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Acceptor excitation spectra in germanium in a uniform magnetic field
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The irreducible-spherical-tensor form of the effective-mass Hamiltonians for acceptors in cubic
semiconductors in a homogeneous magnetic field parallel to a (001) direction or to a ( 111) direc-
tion has been derived. The Hamiltonians take into account the full structure of the I g SI 7+

valence-band edge, and they contain a point-charge potential with spherically symmetric q-

dependent dielectric screening. The eigenstates have been calculated variationally for the case of
acceptors in germanium. For both orientations, the computations have been performed as a func-
tion of the magnetic-field strength, in the range from 0 to 5 T. The binding energies of the first 36
odd-parity excited states and of the first 4 even-parity states (which form the ground-state multiplet)
are obtained. The oscillator strengths of the electric-dipole transitions from the ground-state sub-
levels to the excited states are also calculated, and the results are used to simulate theoretical accep-
tor excitation spectra, which are in excellent agreement with the available experimental far-
infrared-absorption and photothermal-ionization-spectroscopy spectra. For the ground state and
for the final states of the G and D lines, theoretical g factors are obtained which are very close to the
experimental ones. In particular, the values g&

= —0.45 and gz =+0.22 are computed for the ac-
ceptor ground state. It is found also that for the ground state and for the excited I 8( Td ) final states
of the G, D, and B spectral lines, the ratio r =g2/4g& is always very close to the special value ——', ,

which corresponds to a linear Zeeman splitting of the I 8 states into a degenerate doublet for
B~~ ( 111)and into an equally spaced quartet for B~~ (001 ).

I. INTRODUCTION

Angular-momentum theory and the irreducible-
spherical-tensor method' have been introduced into the
effective-mass description of shallow acceptors in cubic
semiconductors by Baldereschi and. Lip ari. Their
method has been used by several authors to compute ac-
curate energy levels and electric-dipole transition proba-
bilities for acceptors in Ge and Si with no external
perturbations present. In a recent paper we have ex-
tended that method to the case of acceptors in uniaxially
stressed cubic semiconductors, and similar results have
been obtained independently by Buczko. The problem
of acceptors and excitons in a homogeneous magnetic
field was briefly touched on in a paper by Lipari and Al-
tarelli, ' but to our knowledge no explicit Hamiltonians
nor any application to the energy levels of acceptors in

Ge and Si have ever been published. It is the purpose of
this paper to present schematically our derivation of the
irreducible-spherical-tensor form of the effective-mass ac-
ceptor Hamiltonians when a homogeneous magnetic field
is present, parallel to a ( 001 ) or to a ( 111) crystallo-
graphic direction, and to comment brieAy on our com-
puted results for the Zeeman effect on acceptors in Ge.
A more elaborate discussion of the theory, and full details
of the calculations, will be published later.

II. THEORY

We start from the Luttinger effective-mass Hamiltoni-
an with spin-orbit coupling and with an external magnet-
ic field. "' The Hamiltonian is a 6X6 matrix operator,
referred to a coordinate system whose axes coincide with
the cubic symmetry axes of the crystal:
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In this Hamiltonian Ak=p+e A= —iAV+e A, and we will always use the gauge A= —,'BXr; c.p. denotes cyclic per-
mutation of the indices x,y, z; and [a,b ] = ,'(ab +ba). —

The expression contains the spin matrix operators I and S for spin I= 1 and 5 =
—,
' (defined without the factor fi); e(r)

is the (isotropic) dielectric function, with the static dielectric constant e as its limit for r ~~. The scalar constants in
the Hamiltonian are the free-electron mass rnp and g factor g„ the Bohr magneton pz, the valence-band spin-orbit split-
ting Ap, and the Luttinger valence-band parameters" y„y2, y3, and ~. The Luttinger parameter q has been taken to be
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zero, because it is associated with higher-order spin-orbit interactions in the valence band, and because it is negligibly
small' ' compared with ~ in both Si and Ge.

The Hamiltonian is made "dimensionless" by introducing the energy unit A(), the unit of length a(), the constant
b, () =b,p/A(), and the factor p as a measure for the magnetic-field strength:
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For B~~(001) the substitution B=(O,O, B) is made directly in the above expression, while for B~~ (111)the coordinate
system is first rotated over the Euler angles (+m. /4, arccos(1/3/3), 0) to make the quantization axis coincide with the
direction of the magnetic field, whereafter the same substitution is made in the new coordinate system. The transforma-
tion to irreducible-tensor form starts by introducing the first-order spherical tensors I"', S"', and 1."', corresponding
to the vector operators I, S, and L=A 'rXp, and by defining the following four symmetric and traceless second-rank
Cartesion tensor operators:

I„,= ,' (I„I,+—II ) —5„g
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2=31' p 5 I'

ich decompose into second-order spherical tensors I' ', P' ', M' ', and L' ' only. After straightforward but very
long algebraic manipulations, an acceptor Hamiltonian of the following general form is obtained for both orientations:
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Due to the spherical symmetry of the impurity poten-
tial employed, the symmetry group of the zero-field ac-
ceptor Hamiltonian is Oh, with a homogeneous magnetic
field parallel to (001) or to (111),the symmetry group
then becomes C4& or C3, , respectively. The effective-
mass theory (EMT) equation with &B" ' or &" "'
has been solved variationally. The eigenfunctions trans-
forming like basis functions for a given (one-dimensional)
representation I ~ of C4& or C3; are expanded into an or-
thogonal series of angular basis functions belonging to

with undetermined radial functions as the
coefficients. The angular basis functions are six-
component spinors, constructed as linear combinations
with different F, of the angular-momentum eigenfunc-
tions ~L, (I,S)J,F,F, ) in the LJ-coupled scheme. L is the
angular momentum associated with the space coordinates
(8,$), J is the pseudospin of a hole near the top of the
I s+(J= —', ) or I ~+(J=—,') valence bands, and F=L+J.
The series has been truncated by the criterion L 7,
which guarantees good convergence of the computed en-
ergies. The angular matrix elements were evaluated nu-
merically by a computer program. with the reduced-
matrix-element technique. ' The resulting set of coupled
differential equations for the radial functions was solved
variationally by expanding each function into a number
of exponentials with fixed exponents, multiplied by an ap-
propriate power of r.

o
o I I I I I I I I I I I I I I l I I I I l I I I I

In the above expressions, p and 5 are the valence-band
parameters defined by Baldereschi and Lipari:

4X2+ 6X3p= 5=
5'V

&

III. RESULTS

Throughout our calculations we used the following
valence-band parameters' and g factors y&

= 13.38,
y~=4. 24, @3=5.69, DO=0. 290 eV, v=3.41. We em-
ployed a point-charge potential, in which the dielectric
function e(r) was derived from e(q) as given by Richard-
son and Vinsome, ' but adjusted to the low-temperature
e = 15.36 for germanium Therefore the calculations
apply to the so-called point-charge acceptor. When com-
paring the computed results with experimental data, the
chemical differences between real acceptors must be ac-
counted for by adding a constant and supposedly field-
independent chemical shift to all computed binding ener-
gies of the ground-state sublevels. As usual, we expect
that the odd-parity excited states remain unaffected by
the chemical differences, and will therefore be well de-
scribed by the model.

Figures 1 and 2 show the computed binding energies as
a function of the magnetic-field strength for all 36 odd-
parity excited states involved as final states in the
Zeeman-split G, D, C, 8, A4, A3, A2, and A i spectral
lines observed by far-infrared spectroscopy. For the irre-
ducible representations of all double groups mentioned
we employ the notation of Koster et al. ' ' which has
become the de facto standard in effective-mass theory.
When comparing our results with the group-theoretical
model of Bhattacharjee and Rodriguez, ' it is important
to notice that a different nonstandard labeling is used by
them. From the figures it is seen that all states experi-
ence a quadratic as well as a linear Zeeman effect. A di-
amagnetic shift towards lower energies is present in all
multiplets, becoming more important for the more loose-
ly bound states. But the most obvious feature is that the
whole energy spectrum is dominated by interactions be-
tween states of like symmetry. For the C, B, and A mul-
tiplets, this leads to an intricate pattern with many aUoid-
ed crossings. Such a behavior as a function of the
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FIG. 1. Magnetic-field dependence of the computed binding
energies of the first 36 odd-parity excited states of acceptors in
Cxe with B~~(001). The energy scale has been inverted in order
to make the more tightly bound states appear lower in the
figure; zero energy lies at the zero-field I 8+(Oz ) band edge. The
symmetry assignment refers to the irreducible representations of
C4&. The labels at the left correspond to the unperturbed far-
infrared spectrum.
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FIG. 2. Same as Fig. 1but with B~~(111). The symmetry as-
signment refers to the irreducible representations of C3;.
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TABLE I. Compatibility relations for the split sublevels of an even-parity I,+(Oz ) or an odd-parity I, (Ol, ) state with B~~ (001).
The mJ values to be used for computing g1 and g2 in the model of Bhattacharjee and Rodriguez (Ref. 19) are the row indexes in

I 8{Td).

C4h

0 T +
8 —1/2

+r, +I 8, +3/2 I 8, —3/2 I 8, —1/2

Td I 8, -3/2 I 8, —1/2 I 8, +3/2 I 8, —1/2

magnetic-field strength could not possibly be deduced
from perturbation-theory models, which are based on
noninteracting unperturbed states. ' On the other hand,
the sublevels in the G and D multiplets remain rather well
separated from the other energy levels over the whole
range of fields concerned. We expect therefore that the
model of Bhattacharjee and Rodriguez' for the splitting
of isolated I s( Td ) states in a magnetic field, should be ap-
proximately applicable to these two multiplets, certainly
as far as the linear Zeeman eQect only is concerned To .a
lesser extent, the same conclusion holds true for the 8
multiplet in fields up to only 1 T. In order to estimate the
g factors governing the linear Zeeman effect, we have
fitted quadratic polynomials to the computed level ener-
gies as a function of the field strength. From the
coeScients of the linear terms, and with the help of the
compatibility relations in Table I, we obtained the g fac-
tors given in the first column of Table II. One finds excel-
lent agreement with the experimental values in the

next columns. Most often the differences fall within the
experimental uncertainties. The agreement is obviously
many times better than for the theoretical values from
Lin-Chung and Wallis quoted in the last column.

In Table II we have included also the data for the ac-
ceptor ground state in germanium. Our theoretical re-
sults for g', and g2 apply to the point-charge acceptor.
They have been obtained from the computed energy lev-
els between 0 and 5 T, which are shown in Fig. 3. The
only available experimental g factors for the ground state
are for the isocoric Ga acceptor. They have been
deduced by Tokumoto and Ishiguro from
magnetoacoustic-resonance-attenuation experiments.
The smallness of the ground-state g factors found by
them is verified by the absence of any noticeable effects
due to the ground-state splitting in the far-infrared spec-
tra of acceptors in germanium ' ' in magnetic fields up
to 5 T. Our computed g values have the same sign and
the same order of magnitude as the experimental ones for

TABLE II. g factors for the final I 8(Td ) states of the G, D, and B spectral lines of acceptors in ger-
manium, and for the acceptor ground state.

rG

Present
theory

—2.57
+ 1.15
—0.122

Gallium

+2.05+0.49'
+1.10+0.15'
—0.134'

Boron

+ 2.49

Aluminum
LCW'
theory

—3.38
+ 1.61
—0.119

gD
rD

—7.00
+3.41
—0.122

+ 7.41+0.53'
+3.62+0. 11'
—0.122'

+ 6.97+0.16
+3 ~ 33+0.11
—0.119

+ 8.4+0.4'
—4.1+0.4'
—0.121'

—4.11
+ 1.79
—0.109

rB

—8.27
+4.03
—0.122

—0.45
+0.22
—0.122

—0.16+0.08
+0.08+0.04
—0.125

—1.13
+0.63
—0.139

'Reference 20.
"Obtained from the data in Ref. 21 with our hypothesis that r = ——;the value ~g, ~

= 1.4 given in Ref.
21 was based on r = 3.
'Reference 24.
Reinterpretation given in Ref. 20 of the experimental data from Ref. 22.

'Reference 23. The signs of g1 and g2 were based on an earlier model calculation, and obviously they
should be reversed.
'Reference 25.
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