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We report full-band-structure calculations of the frequency-dependent second- and third-
harmonic response functions of ZnSe, ZnTe, and CdTe, as well as our results for the dielectric func-
tion of these semiconductors. We use a linear combination of Gaussian orbitals technique, in con-
junction with the Xa method, to obtain the energy band structures and optical matrix elements of
each material. The expressions for €w) and ¥ ?(—2w;w,w) are evaluated utilizing a linearized
sampling method for integrating over an irreducible segment of the Brillouin zone; the expression
for ¥ *( —3w;,0,0) is evaluated using a random-sampling method. The results of our calculations
of €(w) are in good agreement with experimental results. Our calculated value of
X13(0)=24.8X107® esu for CdTe is in excellent agreement with the measured value [G. H. Sher-
man and P. D. Coleman, J. Appl. Phys. 44, 238 (1973)] of x{¥(A=28 um)=(28+11)X 107 % esu. We
argue that the experimental results for y{3(A=10.6 um) of ZnSe and ZnTe [C. K. N. Patel, Phys.
Rev. Lett. 16, 613 (1966)] are likely to be inaccurate and that there is a need for additional measure-
ments. Our calculations show that both ¥ '*/(0) and ¥ *)(0) are positive for the materials considered
in this work. We analyze the prominent features of €(w), ¥ *(—2w;0,0), and ¥ *( —3w0;0,0,»)
over a wide range of frequencies. Our results indicate that the effects of weak optical transitions are
much more pronounced in the second- and third-order optical response functions than in the
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linear-response functions.

I. INTRODUCTION

The electronic and optical properties of the II-VI semi-
conductors have been the focus of a number of experi-
mental' ~® and theoretical’ >’ 13 investigations over the
past three decades. The earlier studies were motivated
mainly by a concern with understanding the fundamental
physics behind the electronic and optical properties.
More recently, possible technological applications of
these bulk semiconductors’™'® and II-VI superlat-
tices'* 2 have provided added impetus for such work.

While there have been numerous full-band-structure
calculations of the electronic®™>77!3 and linear opti-
cal’™>° properties of these semiconductors, to our
knowledge there are no such studies of the nonlinear opti-
cal properties. In fact, in general there are very few full-
band-structure calculations of the nonlinear optical prop-
erties of semiconductors as a whole. In the past we have
carried out full-band-structure calculations of the
frequency-dependent second-harmonic generation (SHG)
response functions for bulk III-V semiconductors,?® odd
period strained (Si),(Ge),/Si (001) superlattices,?’ and
short period (GaAs),,/(AlAs), superlattices.?® We have
also performed such calculations for the frequency-
dependent third-harmonic generation (THG) response
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functions for bulk group-IV element and III-V compound
semiconductors.?’ Here we report a full-band-structure
calculation of the dielectric tensor, €(w), and calculations
for second- and third-harmonic response functions
X P(—20;0,0) and ¥ —3w;0,0,0)] of the zinc-
blende-structure II-VI semiconductors, ZnSe, ZnTe, and
CdTe.

The paper is organized as follows. In Sec. II we give a
brief description of the band-structure calculations. We
present the formal expressions for the optical response
functions in Sec. III. We briefly discuss our numerical in-
tegration methods for evaluating these expressions in the
same section. In Sec. IV the results of our calculation of
‘€(w) are presented and analyzed. Since there have been
many analyses of the dielectric function of these semicon-
ductors, ! ~%° we only briefly describe some of the impor-
tant features of €(w) here, and instead concentrate on the

nonlinear properties. We discuss our results for
X (—2w;0,) in Sec. V. In Sec. VI we present and dis-

cuss our results for ¥ ®'(—3w;w,w,w). Finally, our re-
sults are summarized in Sec. VII.

II. BAND-STRUCTURE CALCULATIONS

To calculate the energy-band structures and optical
matrix elements for ZnSe, ZnTe, and CdTe we use the
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minimal basis ({1s,2s,2p,3s,3p,3d,4s,4p} orbitals for Zn
and Se and {ls,2s,2p,3s,3p,3d,4s,4p,4d,5s,5p} orbitals
for Cd and Te) linear combination of Gaussian orbitals
(MLCGO) technique, in conjunction with the Xa
method, for constructing the potentials of each materi-
al.!! The local single-site effective potentials and basis
functions are constructed by adjusting the a’s to produce
the correct lowest bulk band gaps. For simplicity we
neglect relativistic effects, such as spin-orbit coupling.!!
To ensure convergence we include up to ninth-nearest-
neighbor interactions in all of our calculations. Since full
details of this approach along with the energy-band struc-

tures for ZnSe, ZnTe, and CdTe have already been dis-
cussed by Huang et al.,!! we shall not present them here.
For completeness, we present these band structures along
the conventional directions of the fcc Brillouin zone (BZ)
in Fig. 1.

III. FORMAL EXPRESSIONS FOR OPTICAL
RESPONSE FUNCTIONS

We employ expressions? for the optical response
coefficients derived within the independent-particle ap-
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FIG. 1. Energy-band structure of II-VI semiconductors, (a) ZnSe, (b) ZnTe, and (c) CdTe.
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proximation, and using the minimal-coupling (MC) in-
teraction Hamiltonian. For simplicity, we neglect local-
field corrections. We evaluate the imaginary parts of the
response functions first, since they are much simpler be-
cause of the presence of the Dirac 6 functions. The real
parts of the response functions are then obtained from
the imaginary parts using Kramers-Kronig relations. %’

A. Linear optical response

The imaginary part of the dielectric tensor is given by?’

o :% Zf PPy S E; —fio)dk , (.1
ij
where E =fio, E;=E;,—E;, f;=f;—f, etc., and f; is

the Fermi occupation factor of the single-particle state i.
The p;; are momentum matrix elements. Subscripts i, j,
and / can be thought of as labeling the band index at a
given k in the Brillouin zone; quantities like p;; and E
are therefore functions of k, which we will often keep im-
plicit. Note that in all of our calculations we ignore the
spin-orbit coupling.

To facilitate computation we utilize the cubic symme-
try of the zinc-blende semiconductors to convert the in-
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the BZ. This is accomplished by applying the operators,

Py, of the group elements R of the symmetry point group
(T,;) of these semlconductors to the expanswn dyadics ij
of the dielectric tensor €(w)= 3, ; e,Jz j. We find

S Pr(32)=3 Pr3P)= 3 Pr(22)=8T ;
R R R

i#j,

(3.2a)
:0’

3> Pr(i7)
R
where T is the identity tensor in direct space. Using these
symmetry elements and the fact that the BZ has inversion
symmetry, the dielectric tensor is given by

161 e

m

2
62(0)): 2 fIBZf,j|p,j|28(EJ,_‘ﬁCl))dk ,
LJ

(3.2b)

where IBZ stands for an irreducible segment of the BZ.

B. Second-harmonic generation

The second-harmonic response tensor ‘)‘(’”’( —2w;0,w)

contains contributions from virtual-electron and virtual-
hole processes.?” ~3° The virtual-electron contribution to

tegral in (3.1) to one over only an irreducible segment of  the imaginary part of the ¥ ?( —2w;0,0) is?’
J
D 200 = — 2 Im(ppiipif )5 £y —fiw) _ Im(pifpiipit (B, —fio)
BZ 477 E,,-(E,,-+E-») E,,-(ZE,,-—EJ-[)
N 16 Im(pj;pjpi/ 8(E ;; —2%iw) ’ (3.3
ji(zEIi_Eji)

where, e.g., pjj is a momentum-matrix element between a valence state v and conduction state c¢. Equation (3.3) is not

symmetric in the last two Cartesian components; while

Y(Z(

2w;0,w) can always be chosen to have this symme-

try,2? for cubic materials the use of Eq. (3.5) guarantees this symmetry. The virtual-hole term is similarly given by

T 20 00,0) = 2 f Im(p;/piipi I8 E; —fiw) _ Im(pi;ppi O(E; —fiw)
’ m | Bz 477' E;(E;+Ej) E;QRE;—Ej)
16 Im(p;/pj/p;; )0 E ;; —2fiw)

3 —
E}QE;—E;)

As seen from Egs. (3.3) and (3.4), resonances can occur
when either o or 2w is the frequency difference between
two single-particle states.

As in the calculation of the linear response, we utilize
the crystal symmetry to facilitate the computation. Since

¥P(— S x2(—20;0,0)@be),

a,b,c

—20;0,0)=

we apply the symmetry operators Py to find

> Pr(R92)
R

=4RH2+PR 43R +2R9+293%);

(3.5)

» x 2y+yzR y

(3.4)

S Pr(@ab?)=0 if a,b,c not all different .
R

As seen from Eq. (3.5), for materials with cubic symme-

try, ¥ 2(—2w;0,0) has only one independent com-
ponent; we take it to be ¥, (0)=x{3(w). This com-

ponent can be evaluated from Egs. (3.3) and (3.4), utiliz-
ing relations (3.5) and the inversion symmetry of the BZ
to reduce the integration range to the irreducible segment
of the Brillouin zone.

C. Third-harmonic generation

As in the case of ¥ ?(—2w;w,w), it is convenient and

useful to separate out the different physical contributions
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to ¥ —3w;0,0,0). We find that there are five
physically distinct processes contributing to
YO —3w;0,0,0):%° (a) A virtual-electron process,
which involves the successive (virtual) excitation of an
electron to two conduction bands and then back to the
valence band. (b) Three virtual-hole processes. One of
these involves the virtual excitation of a conduction-band
hole to two successive valence bands and then back to the
conduction band. The other two virtual-hole terms in-
volve the successive excitation of both an electron and a
hole. (c) A three-state contribution, which may involve
the simultaneous (virtual) excitation of two electrons (or
holes). In addition, we differentiate between terms that

J

¥ 13— 30;0,0,0)
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contain diagonal momentum-matrix elements (e.g., p$;)
and those that do not. Terms containing diagonal-matrix
elements we call “intraband;” these vanish in the limit of
flat bands. The rest of the terms we label “interband.”
From Egs. (3.6) and (3.7), it is clear that the virtual-
electron and virtual-hole terms contain intraband contri-
butions, while the three-state term does not. A complete
description and a schematic representation of all of the
different contributions have been presented earlier. >

For a crystal with cubic symmetry the contribution of
the virtual-electron processes to the imaginary part of

¥ ¥ —30;0,0,0) is given by?’

2'(2E; —E};)8(E;; —2E)

E}QE; —E;)2E; —3E ) 2E; + Ey,)
1 2Ey

4
=T BZiEEIEQIdeZP%p%p?
3%(E; —3E)
E}(3Ey —2E;)3E;—E;)
S(E, —E)
Ej(E,; —2Ey)

_+_
(Eﬂ_3E[1)

. (3.6)

(E;+E; (Ey; +2Ey)

Terms in Eq. (3.6) where j =k or k =/ contribute to the intraband response. The contributions of the three virtual-hole

terms can be obtained from the virtual-electron term by a set of straightforward substitutions.

2 For the virtual-

electron and -hole processes, resonances can occur when either w, 2w, or 3w is the frequency difference between two

single-particle states [see Eq. (3.6)].

For a crystal with cubic symmetry, the expression for the three-state contribution to the imaginary part of

X ¥(—30;0,0,0) is given by?’

< 11(3) . .
X three state( 3w;0,0,0)

4
™ | et dk .
B ..klfBZ;gRe(P?prZpk?p?f”)
LK,
3%8(E;; —3E)

S(E,;—E)

E}(3Ey —E;)3E;—E;)

(Ex+Ey) (E;+Ey)

E}(Ej +3Ey)

As seen from Eq. (3.7), for the three-state process reso-
nances can occur only when o or 3w is the frequency
difference between two single-particle states.

To convert the integration in Egs. (3.6) and (3.7) to one
over only the IBZ, we again use the operations of the
symmetry group T,. Proceeding as in Secs. III A and
III B, we find terms such as

SPrEXXX)=8(XXXX+PPPY+2222) (3.8
R

(Elk —3E; )(Eji +E; )

. (3.7
(Ej; —3E; ) Ey +Ey) ]

f

An examination of these terms shows? that the
7(3)(—3w;w,w,w) for a material with cubic symmetry

has only two independent components, which we take to

be” A=x{{(0) and B=3y3)(0)=3x3)(0)
=3yi{ih(w). Note that, wunlike the case of
=3 =(3)

¥ —20;0,0), ¥3(—30;0,0,0) must be explicitly
symmetrized with respect to the last three Cartesian in-
dices, even for cubic crystals. For cubic materials, this
can be accomplished by simply taking (for example)

)((131)22(60)E%{)((131)22&0)+X(132)12(a))+)((132)21(w)} .
These components can be evaluated from Eqgs. (3.6) and
(3.7), utilizing relations (3.8) and (3.9) and the inversion

symmetry of the BZ, to reduce the integration range to
the IBZ.
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D. Numerical integrations

In this work we use a linearized sampling method?”8

to evaluate €)(w) and ¥'"'?(—2w;w,w) over the IBZ.
This method is very similar to the linear analytic tetrahe-

dra method.?! The details?”?® are given elsewhere and
27

will not be repeated here. The expression for
X" —3w;w,0,0) is considerably more complicated

than the first- and second-order response functions [Egs.
(3.1) and (3.2)] and (3.6). Therefore, we use a simple
random-sampling method to evaluate these functions.
This is easier to implement than the linearized methods,
but requires substantially more computer time.

In the linearized sampling method we divide the IBM
into 15X 15X 15 cells. Typically these calculations re-
quire the use of the equivalent of several hours of Cray
Research, Inc. X-MP/22 supercomputer central-
processing-unit (CPU) time. The evaluation of
)'Z"m( —3w;0,0,), with ~ 60000 points, is considerably
more time consuming. For all calculations, we chose the
energy resolution of the bin summation to be 0.02 eV.
Although the imaginary parts of the optical response
functions do contain resonant-energy denominators [for
example, when 2E;, =E; in Eq. (3.3)], we do not find any
ill-behaved contributions to the response functions for
our sampling density. In any case, an examination of the
general form of ¥ ?(—2w;w,w) and ¥ *(—3w;0,0,0)
shows that the contributions from such ‘“double reso-
nances” are in fact well behaved.?%?° The direct evalua-
tion of the real parts of these response functions is more
problematic, since the expressions for those terms contain
contributions involving resonances in the excitation fre-
quency, rather than just the band energies. Thus, the
Kramers-Kronig relations are used to obtain them from
the imaginary parts. As a check on the calculations, €(0),
¥ 2(0), and ¥ 3(0) were also evaluated directly; the two
sets of results typically agreed to better than 5%.

IV. RESULTS FOR LINEAR OPTICAL RESPONSE

Our calculated values of €(w) for ZnSe, ZnTe, and
CdTe, along with the corresponding experimental® re-
sults, are presented in Fig. 2; we have used a digitizer to
extract these experimental values from the plots of
Freeouf.® As seen from this figure there is good agree-
ment between the theory and experiment. The major
discrepancy is due to our neglect of the spin-orbit cou-
pling. In principle we could include this effect in our cal-
culations, but since a full-band-structure evaluation of
the nonlinear optical properties is already complex, in the
present work we have chosen to ignore it. In any case,
we will see below that the nonlinear optical properties—
in particular, the ¥ ®'( —3w;®,w,w) —are generally dom-
inated by resonances with the E, optical peak, where the
spin-orbit splitting is not very important.

The important features of €,(w) for ZnSe are as fol-
lows. The threshold in €,(w) at 2.84 eV (labeled E,) is
due to the T's,-I';, transition. The start of the rise
around 4.7 eV is due to A;,-A,. transitions. The major
peak at 4.95 eV (labeled E,) is caused by Lj,-L, transi-
tions. Note that in the experimental measurements this
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peak is split in two by spin-orbit coupling. The small
bulge at around 6.3 eV (labeled E)) is caused by
As,—A,, transitions. The slight shoulder at around 6.6
eV (labeled E} ) is due to =,,-3,, transitions. Finally,
the last major peak at 6.82 eV (labeled E,) is due to a sum
of As,-A;. and =, -2, transitions. The major features of
‘€,(w) for ZnTe and CdTe are similar to that of ZnSe.
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FIG. 2. Results for €,(w) for II-VI semiconductors, (a) ZnSe,
(b) ZnTe, and (c) CdTe. The experimental results (dotted line)
are from Ref. 6.
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V. SECOND-HARMONIC GENERATION L' T T T
. . ZnSe
Our results for the imaginary and real part of the 2 @) —
X ?(—20;0,0) are presented in Figs. 3 and 4, respective- ’a\
ly. In our calculation we have included both the virtual- )
electron and virtual-hole contributions, although as in ‘TO
the case of the III-V semiconductors the latter is much =
smaller than the former?®3° (see Table I). =
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R r ] FIG. 4. Results for the real part of ¥ ?( —2w;w,®) for II-VI
= 0 semiconductors, (a) ZnSe, (b) ZnTe, and (c) CdTe.
S B ]
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L ] TABLE 1. Theoretical results for x{3(0) of II-VI semicon-
r ] ductors in units of 107% esu.
_ P TR Y B
10, 1 > 3 4 ZnSe ZnTe CdTe
Energy (eV) Virtual electron 4.2 6.9 24.3
FIG. 3. Results for the imaginary part of ¥ ?(—2w;w,®) for Virtual hole 0.2 0.4 0.5
Total 4.4 7.3 24.8

11-VI semiconductors, (a) ZnSe, (b) ZnTe, and (c) CdTe.
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Our calculated values of x{3(0) for ZnSe, ZnTe, and
CdTe are presented in Table I. Note that x{3(0) for all
the semiconductors considered here is positive. Based on
a simplified band model for ¥ ?( —2w;w,®), Aspnes®® has
shown that the sign of ¥ *(0) depends on the choice of
the coordinate system for the positions of the anion and
cation in the unit cell. For example, if the coordinate sys-
tem is chosen such that the cation (say Zn) and anion (say
Se) are located at (0,0,0) and (a /4)(1,1,1), respectively,
where a is the lattice constant, then one expects
¥ 2(0)>0. This is indeed in agreement with the results
of our full-band-structure calculations. This fact has also
been experimentally verified by Miller and Nordland. *?

From Table II it is clear that there is significant
discrepancy between the experimental results of y!2 for
ZnSe, ZnTe, and CdTe. Sherman and Coleman’* (SC)
have discussed this discrepancy in some detail. First of
all, SC point out that the earlier results of Patel’® were
obtained in the early days of CO,-laser technology and,
due to certain technical difficulties, the resulting un-
known beam profile makes accuracy doubtful.** SC (Ref.
34) also performed a simple model calculation of ¥ %
(—2w;w,w) for CdTe in order to show that the factor of
~3 enhancement in y!3 at A=10.6 um as measured by
Patel,?® over their value measured at A=28.0 pum, could
not be accounted for by the contribution of optical-
phonon resonances. They* pointed out that not only was
their result at A=28.0 um in good agreement with results
of this model calculation, but also that it agreed quite
well with independent experimental data for the electro-
optic coefficient. 3

We would like to point out that the two sets of existing
experimental measurements, Patel®> and Soref and
Moos,?” (SM) are not consistent with each other. Patel’s
result for y'% for SHG in ZnSe, at A=10.6 um, is actual-
ly larger than SM’s result at A=1.06 um. Since A=1.06
um lies slightly lower than half of the band gap,*® x{3 for
SHG at this wavelength should be considerably larger
than at A=10.6 um. Also, Patel’s measurement in ZnTe
is not that much smaller than SM’s result; since A=1.06
wum is almost exactly half of the band gap,3® one would
expect |3 for SHG at A=1.06 um to be significantly
larger than at A=10.6 um. Finally, while our result of
x$3=24.8X 1072 esu for CdTe is in excellent agreement
with SC’s (Ref. 34) measured value of (28+11)x 1078
esu, it is in considerable disagreement with Patel’s®® re-
sults.

TABLE II. Experimental results for x{} of II-VI semicon-
ductors in units of 107% esu. Note that x{¥=2d,, where d, is
the second-harmonic coefficient (Ref. 33).

Experiment A (um) ZnSe ZnTe CdTe
sc? 28 28+11
Patel® 10.6 37+14 44+16 80+30
SMed 1.06 22 73

#Reference 34.
YReference 35.
°References 30 and 33.
dReference 37.

ED GHAHRAMANI, D. J. MOSS, AND J. E. SIPE 43

For these reasons, together with other remarks made
by SC,** we might expect the results for x{3(0) of ZnSe
and ZnTe to be roughly a factor of 3 lower than the
values reported by Patel (the same factor by which the re-
sults of SC for x{3(0) in CdTe differ from that of Patel’*).
Such lower values, if indeed experimentally verified,
would considerably improve the agreement between
theory and experiment. Based on the same arguments,
we are inclined to expect that the experimental results of
SM, *7 which were obtained even earlier than those of Pa-
tel, 3 are also not accurate. To our knowledge there are
no measurements of x{} for ZnSe and ZnTe other than
those of Patel*® and SM.3” Therefore, we propose that
further measurements of y\% for these two materials
should be undertaken to clarify these discrepancies.

In order to give an idea of the size of the ¥ ‘2(0) in
these semiconductors relative to other materials, in Table
III we present the results of our full-band-structure cal-
culations of Xﬁ’(O) for AIP, AlAs, GaAs, GaSb, and InSb
(III-V compound semiconductors).3® Interesting patterns
arise when the results of Tables I and II are compared.
First, by comparing semiconductors which have the same
last valence shell numbers (i.e., ZnSe and GaAs, ZnTe
and GaSb, and CdTe and InSb) we see that the values of
¥ (0) for the II-VI materials are much smaller than
those of their III-V counterparts. Furthermore, the
values of ¥ ?X0) for ZnSe, ZnTe, and CdTe are compara-
ble to those of the III-V materials with one less valence
shell (AIP, AlAs, and GaAs, respectively). From a band-
structure point of view this pattern can simply be under-
stood as follows. The energy denominators involved in
the expressions for ¥ P (—2w;0,0) are of the form
Econduction_Evalence or Econduction _Econduction' In II-VI
semiconductors, the conduction bands and the energy
differences between them lie at much higher energies than
in III-V materials. Therefore, the denominators of
¥ ?(—2w;w,w) for II-VI materials are generally larger
than those of the III-V materials, which in turn results in
smaller second-order response functions.

The results of our calculations for the magnitude of
¥'?(—2w;0,w) are presented in Fig. 5. The prominent
features of the SHG response functions of ZnSe are as
follows. The first peak is mainly due to a 2w resonance
with the E, optical peak. Because of the strong (~E ~%)
energy dependence of ‘)_('(2)( —2w;,w), this peak is almost
comparable in size to the other major peaks. This is in
contrast to the size of the E,, peak in €(w) (energy depen-
dence ~E %) where it is much smaller than the size of
the other peaks. The third peak is due to the @ resonance
with the E| optical peak. The fourth peak is due to a 2w
resonance with the E optical peak. The dip around 3.3
eV is due to interference between 2w resonances with the
EY and E, optical peaks. The important features of

TABLE III. Theoretical results for ¥{3(0) of III-V semicon-
ductors in units of 107% esu, obtained using LCGO in conjunc-
tion with the Xa method, as in this paper.

AlP AlAs GaAs GaSb
4.7 7.2 24.9 82.2

InSb
360.0
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ZnTe and CdTe are similar to that of ZnSe. Note that
contributions of the resonance with the E5 and E3 opti-
cal peaks to SHG are much more pronounced than the
corresponding contributions to €,(w).
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5 C ]
= L ]
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FIG. 5. Results for |¥ ?(—2w;w,0)| for II-VI semiconduc-
tors, (a) ZnSe, (b) ZnTe, and (c) CdTe.
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TABLE IV. Theoretical results for x'3},(0) in units of 10712

esu. The virtual-electron and virtual-hole results only include
the interband response, while the intraband result includes all
contributions from both virtual-electron and virtual-hole terms.

ZnSe ZnTe CdTe
Virtual electron —1.2 —2.8 —12.4
Virtual hole —1.6 —3.1 —10.8
Intraband —2.8 —5.7 —21.1
Three state 5.8 12.2 44.6
Total 0.2 0.6 0.3

VI. THIRD-HARMONIC GENERATION

A. Zero-frequency limit of ¥ *( — 3w; 0, », ®)

Our results for different contributions to ¥ *)(0) for all
three materials are presented in Tables IV and V. In all
cases only the three-state term is positive, and dominates
all of the other terms, including the intraband term. This
can be understood in terms of a simple model as follows.
The expression for ¥ )(0) obtained using the MC interac-
tion Hamiltonian is the same for either a localized two-
level single-particle system, or a solid (with a minimal sp*
basis set) whose electrons are very tightly bound (referred
to as a solid in the tight-binding limit?°), and is given
by2940

1

4
< (3) — 4
¥ 30)=+— Ip1ol*—
Eg

1 |efi
3

X[(3*+1)+3(33+1)+323+1)], (6.1)

where p,o is the momentum-matrix element between two
localized single-particle states of the system |0) and |1)
and E, =E, —E, is the difference between the energies of
the two levels. This corresponds to the three-state term,
and it is clear that it is always positive. Now for a solid,
when the tight-binding condition is relaxed, one might
expect ¥ 3(0) to still be dominated by the (positive)
three-state term.?® As seen from Table III, in fact, ¥ *)(0)
is positive for these semiconductors.

As expected, the size of the ¥ *(—3w;w,w,w) of the
heavier elements is in general larger than that of the
lighter elements, since the former have smaller band gaps
than the latter. The only exception to this rule is x'3};

TABLE V. Theoretical results for 3y{3)},(0) in units of 10~
esu. The virtual-electron and virtual-hole results only include
the interband response, while the intraband result includes all
contributions from both virtual-electron and virtual-hole terms.

ZnSe ZnTe CdTe
Virtual electron —1.2 —3.0 —15.2
Virtual hole —1.9 —3.7 —13.3
Intraband —5.4 —11.5 —42.4
Three state 9.6 20.4 77.6
Total 1.1 2.2 6.7
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for CdTe, which at very low frequencies is smaller than
the corresponding response of ZnTe. We are unable to
give an explanation for this anomalous behavior.

We would like to point out that to our knowledge there
are no experimental measurements of ‘)?(3)( —3w;w,0,0)
at any frequency for the materials considered here. It
would be interesting to see how well experimental mea-
surements agree with our calculated results.

1.5 —————
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_~ L I ]
7 1f | ]
® i N :
z i || : ]
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0 .
E / ﬁ
- \/ ]
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S e e S A S N LA
8 |- cdTe (c)
— C k ]
n 6 i -
© C 3 ’
= L I ]
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—2 | \‘/1 | ]
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Energy (eV)
FIG. 6. Results for the imaginary part of |y{3),(w)| (solid
line) and x{3),(w) (dashed-dotted line) for II-VI semiconductors,
(a) ZnSe, (b) ZnTe, and (c) CdTe.
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B. Dispersion in ¥ *( —3w; 0,0, )

We present our results for the imaginary and real parts
of ¥ ¥ —3w;w,0,0) in Figs. 6 and 7, respectively. The
results of our calculations for the magnitude of
7(3)(—3w;w,w,m) are shown in Fig. 8. The prominent
features of the third-harmonic response function of ZnSe

are as follows. The first peak is mainly due to a 3w reso-
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FIG. 7. Results for the real part of |vi}},(w)| (solid line) and
X312(@) (dashed-dotted line) for II-VI semiconductors, (a) ZnSe,
(b) ZnTe, and (c) CdTe.
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L A E A —
2 - ZnTe “ (b) —

: o |
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= L [ 1
> - P :
- 1r ]
3 - 1
O os} —
- 5

Energy (eV)

FIG. 8. Results for |x{3),(w)| (solid line) and |x{3(w)l
(dashed-dotted line) for II-VI semiconductors, (a) ZnSe, (b)
ZnTe, and (c) CdTe.

nance with the E, optical peak. Due to the strong
(~E~7) energy dependence of ¥ 3 —3w;w,0,0),? its
structure will be dominated by the 3w resonance with the
E, critical point in materials where the lowest conduc-
tion band at the Brillouin-zone center is nondegenerate,
such as those considered here.?® Therefore, we expect
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the other peaks to be smaller in size than the first. The
second peak for the most part is the result of destructive
interference between a 2w resonance with the E optical
peak and a 3w resonance with the E; optical peak. As
seen from Eq. (3.7) the three-state term, which is dom-
inant, has no 2w contributions; the 2w resonance with the
E, optical peak is due to the other terms. On the other
hand, the 3o resonance with the E; optical peak is main-
ly due to the three-state term. Furthermore, the two con-
tributions have different signs: the three-state term gives
positive contributions, and other terms negative contribu-
tions. Finally, the third and fourth peaks are due to in-
terferences of 3w resonances with E), EY, and E, optical
peaks. The important features of ZnTe and CdTe can be
similarly identified.

VII. CONCLUSIONS

We have performed the full-band-structure calculation
of the frequency-dependent second- and third-harmonic
response functions in ZnSe, ZnTe, and CdTe. We have
also carried out full-band-structure calculations of the
dielectric function of these materials. The calculations
were performed with the minimal coupling, or p- A, in-
teraction Hamiltonian, using standard perturbation
theory and neglecting local-field corrections. The results
of our calculations of €,(w) are in good agreement with
experimental results. Our calculated value of
¥ ?(0)=24.8X 1078 esu for CdTe is in excellent agree-
ment with the measured value** of ¥ ?(0)=(28+11)
X 107% esu. We have argued that the experimental re-
sults of Patel®> and Soref and Moos®’ are likely to be inac-
curate and that there is a need for additional measure-
ments.

We have analyzed the prominent features of &,(w),
¥ P(—20;0,0), and ¥ 3 —30;0,0,0) over a wide range
of frequencies. Our results indicated that the effects of
weak optical transitions are much more pronounced in
second- and third-order optical response functions than
in the linear-response functions. We find that the sign of
¥ 2(0) and ¥ *(0) is positive for all elements considered
here, and that ¥ ‘(0) is dominated by the interband
response. The nonlinear-response functions of the II-VI
materials are much smaller than those of the III-V ma-
terials. Furthermore, the values of‘)_('(Z)(O) of ZnSe, ZnTe,
and CdTe are comparable to those of the III-V materials
with one less valence shell, i.e., AIP, AlAs, and GaAs, re-
spectively.
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