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Magnetotransport measurements have been used to explore the band structure of thin (20 nm)
rare-earth monoarsenide (Sc& „Er As, x=0.57 and 0.68) epitaxial films buried in CiaAs. The Hall
resistance and transverse magnetoresistance were measured in magnetic fields from 0 to 9 T and
temperatures from 1.5 to 300 K. The results are successfully projected on a model of the band
structure that predicts that the rare-earth monoarsenides are semimetals with holes at the zone
center and pockets of electrons on the zone boundary at the X point. Below 20 K, Shubnikov —de
Haas oscillations are assigned to the zone-boundary electrons. Remarkably, the angular depen-
dence of the quantum oscillations is best understood by assuming that the electrons are quantum
confined and experience only the normal component of the applied magnetic field. A large splitting
of the zone-boundary electronic band structure is observed and attributed to the exchange interac-
tion with the 4f moments localized on the Er ions.

I. INTRODUCTION

Recent experiments have shown that it is possible to
grow heterostructures comprised of epitaxial metals or
semimetals and III-V compound semiconductors such as
GaAs. ' ' It is expected that these systems will facilitate
electronic and photonic technology as well as materials
physics focused on electronics and photonics in low-
dimensional metals and semimetals. In some instances
these material systems are further embellished by being
ferromagnetic or antiferromagnetic. To further our un-
derstanding of the electronic properties of these systems,
we have used magnetotransport experiments to explore
the band structure of thin epitaxial films of the rare-earth
monoarsenides buried in GaAs.

The results that we describe here rely heavily on an ex-
isting band-structure calculation by Hasegawa and
Yanase' for the Gd pnictides and this model calculation
serves as an important guide to understanding the mag-
netotransport. Further, it was discovered that
Sc& Er„As epitaxial layers that are closely lattice
matched' to the GaAs substrate develop well-resolved
Shubnikov —de Haas (SdH) oscillations at modest fields.
These quantum oscillations taken with the temperature
dependence of the Hall and transverse magnetoresistance
provide a fairly stringent test of the aforementioned band
structure and we conclude that the system is well de-
scribed as a semimetal with electron and hole concentra-
tions of (3.1+0.1) X 10 cm . From the SdH oscilla-
tions we are able to deduce that the light electron
effective mass is I*=0.17m o and the exchange splitting
of the conduction band caused by the interaction with the
fully polarized localized 4f spin is 75+5 meV. The angu-
lar dependence of the quantum oscillations is best under-
stood in terms of quantum confinement despite the fact
that the electron system has a relatively large electron or

hole concentration and many electronic subbands in a
20-nm-thick film are occupied.

II. EXPERIMENT

The samples investigated here were grown by
molecular-beam epitaxy (MBE).' They consisted of
500-nm undoped buffer of GaAs grown on a semi-
insulating substrate followed by 20 nm of Sc, Er As.
The rare-earth monoarsenide layer was capped by 50 nm
of GaAs. The details of the growth conditions have been
published elsewhere. '

Refiection high-energy electron-diffraction (RHEED)
oscillations were used to calibrate the growth rate of
ErAs and ScAs separately. The growth rate of the alloy,
determined by RHEED oscillations, proved to be the
sum of the individual growth rates of the pure layers.
Table I shows the targeted composition and the one
determined from RHEED oscillations, Auger-electron
spectroscopy, and from Rutherford backscattering (RBS).
The measured and targeted compositions agree within ex-
perimental error and throughout we will assume the tar-
geted compositions.

The samples were patterned into Hall bars using con-
ventional photolithographic techniques and wet chemical
etching. The Hall resistance and transverse magne-
toresistance was measured using both dc and ac tech-
niques as a function of magnetic field from 0 to 9 teslas
and temperature from 1.5 to 300 K. At low temperature
the SdH oscillations were exposed by measuring the
derivative of the transverse magnetoresistance as a func-
tion of magnetic field. Here the derivative was obtained
by computing the derivative of the recorded data.
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TABLE I. Targeted and measured composition of the Sc& „Er„As.

Sample

A
B

Targeted
composition

RHEED

Scp 43EIp 57As

Scp. 32EI O. 68As

Auger-electron
spectroscopy

ScQ 47(5)Elp 53(5)As
SCQ 37(5)EIQ 63(5)As

Rutherford
backscattering

ScQ 39(5)Ero 6,(, )As
Scp. 32(5)EIO.68(5)As

III. MAGNETOTRANSPORT

Figures 1 and 2 display the magnetoresistance for sam-
ples A and B as a function of magnetic field with temper-
ature as a parameter. The most striking feature is the
curvature and the change of the sign of the Hall resis-
tance from "electron"-like to "hole"-like as the tempera-
ture is reduced from room temperature to liquid-helium
temperatures. This is prima facie evidence that the trans-
port is circumscribed by a compensated metal with nearly
equal numbers of electrons and holes.

Shubnikov —de Haas oscillations appear in both sam-

ples discussed in this paper, but are not observed in pure
ErAs films grown under similar conditions, despite the
fact that the transport mobilities are not substantially
higher in the Sc& Er As alloys than the pure ErAs lay-
ers. It is possible, however, that by achieving a measure
of lattice match between the Sc, Er As and underlying
GaAs substrate, the "grain" size of the epitaxial material
is substantially larger and small-angle scattering from the
boundaries is substantially reduced. Boundary scattering
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FIG. 1. Hall resistance and longitudinal magnetoresistance
for sample A with temperature as a parameter. The solid lines
are the result of a least-squares fit to the parameters shown in
Fig. 8.

FICz. 2. Hall resistance and longitudinal magnetoresistance
for sample B with temperature as a parameter. The solid lines
are the result of a least-squares fit to the parameters shown in
Fig. 9.
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will have little effect on the transport mobilities but any
scattering event effects the coherent cyclotron motion
and suppresses quantum oscillations like the SdH oscilla-
tions described here. As a result we speculate that the
lattice-matched layers have larger grains and more pro-
nounced SdH oscillations despite showing no improve-
ment in the transport mobility.

The SdH oscillations shown in Fig. 3 were recorded by
differentiating p„(B) numerically. To appreciate the
scale of the quantum oscillations we display in Fig. 3
both dp, /BB and p (B) T.he fractional changes in
resistance produced by the oscillations are quite small
when compared with those seen in the two-dimensional
electron gas in semiconductors. Figure 3 also displays
the SdH oscillations for sample B and we note that,
despite the fact that the mobility of sample B is compara-
ble to that of sample A, the amplitude of the oscillations
in sample B is substantially diminished. The same com-
ments can be made here with regard to the importance of
grain-boundary scattering in limiting the amplitude of
the quantum oscillations without having a dramatic effect
on the apparent mobility.

The oscillations displayed in Fig. 3 can be Fourier ana-
lyzed and the results are shown in Fig. 4 for both samples
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FIG. 4. Fourier transform of the first derivative of the
Shubnikov —de Haas oscillations shown in Fig. 3.

A and B. The obvious beating that appears in the data is
reflected in the appearance of two peaks in the Fourier
transform. The frequencies that emerge for the two sam-
ples are the following.

Sample A: 330+5 and 385+5 T .

Sample B: 320+5 and 400+5 T .
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FIG. 3. Longitudinal magnetoresistance at 1.5 K and the first
derivative displaying Shubnikov —de Haas oscillations for sam-
ple A. Also shown are the Shubnikov —de Haas oscillations for
sample B.

FIG. 5. Shubnikov —de Haas oscillations as a function of the
orientation of the applied magnetic field with respect to the sur-
face normal which is (001). The field is rotated toward the (110)
direction.



9602 ALLEN, DEROSA, PALMSTRQM, AND ZRENNER 43

500
Elll pSOJ d

———Cylinder, 2—D

kz

~ 400 -y

C
Q

FIG. 7. Brillouin zone and the hole and electron Fermi sur-
faces that are used to model the magnetotransport data.
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FIG. 6. Angular dependence of the two dominant
Shubnikov —de Haas frequencies. The solid curve shows the fit
to ellipsoids of revolution while the dashed lines show the be-
havior predicted by two-dimensional confinement or a cylindri-
cal cross section.

p, 2, which characterize the electron mobility along and
perpendicular to the axis of the ellipsoid of revolution
(see Fig. 7).

The conductivity tensor is given by

There is also a weaker and much slower variation in the
amplitude with a minimum around 5 T that does not ap-
pear in the Fourier transform except as a weak structure
on the low-frequency side of the two peaks. We have no
explanation for this long-period beat.

The angular dependence of the SdH oscillations are
shown in Fig. 5. The position of the strong peaks that
appear in the Fourier transform are plotted versus angle
in Fig. 6. The strong angular variation displayed sug-
gests an ellipsoidal or cylindrical piece of Fermi surface,
but we will show later that the dependence is best de-
scribed by quantum confinement.
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IV. DISCUSSION

A. Hall mobility

In an earlier publication" we fitted the magnetoresis-
tance at low temperatures to a simple model consisting of
an isotropic electron and hole system with diff'erent densi-
ties and rnobilities. The fit returned comparable electron
and hole densities with mobilities less than & 1000
cm /V sec. Here we choose to test the band structure
proposed by Hasegawa and Yanase' and assume that we
have an isotropic hole Fermi surface centered at I with
hole density nj, =n and mobility pI„and three equivalent
ellipsoidal electron Fermi surfaces at X with electron den-
sity n, =

—,'n and anisotropic electron mobilities p, &
and
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FIG. 8. Electron or hole density and mobilities extracted
from the magnetoresistance data of Fig. 1 (sample A).
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e and 8 are the electron charge and magnetic field, re-
spectively.

Magnetoresistance measurements in the Hall geometry
determine the two components of the resistivity tensor,
p y

and p „,but they are related to o.„and o. by
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A satisfactory least-squares fit to the data is obtained by
adjusting n, pz, p, , and p, 2 and displayed in Figs. 1 and
2.

Figures 8 and 9 show the temperature dependence of
the hole and electron densities and mobilities for the sam-
ples A and B. Although the magnetoresistance data are
relatively featureless (it basically contains a resistance, a
Hall resistance, and the magnetic-field dependence of
both), the parameters that are returned by the fit appear
quite reasonable. The fact that the fit density in both
samples is relatively temperature independent, in the face
of the strong temperature dependence of the Hall resis-
tance, establishes confidence in the parametrization.

B. Shubnikov —de Haas oscillations

Tipping the magnetic field away from the [001j direc-
tion toward the [110] might be expected to indicate the
shape of the Fermi surface but this is not the case for
these 20-nm-thick samples. Figure 6 shows the angular
variation of the apparent extremal cross section
represented by the two frequencies in Fig. 4 for sample A.
A fit of the angular dependence to a three-dimensional
model based on an ellipsoid of revolution gives the fol-
lowing cross sections and ratios of major to minor axes
for sample A:

frequency 330+5 T, eccentricity 2.25,
frequency 385+5 T, eccentricity 3.80 .
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This would lead one to believe that the surface in ques-
tion is the electron surface that emerges from the band-
structure theory of Hasegawa and Yanase' and is locat-
ed at the X points. But we also show in Fig. 6 the result
assuming a cylindrical Fermi surface. There is little to
distinguish between a cylinder and an ellipsoid of revolu-
tion in the range of angles over which the SdH oscilla-
tions are observed.

A critical issue is the angular range over which the
SdH oscillations can be seen. The amplitude of the SdH
oscillations should rapidly diminish as the magnetic field
is rotated away from the surface normal due to the col-
lisions of the orbiting electrons with the surfaces of the
thin epitaxial film. Assuming a circular orbit, the classi-
cal trajectory in real space is related to the trajectory in k
space by
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FIG. 9. Electron or hole density and mobilities extracted
from the magnetoresistance data of Fig. l (sample B).

where r is the real-space radius and kF is the extremal
Fermi wave vector. The condition that the electron orbit
fit inside the epilayer is given by

AkF8) 2 sinO,
et

where t is the thickness of the film.
This result is not very demanding, for it assumes that

the orbit will just fit into the epitaxial film. There are, of
course, many similar orbits that are not centered on the
film which will collide with the boundaries of the film.
As a result, this inequality sets a lower bound at which
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there is a vanishingly small number of electrons that do
not collide with the surface. This criterion is shown in
Fig. 10.

Also shown in Fig. 10 is the apparent magnetic field
below which the oscillations disappear in the experimen-
tal data. There is a glaring discrepancy between the ob-
servation of the oscillations and the prediction that the
three-dimensional orbit will collide with the surface. We
are forced to accept the fact that the electron moves in a
size-quantized orbit, constrained to move in the plane of
the epitaxial layer. The angular dependence rejects the
fact that only the normal component of the magnetic field
controls the period of the SdH oscillations and the oscil-
latory transport in Figs. 3 and 5 are quas&'-turo-
dimensional. This behavior has recently also been docu-
mented in work by Song et al. ,

' where they observe
quantum-confined SdH oscillations for relatively thick
( —100 nm) layers of gray tin.

There are many electronic subbands occupied in the
20-nm-thick film. In Fig. 11 we show the dispersion of
the energy for the electronic subbands derived from the
electron pocket directed along the surface normal. We
have assumed that the light mass in the plane of the layer
is m'/mo=0. 17 and the heavy mass normal to the sur-
face is I*/m0=1. The smallest energy splitting, be-
tween the ground state and first excited state, is of the or-
der of 1 meV. Provided that the component of the tipped
magnetic field in the plane of the film, which mixes vari-
ous electric subbands, is sufficiently small, the electron
states will remain quasi-two-dimensional and the angular
dependence of the Shubnikov —de Haas oscillations will
simply be given by the projection of the magnetic field on

EF
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FIG. 11. Energy vs the normalized wave vector, ka/2~, for
the electric subbands in a 20-nm-thick film.

the surface normal. At this time we have no quantitative
description of the quasi-two-dimensional quantum trans-
port in tipped magnetic fields and must be satisfied with
these heuristic arguments. Nonetheless, the observation
of the oscillations at magnetic fields substantially above
the critical field for three-dimensional motion constrains
us to work with quantum-confined models.

By fitting the amplitude of the Shubnikov —de Haas os-
cillations as a function of temperature and magnetic field
we can extract a measure of the effective mass and
scattering rate. To do this, we model the amplitude using
a modification of Ando's' theory for two-dimensional
Shubnikov —de Haas oscillations.

Since the oscillatory component of the conductivity is
small compared with the background, we assume a con-
stant relaxation time and use the result that does not in-
clude the self-consistent aspects of the calculation. Un-
der these assumptions the contribution to the conductivi-
ty from a single electronic subband is
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Here N, „ is the two-dimensional subband density for the
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FIG. 10. Critical field required to just fit an orbit inside the
epitaxial film at a tip angle 0. Experimental points are the
smallest magnetic field at which Shubnikov —de Haas oscilla-
tions are seen (see Fig. 5.)

where p is the Fermi energy, t is the film thickness, and
mo is the electron mass along the growth direction. Ace,
is the cyclotron energy given by Ae8/mi and m

&
is the
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in-plane mass.
For convenience, we assume in the following that the

conductivity is dominated by a single set of electronic
subbands corresponding to one set of carriers in the semi-

metallic film. To find the conductivity we simply sum
over all the occupied electronic subbands.

If we approximate the summation by an integral,
g„~J dn, we find for the conductivity

e 7o. = X,t e 7 1 C

m ) I+(~,r)~ ' m ) I+(~,r)~ 2ficoo

2m k~T 2m k~T
csch

'667 'Aco

2&p 7T
cos exp

Ace, 4 SC

(7)

1dp 1 &. 2~p
p dB B %, t Ace, 2A'coo

2~k T

2~ k~T
Xcsch

%co

2 JTp 3'
cos

Ado 4

VTX exp

where X, is the volume density of carriers.
We have fitted the temperature and field dependence of

the oscillations with Eq. (8) allowing the scale, the mass
m&, and the scattering time 7 to vary. We pick the
magnetic-field positions at which to fit the amplitude to
be between the nodes of the strong beat pattern. We sim-

ply ignore the slow beat pattern and the least-squares-fit
averages of this slow amplitude variation.

The fit returns

Equation (7) has the functional form for the three-
dimensional Shubnikov —de Haas oscillations arising from
an extremal section of the Fermi surface.

The data displayed in Fig. 3 are the first derivative of
the transverse resistivity which is dominated by the rap-
idly varying part of Eq. (7). Since p ((p
(1/p)r)p/dB = —

( I/o )Bo IM and we recover the follow-
ing expression for the first derivative of the
Shubnikov —de Haas oscillations:

fit. If we ignore for the moment the fast and slow beat,
the overall temperature and magnetic-field dependence
are well described by the mass and scattering time ex-
tracted from the fit.

Since we have already pointed out the fallacy of using
the angular dependence to determine the shape of this
piece of Fermi surface, we must rely on the inferred mo-
bility and mass to assign it to the electron pocket directed
towards X, [001]. The mobility is in rough agreement
with the light-mass direction derived from the magneto-
transport. It is probably the smallest Fermi-surface cross
section and would be expected to be the most easily ob-
served especially since it also appears to have the highest
mobility in the magnetotransport. The mass of 0.17mo is
close to the mass calculated by Hasegawa and Yanase,
0.1mo. As a result we assign this oscillation to the pock-
et of electrons directed towards X.

We return for a moment to the quasi-two-dimensional
character of the Shubnikov —de Haas oscillations. The
reader should be struck by the fact that the fit we have
made to the quantum oscillations is essentially three-
dimensional despite the fact that the angular dependence
demands that we think of quantum confined orbits in the
magnetic field. Ideally we would expect the two-
dimensional character also to manifest itself as a series of
difFerent Shubnikov —de Haas periods, one for each of the

m& =0.17m,

and

7=1.62X10 ' s .

The latter corresponds to a mobility of 1700 cm /Vsec
which is comparable to the low-temperature mobility ex-
tracted from the magnetotransport.

The extracted 7 is sensitive to the magnetic-field depen-
dence of the prefactor in Eq. (8). In particular if we take
the simple two-dimensional form, the prefactor changes
by B' and the fit returns the same mass but a difterent
scattering time which corresponds to a mobility of 1400
cm /V sec.

In Fig. 12 we plot the fit amplitude versus the experi-
mental amplitude for data for magnetic fields from 2 to 9
T and temperatures from 1.5 to 20 K. The apparent
scatter and failure to fall along the straight line in the
figure is primarily due to the slow beat which is not
modeled and completely ignored in the fit.

In Figs. 13—16 we show the experimental data and the
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a 8 a. r, aS
, I IS

C II j lg

0 ~ f

I'
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FIG. l2. Fit amplitude vs measured amplitude obtained by
fitting the magnetic-field dependence and temperature depen-
dence of the Shubnikov —de Haas oscillations to Eq. (8).
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occupied electric subbands. In Eq. (8) we have approxi-
mated the sum by an integral and have tacitly assumed
that the individual contributions to the quantum oscilla-
tions are sufficiently broad that they overlap. Indeed, the
Fourier transform reveals no fine structure with the ex-
ception of a small feature on the low-frequency side. This
is acceptable. What is difficult to reconcile is the fact
that while the quantum confinement cannot be resolved
in the SdH it is strong enough to enforce the quantum-
confined angular dependence displayed in Figs. 6 and 10.
We cannot resolve this apparent contradiction at this
time.

Exchange splitting. We interpret the strong beat be-
tween the quantum oscillations as a splitting of the con-
duction band caused by the exchange interaction of the
nearly fully polarized 4f spin on the Er + with the con-
duction electrons. The splitting is given by
(p&

—pt)=AB fielm„where p& and p, &
are the Fermi

levels measured from the spin-up and spin-down
conduction-band bottoms, respectively.

We find the following for the two samples investigated.
For sample A,

(pt —pt)=38+7 meV

and for sample 8,

(pt —pt) =55+7 meV .

If we normalize these results by the Er concentration in
each sample we obtain a splitting of 67+12 meV and
81+10 for samples A and 8, respectively, scaled to
100%. The splittings appear to scale, within experimen-
tal error, with the Er concentration which is consistent
with the hypothesis that the splitting arises from the in-
teraction of the conduction electrons with the Er 4f
spin s.

Upon closer examination of the beating in the experi-
mental data, it becomes apparent that the nodes of the
beat pattern are not perfectly periodic in I/B. Further-
more, as the temperature is raised, the phase of the beat
pattern shifts and the period is extended as can be seen in
Figs. 13—16. The vertical lines that are drawn in these
figures are keyed to the model calculation that assumes a
constant exchange splitting. With these as a guide the
lack of periodicity in 1/B and the shift with temperature
are readily apparent. This effect is rendered in a quanti-
tative manner in Fig. 17 where the nodes are indexed and
plotted versus 1/B. The data fail to fall on a straight line
and the apparent periodicity changes as the sample is
warmed.

A reasonable explanation for this behavior is the fact
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FIG. 13. dR/dB vs the magnetic field at 1.5 K. The top
curve is the experimental data. The middle curve is the fit with
a constant splitting. The bottom curve is a fit with a splitting
proportional to the magnetization of the Er 4f spin. The verti-
cal lines are fixed at the nodes of the fit with constant splitting,
the middle curve (a), and serve to guide the eye as the beat pat-
tern in the experimental data and the model splitting propor-
tional to the Er magnetization (b) change at low field and high
temperature.

FIG. 14. dR/dB vs the magnetic field at 5.7 K. The top
curve is the experimental data. The middle curve is the fit with
a constant splitting. The bottom curve is a fit with a splitting
proportional to the magnetization of the Er 4f spin. The verti-
cal lines are fixed at the nodes of the fit with constant splitting,
the middle curve (a), and serve to guide the eye as the beat pat-
tern in the experimental data and the model splitting propor-
tional to the Er magnetization (b) change at low field and high
temperature.
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that the polarization of the Er spin which causes the ex-
change splitting of the conduction band depends on tem-
perature and magnetic field. In the following we explore
the consequences of this by examining the periodic part
of Eq. (8). We assume that it can be represented by the
sum of two oscillatory functions representing the spin-up
and spin-down electrons at the Fermi surface,

2TTP ( 27TP gcos +P +cos +P
Aco~ %co

The relative Fermi energies p& and p &
are given by

ptt=p+ ,'g p~H—;„, ,'A, (S )—.

0.0-

gL

gPP%F

cn
U~ -1.0-

I

1P T= 14.1 K

Experiment

aekaa hJ
v'pf e

Here p is the Fermi energy ignoring the spin splitting, the
second term is the spin splitting in the internal magnetic
field (the applied field reduced by demagnetizing the field
caused by the polarization of the Er spins), and the last
term is the exchange splitting of the conduction band
caused by the interaction of the conduction electrons
with the thermal average Er 4f spin, (S). g is the
bare-conduction-electron g factor and p~ is the Bohr
magneton. The exchange-induced splitting completely
dominates the spin splitting and in the following we ig-
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FIG. 16. dR/dB vs the magnetic field at 14.1 K. The top
curve is the experimental data. The middle curve is the fit with
a constant splitting. The bottom curve is a fit with a splitting
proportional to the magnetization of the Er 4f spin. The verti-
cal lines are fixed at the nodes of the fit with constant splitting,
the middle curve (a), and serve to guide the eye as the beat pat-
tern in the experimental data and the model splitting propor-
tional to the Er magnetization (b) change at low field and high
temperature.
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FICs. 15. dR/dB vs the magnetic field at 9.0 K. The top
curve is the experimental data. The middle curve is the fit with
a constant splitting. The bottom curve is a fit with a splitting
proportional to the magnetization of the Er 4f spin. The verti-
cal lines are fixed at the nodes of the fit with constant splitting,
the middle curve (a), and serve to guide the eye as the beat pat-
tern in the experimental data and the model splitting propor-
tional to the Er magnetization (b) change at low field and high
temperature.

16.2K

0.4

FIG. 17. Nodes of the beat pattern in the Shubnikov —de
Haas oscillations vs 1/B with temperature as a parameter.
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nore the conduction-band spin splitting caused by the
internal magnetic field.

The beat pattern can then be simply modeled as fol-
lows:

2vrp 2rr b,pcos + cos
flCO 16co

where Ap= —,'A, (S). The zeros of the beat pattern can
then be indexed by

c 1.0-
Q0+
U
N

~Qa
O

CL

Ul pg
2 Ap/Ace, = l + —,

' (10)

or

A, (S(B,T)) =(l + —,')(Ae/m&)BI(T) . (12)

In Fig. 18 we display the exchange splitting as a func-
tion of magnetic field and temperature, derived from this
inversion of the data. Although the splitting can be ex-
tracted only over a limited range of magnetic fields and

50

40 r0
E

1&K—

Ql $0 e

~~
~~
CL,

Ul

20-
$7l

C7

V

10-

0-
0 4

8 (T}

FIG. 18. Exchange splitting vs the magnetic field with tem-
perature as a parameter deduced from Fig. 17.

A, ( S ) /A'co, = l + —,',
where l is an integer and co, =eBI /m &.

If we assume that the Er spin is fully polarized at high
fields and low temperatures, the slope of the line shown in

Fig. 17 determines the fully polarized exchange splitting
of the conduction band for sample A. It is the same pa-
rameter extracted from the splitting revealed in the
Fourier transform in Fig. 4 and -38 meV. The collapse
of the fan diagram in Fig. 17 is ascribed to the reduction
in 4f spin polarization as the sample is heated or the field
is reduced.

We can extract the temperature and field dependence
of the exchange splitting by using Eq. (11). In particular,
we note that the exchange splitting at temperature T at a
given zero or node of the beat pattern Bt( T) is given by

oL
0 2 4

E) (T}

FIG. 19. Magnetization of the Er 4f spin vs the magnetic
field normal to the film. %e assume a magnetic moment of
5.3p& and correct the internal field for demagnetization but
have not included exchange interaction between the 4f spins.
The experimental data are selected from Fig. 18 for comparison.

b,p, =2' (kf Inc )(m I /h )n, ( —,'), (13)

where I is the exchange parameter in the Hamiltonian
I S, .s. In the previous estimate for I we had assumed
m =m, and a kF given by the total electron or hole den-
sity of 3X10 cm . Here we recompute I using a mass
of 0.17m, and an electron density appropriate to a single
electron pocket, n = 10 cm . kF is 1.09 X 10 m
With these parameters I is found to be substantially
larger than the previous estimate and approximately

temperature it has the qualitative appearance of the mag-
netization curves for an isolated spin in an applied field
with temperature as a parameter modeled and displayed
in Fig. 19.

The behavior predicted in Fig. 19 does not agree in de-
tail with that shown in Fig. 18. (We also compare with
experiment directly, in Figs. 13—16 by showing the pre-
dicted beat pattern that emerges from this model of the
temperatures- and magnetic-field-dependent exchange
splitting. ) The experimental data shown in Fig. 19,
selected to contrast with this simple model, while show-
ing the correct qualitative features, fall too rapidly as the
temperature is raised or as the field is reduced. This may
reAect the fact that the Er magnetization does not fit a
simple Brillouin function. Indeed, such a model is ex-
pected to be an oversimplification and does not even in-
clude the exchange interaction between the Er spins (see
Chroboczek et al. o). We make no attempt here to use
or develop more sophisticated models of the Er magneti-
zation as a function of temperature and magnetic field.

We can compare the magnitude of the exchange split-
ting deduced from the SdH oscillations with that deter-
mined from the spin-disorder-scattering contribution to
the resistivity. " For the latter we have
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equal to 7.3 eVA . However, A, is related to I by
X=n, t, where n, is the density of Er spins. Using the

0
above value for I, 7.3 eVA, the predicted splitting of
the conduction band, for fully polarized Er spins, is -42
meV, for sample A, Sco 43Ero 57 This is reasonably close
to the saturated exchange splitting shown in Fig. 18.

V. CONCLUSIONS

Magnetotransport measurements are consistent with
the band-structure model of Hasegawa and Yanase'
which predicts semimetallic transport on a Fermi surface
consisting of electron pockets at X and holes at I . The
lattice-matched Sc& Er As alloy reveals Shubnikov —de
Haas oscillations that most likely arise from the electron
pocket at X directed along the surface normal. Remark-
ably the oscillations persist when the magnetic field is
tipped away from the surface normal to the point that
three-dimensional cyclotron orbits must collide with the
surface of the film. This compels us to conclude that the
Shubnikov —de Haas oscillations arise from orbits that are
quantum confined by the finite thickness of the epitaxial
film. The temperature and magnetic-field dependence of
the oscillations allow us to determine a mass of 0.17m,

and a scattering rate that is consistent with the Hall mo-
bility. The strong beating in the Shubnikov —de Haas os-
cillations arises from an exchange splitting of the conduc-
tion band at X caused by interactions with the Er 4f
spins. The exchange interaction deduced from the
Shubnikov —de Haas oscillations agrees with that deter-
mined from spin-disorder scattering.

An important issue that remains and can be addressed
by buried semimetal layers such as Sc, „Er„As is the
effect of quantum confinement on the electronic proper-
ties of semimetals. Earlier, we reported preliminary re-
sults' on the resistance of ultrathin films and noted the
apparent absence of a semimetal-to-semiconductor transi-
tion as the electron and hole states are driven apart. This
behavior is not expected on the basis of simple
confinement effects ' and needs to be explored with very
large magnetic fields. Surface scattering suppresses the
mobility in thin films and only magnetotransport in the
highest magnetic fields will give any information on the
relative contribution to the transport from the electrons
and holes. Another issue that is of great technological
importance is vertical transport through thin semimetal
films which would address their potential as metal-base
transistors.

*Present address: Walter Schottky Institute, Technische
Universitat Munchen, Garching, West Germany.
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