»)=po(/ " ~";/ ' n'/3)

Xexp( —(S,g So)s )

So( f i~ f2) =Si ( f i )+S2( f2)

(2.10) and consequently

(2.14)

where

po(p", r/";p, 'g', P)= fDp(t)Dg(t)exp( —PSo), (2.12)

written as a path integral with Dp(t)Dg(t) as the path
difterential measure.

In the subsequent calculations, we are interested only
in the density matrix p(O, O, P). The computation of the
expectation value ((S,(r —So) )s is facilitated by means

of the following results. Consider the more general ac-
tion inclusive of some force terms added to the trial ac-
t'on So:

Here, the symbols p and po represent the density matrices
corresponding to the actions S,z and So, respectively.
The expectation value ( )s is defined as

0

((S,a —SD))s =(1/po) f fDp(t)Dr/(t)

X (S,(r —So )exp( —/3So ),
(2.11)

po p&p2 . (2.15)

Here

S, = f (jc /2)dt+(0 /4/3) f dt f ds[p(t) p(s)—]
0 0 0

+E f .ddtp

0
(2.16)

is a general quadratic nonlocal action, while

S2= f (g'+co rt )dt+i f f, 7(Idt (2.17)

p i (0 0;P l
f i ) = ( —,

' ~p) [0/3/2 sinh( Qp/2 ) ]
3

Xexp ——f dt f ds fi(t)fi(s)C(t, s)
p p

(2.18)

pg(0, 0;pl f, ) = [~/2~ sinh(cop/2) ]3'2

is the action of a three-dimensional isotropic forced har-
monic oscillator. Analytical expressions for the density
matrices p& and p2 are available in the literature. In
particular, we have for the diagonal density matrices

So= So+i f f, ddt+i f f, ddt, .
0 0

(2.13)
Xexp —— f dt f ds f2(t)f2(s)H(t, s)

1 p p
(2.19)

where f, and f2 depend on time t but are independent of
the coordinates p, r&. One may then write where

C(t, s) =2 c soh[Q(t —s)/2]sinh(Qt /2)sinh[O(P —t+ )/2]/0 sinh(Q/3/2),

H(t, s)=sinh(cot )sinh[co(P —t+ )]/co sinh(co/3),

t =min(t, s), t+ =max(t, s) .

(2.20)

(2.21)

(2.22)

We use these results for obtaining the various terms in the expectation value ((S,z —So) )s in the following section.
0

Also, we shall hereafter shorten the notation by writing pi =pi(0, 0;/3l f;), suppressing the arguments other than the pa-
rameter f; of the forces. Note also that po =pa( f, = f~ =0) and that po=p, ( f, =0)pz( f2=0) by Eq. (2.15).

III. GROUND-STATE ENERGY AND EFFECTIVE MASS

A. Ground-state energy

It is well known that in Feynman s prescription, the variational estimate of the ground-state energy is given by

E & [Eo+ lim (1//3(S, s.—So), ]p=q=O,
p~ co 0

(3.1)

where Eo is the contribution to the ground-state energy from the density matrix po corresponding to the trial action So..

Eo = lim ( —1/P lnpo) = lim —1/PIln[pi(f, =0)]+ln[p2(f z =0)]I =3($1+co)/2,
p~ oo p~ oo

where we have used Eqs. (2.18) and (2.19). Next consider the expression

S,~—S,= f).'/4P f dt f ds[p(t) —p(s)]' —cu'/2 f —dt g'+ f 5dtl&2lql —S, .

We have to evaluate the various expectation values over the trial action So. It is easy to verify that

~'l2 f dt q )s~ =ia)/2) (np~(f, =0(=—', —(3M(3i4(cath(ro(3( .
a

In a similar manner,

(3.2)

(3.3)

(3.4)
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—Qs/4gf d( f «[((s)(—(s(s)( )=(fl /2 ((5/Ml)(np, (f, =O)
0 0

=
—,
' —30/3/4 coth(PQ/2) .

Next consider the term

(
—f dt ~g~ s = ——f dt f (d k/k 2' )exp(ik g)s

v'2 o o v'2 o

(3.5)

(3.6)

(exp(ik ri) )so =(1/po) fDg(t)exp ik f g(t)5{t —r)dt exp( —I3S

=p,(f, =5(t r)k}—/p, (f,=0)

=exp[ —k H (t, t)/2] . (3.7)

) performing the integration over k, and inserting fh{ expression of H(t t) from (2 2)

—f dt's'co sinhcop/v sinh[m(p —t)]sjnh~t
(

13 $ p

&2 o &7r o

t rested onl& in the limiting value as p~~, we need not perform this integration in d t il. It
sufficient to know that for large values of p,

—f «
I (l) s-p((s/2 / +O(((

~ ~

p

&2 o 0

~e now consider the evaluation of the term (S, ) Fo
0

[=&2rra f dt f ds f d kl'k [I/(2m)3]G(t, s)exp(ika)
0 0

(3.8)

where

X [exp(ik b+)+exp( ik b—+)+.exp(ik. b )+exp( —ik b )], (3.9)'

a= [P(t) P(s) ]/&2; b+ = [g(t)+q(s)]/Q2

Since the trial action S0 is separable in coordinates p and v, we can write

(exp(ik a)[e.xp(ik b+)+exp( —ik b )+exp(ik b )+exp( —ik b )])
=(exp(ik. a))s ( )([ epx(ik b+)+exp{ ik b+)—+exp. (ik b )+exp( —ik b )])s („),

(3.10)

(3.11)

where So[p] is the nonlocal quadratic action in p and So [r) ] corresponds to the action of a harmonic oscillator. Now

(exp(ik. a))s („)=fDp(t)exp —So+ik/&2f [5(r—t) —5(r —s)]p(r)dr /p[ (f[=0)

=p, [ f, =k[5(r—t) —5(r —s)]/&2I /p, ( f, =0)

=exp[ —(k C )/4],
where the quantity C is defined as

C =C(t, t)+C(s, s) —2C(t, s) .

Similarly, it is easy to verify that

(exp(ik. b+) )s („)=p2 [ f2=k[5(r —t)+5(r s)]] lp2 ( f2=0—)

=exp [ —( k H+ ) /4],
where

H+=H(t, t)+H(s, s)+2H(t, s) .

Since the result depends on k, it follows that

(e px[ i+(k b+)])s („)=(exp[ —i (k b+)])s („)=exp[ —(k H+)/4] .

Collecting all these terms, we have

(3.12)

(3.13)

(3.14)

(3.15)
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(S& )s („)=2&2vra f dt f ds f cI k/(2m) k G(t s)Iexp[ —k (C +H+)/4]+exp[ —k (C +H )/4]j

=a 2/n f dt f dsG(t, s)[1/Q(C +H+ )+ I/Q(C +H )] .
0 0

(3.16)

This expression is complicated for evaluating in detail. However, we are interested in the limit p —+ ~. For large p, we
approximate the quantities in the integrand.

Consider first the expression for C . We have

C =C(t, t)+C(s, s) —2C(t, s)

=2I sinh(Qt/2)sinh[Q(p —r)/2]+sinh(Qs/2)sinh[Q(p —s)/2]] /Q sinh(Qp/2)

—4cosh[Q(t —s)/2]sinh(Qs/2)sinh[Q(p —r)/2]/Q sinh(Qp/2) for t s,
C ~I 1 —exp[ —Q(t —s)]]/Q (3.17)

C ~[1—exp(Q~t —
s~ )]/Q

as p~ oo. Similarly, it can be shown that as p —+ oo,

(3.18)

as p~ ~. As C is symmetric in t and s, it follows that that o,'has to be larger than some minimum value to form
a bound pair. We may now combine all these results to
write the expression for the ground-state energy of the bi-
polaron. In the strong-coupling limit, where we let
co=A, we have

H+ ~ [ 1+ exp( —co
~
t —s

~ ) ] /co,

G(t, s)~exp( —
~t

—s~) .

(3.19)
lim (I/P)(S, —S )

P~ oo

(S) )s =(&2/rr)a f clt f cisexp[( —
~t

—s~)y(~t —s~)]

=2a(&2/vr) f du(P —u )exp( —u)y(u),
0

(3.21)

where

y(u ) =—[1/Q+ I/co —exp( —Qu )/Q+ exp( —
cou )/co]

+ [ 1/Q + I /co —exp( —Qu ) /Q

Inserting these estimates in (3.16), we find that for large = —3Q/2+5&(2Q/rr) —4a&(Q/~), (3.27)

and since ED =3Q, the inequality (3.1) becomes

E ~ [E 0+lim(1 P/)( S,
—
s SD )s ]

=3Q/2+5&(2Q/vr) —4a&(Q/~), &Q &0 . (3.28)

The ground-state energy is obtained by minimizing this
expression with respect to the variational parameter A,
that is, by letting

—exp( —eau )/co] (3.22) dE/dQ= —', +(5/2)&(2/Qa) —2a&(I/nQ) =0, (3.29)

For analytical simplicity we consider two extreme cases
of the choice of parameters: (a) co =Q; (b) Q =0. We may
evaluate the term in Eq. (3.22) explicitly if we set co=Q.
This choice seems proper only for very large values of u
(Ref. 8) (for a strongly coupled system):

which yields

Q = (2/9m')(2V2a —5)2, a ~ 5/(2v'2) „

Q=O, a~5/(2v'2) .
(3.30)

and

g( u ) =&Q /2[ I+ I /& I —exp( —Qu ) ], (3.23)
Hence, in the strong-coupling limit, the ground-state en-
ergy is given by

E ~ —
—,
' vr(2&2a —5), a ~ 5/(2V2)

=4a&(Q/~) . (3.24)

lim (1/P)(S, )sP~ oo 0

~2a(&Q/rr) 1+f exp( —u)du/V 1 —exp( —Qu )
0

E~0, a~5/(2v'2) .

In the weak-coupling limit, Q =0, E0 =3~/2, and

lim (I/P)(S, &
—S0)sP~ oo 0

(3.31)

On the other hand, for the case Q, =O, C ~u. Further,

y(u) =&co[ [cou+ I+exp( —cpu )]'~

= —3'/4+5M(2'/rr) 4aV'(2'/vr) . —(3.32)

The inequality (3.1) now reads

and

+ [cpu + 1 —exp( —cou ) ]' }, (3.25)

lim (1/P)(S, )s ~4a&(2'/m. ) . (3.26)P~ oo 0

The choice A=O implies that a is small. However, note

E ~ [E0+Iim(1/P)(S, tr
—SD) s ]

=3co/4+(5 —4a)&(2'/vr) .

Minimization of E with respect to ~ yields

(3.33)
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co=(8/9m)(4a —5), a) 5/4

+=0, a (5/4,
(3.34)

and the estimate of the bipolaron energy in the weak-
coupling limit reads

E & ( —
—,
'm. )(4a —5), a) 5/4;

Eo & 0, a & 5/4 .
(3.35)

Note that for a negative-energy state, a minimum value
of a is necessary whether one uses the parameters ~=0
or Q=O. The choice of parameters only changes the
qualitative bounds on the energy E. Moreover as e—+0,
E ~ 0, which is consistent physically.

Table I gives numerical estimates of the free energy for
various values of the parameters a and 5. These have
been obtained by minimizing with respect to both cu and
Q.

Next we turn to the question of the stability of the bi-
polaron. As has been mentioned earlier, the bipolaron
pair can be formed if the electron-phonon interaction
characterized by the constant o, is sufficiently large to
overcome the Coulomb repulsion between the electron
(hole) pairs. Hence we can assert that the bipolaron
would be stable if its binding energy, defined by the rela-
tion

where y is Pekar's constant. Hence the condition for
stability yields

8'=2Eo —E )0,
where Eo is the energy of the individual polarons with
respect to the bottom of the conduction band. Eo is the
case of the strong-coupling limit is given by

sponds to choice 0=0. However, since for a given
a )5/4 the bound on E of Eq. (3.34) lies below the bound
of Eq. (3.35), the value of a/5 described by Eq. (3.36)
gives a lower bound for the stability of the bipolaron.

B. Effective mass of the bipolaron

The effective mass of the bipolaron can be obtained by
considering the response of the system under a small per-
turbative force. Such a definition of effective mass for the
polaron problem has been given by Saitoh. As men-
tioned in Sec. II, we have now to consider the effective
action S,s given by (2.9) and the corresponding trial ac-
tion So containing the force term. Since S,z —So
=S,z —So, the expectation value

(S„—S,),— =(S„—S,),

where the first term on the right is the contribution for
f=0 and the second term is the contribution that de-
pends explicitly on force parameter f. The first term has
already been evaluated in Sec. III A. The diagonal densi-
ty matrix

p(0, 0/P; f) =po(0, 0/Il; f)

X exp( —( S,s.—So )s )exp [ PE ( ~
f ) ]—.

(3.37)
The effective mass I ' is then related to the coefficient of
—

~

f
~

/2 in the exponent of the density matrix
p(0, 0/P; ~

f ~). We enumerate the various terms in this
context. First, the coe%cients of the ~f~ /2 term in the
exponent of po(0, 0/P; f) reads

—2y~a +(—'~)(2v'2a —5) )0,
which implies

J, = f dt f ds C(t, s) .
0 0

(3.38)

a) 6/[V2(2 —v'3~@ )] . (3.36)

The value of y is =1/3~. Therefore, for stability, a has
to be necessarily larger than 5/v 2. A similar condition
can be derived using the E of Eq. (3.35), which corre-

Next, the term proportional to f /2 in exp[ fjE—(f )]-
can be shown to be given by a sum of the terms J2 and
J3, given by

(3.39)

TABLE I. The estimates of the free energy for various values of u and 6 in the strong-coupling limit.

Eo

5.12
6.12

10
9
7
7
7
6
6
6
6

5.01
10
15
9
7
6
5

7
6
5
4

25
40
15
15
15
15
15
15
15
15
15

4.16
0.471
9.19

11.6
9.185

10.452
11.6
4.631
6.08
7.707
9.47

5.55
1.1

17.0
18.0
13.0
14.0
15.0
7.0
8.5

10
11.5

—12.76
—11.217
—25.79
—32.85
—21.16
—23.63
—23.306
—14.3
—16.15
—18.26
—20.72
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J3= —i/2a/v'rr f dt f ds G(t, s)I
0 0

X [(C +H+ )

+(C +H )
' '], (3.40)

where

We have to evaluate J, and J2. For this purpose, we use
the definition (2.20), and show that

f C(r, t)dr= I t sinh[A(/3 —tl2) jsinh(At/2)] /[A sinh(A/3/2)],
0

f C (r, t)dr =
I (/3 —t)sinh(At /2)sinh[A(/3 —t l2) ]]l[A sinh(AP/2) ],

so that

f C(r, t)dr =
I P sinh(At /2)sinh[A(P —t l2) ] I l[A sinh(AP/2)]

0

and

(3.42)

(3.43)

(3.44)

J, =f dt f d&C(r, t)=P[(A/3/2)cosh(A/3/2) —Asinh(AP/2)]/[A sinh(A/3/2)]~P l2A
0 0

as /3 —+ ~. Similarly, Jz~ —
/3 l(4A) in the limit /3~ ~. We may use Eq. (3.44) to simplify the expression for I, which

now reads

I = [P sinh[A(/3 —t —s) /2]sinh[ A(t —s)/2] I /[A sinh(/3A/2)] . (3.46)

We are interested in obtaining an estimate of the eA'ective mass m in both the strong- as well as the weak-coupling lim-
it and as /3~ ao (that is, in the limit of zero temperature). The integrand in J3 is a product of a function g (t —s) and
another function h (t +s). In order to cast integral J3 in a proper form, consider the auxiliary integral

J=f dt f dsg(t —s)h(t+s) .
0 0

By changing the variables to u = t —s and U = t +s, we can show that

J =2f du f dv g (u)h (v +/3),
0 0

(3.48)

provided that h (P—v) =h (v +P), which is the case if h is chosen to be I . In order to evaluate Jz in the limit of large
/3, we use the fact that H+ ~ I /co and C+~ 1/A in this limit, and also the fact that the kernel
G (t, s)—+exp —t —

s~ =exp —
~u . First note that by virtue of (3.48),

f dt f ds I G =[2/3 /A sinh (AP/2)] f du sinh (Au/2)exp( —u) f sinh (Av/2)dv
0 0 0 0

=[/3 /A sinh (AP/2)] f du exp( —u)[exp(uA)/4 —
—,
' ]I[sinh(P —u )A]/A —(P—u )]

p

p= [/3 /A sinh (AP/2)] f du exp( —u)[exp(u A)/4 —
—,
' ]e ~ "' /2A+O(P)

=/32/2A f du exp( —u)[l —2exp( —uQ)]
0

~P (A —1)/[2A (A+1)] . (3.49)

Using the above expression, we can write in the strong-coupling limit, where cv =A (H+ =C+ = I /A),

J3= —(2a/&2~)(A /V2)(/3 /2A )[(A —1)/(A+1)]=[a(A —I)/&nA(A+1)](P /2A) .

For large P the effective mass m * is then given by

1/m =J, +J2+J3=/3 /2AI( —,') —(a/&~A)[(A —1)/(A+1)]] .

(3.50)

(3.51)

1/m*=,'[—', —(a/&~A)(A —1)/(A+1)] . (3.52)

Inserting the value of A in (3.30), found by variational

We now normalize the mass m in the trial action to 2, ,
since it is a sum of the masses of the two individual elec-
trons; thus the coefficient of —f /2 in the trial action,
which is /3 /2A, must be replaced by —,'. Therefore the
efI'ective mass of the bipolaron is

1/m *=
—,
' [—', —3«(4a —&2&)] (3.53)

and a) &26. Let us now consider the weak-coupling
limit where Q=O. Here, since the trial action does not
contain the nonlocal quadratic part, J2 =0, while

minimization of ground-state energy, and assuming that
[(A —1)/(A+ 1)]= 1, we obtain
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J, =P /12,

while J3 is still given by (3.39) with C+=0 and

I =
—,'(t —s)[/3 —(t+s)] .

(3.54)

(3.55)

Once again we renormalize the mass in the trial action
(p /12) ' as 2 and insert the value (3.34) for co. Conse-
quently, in the weak-coupling limit, the effective mass of
the bipolaron takes the form

Equation (3.55) can be obtained from (3.46) by taking the
limit as A~O. With (3.55) and H+=1/co, the integra-
tion in (3.39) may be carried out as before to yield the re-
sult

1 lm *=
—,
' [1+(4/sr )( —,') a(4a —5) ] .

IV. CONCLUSIONS

(3.58)

(3.56)

Thus the effective mass m * is given by

1/m =Ji+J2

=(P /12)[1+(16al&2vr)co ] . (3.57)

J3=(8a/&2')co i f du f du(u U /4)exp( —u)
0 0

=+(2aco r /3&2m) f du[u (/3 —u) exp( —u)]
0

=(+4a/3&2sr)co P

In this paper we have obtained analytical estimates for
the ground-state energy E and the effective mass of the
large bipolaron. As has been pointed out earlier, our
definition of the effective mass of a bipolaron is different
from the one used by Hiramoto and Toyozawa.

The advantage of using the present definition is that it
can be used even to describe the temperature-dependent
effective mass, whereas the earlier definition due to Feyn-
man has been found to be inadequate for this purpose. '

Our analysis can also be used for studying the tempera-
ture variation of the free energy.
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