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By means of Monte Carlo computer simulations we study the domain-growth kinetics after a
quench across a first-order line to very low and moderate temperatures in a multidegenerate system
with nonconserved order parameter. The model is a continuous spin model relevant for martensitic
transformations, surface reconstructions, and magnetic transitions. No external impurities are in-
troduced, but the model has a number of intrinsic, annealable pinning mechanisms, which strongly
influences the growth kinetics. It allows a study of pinning effects of three kinds: (a) pinning of
domain walls by defects—this is found in effect to stop the growth, forming a metastable state at
low temperatures T (b) temporary pinning by stacking faults or zero-curvature domain walls; and
(c) topological pinnings, which are also found to be temporary. These just slow down the growth.
The pinning mechanisms and the depinning probability at higher temperatures are studied. The ex-
cess energy of the domain walls is found to follow an algebraic decay AE (¢)=E, + At~ ", with
E ;=0 for cases (b) and (c) and decaying toward a metastable state with energy E 70 for case (a).
The exponent is found to cross over from n = at T~0 to n = 5 with temperature for models with
pinnings of types (a) and (b). For topological pinnings at 7~0, n is consistent with n = ¢, a value
conceivable for several levels of hierarchically interrelated domain-wall movement. When the
continuous-spin model is reduced to a discrete Potts-like model, with the same parameters, the ex-
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ponent is found to be consistent with the classical Allen-Cahn exponent n = %

I. INTRODUCTION

Kinetics of domain growth has in recent years been in-
tensively studied by Monte Carlo simulation tech-
niques' ~ in the search for universality classes. The time
dependence of the excess domain-wall energy AE(¢) has
been studied and shown to be consistent with an algebraic
decay law AE(t)= At~ ". For curvature-driven growth
(and nonconserved order parameter), systems'® have been
found to follow the Allen-Cahn!! behavior with n =1,
but also systems have been found with a slower growth.
An interesting slow-growth class with n=1 was
discovered by Mouritsen.'? It was analyzed!? and found
to be represented by a singular Allen-Cahn case, in which
straight domain walls, corresponding to stacking faults or
twin boundaries, give rise to temporary pinning effects, in
the sense that the movement of the domain walls is
hierarchical. For quenches to very low temperatures,
this pinning slows down the growth, but does not hamper
it totally. At higher tempertures,'* the Allen-Cahn
growth with n =1 is recovered. However, systems with
even slower growth than n =1 have been found.!” For a
multidegenerate system, it has been suggested that the
vortices, where three or more different phases meet, act
as pinning centers, slowing down the growth dynamics.
In the framework of the Q-state Potts model, Safran'®
predicted that when Q >d +1, d being the dimensionali-
ty of the system, the growth at late times is logarithmic.
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Although this effect has not been observed in simulations
of the Potts model,!” it might be operative in other situa-
tions. We would like, here, to study the role that the vor-
tices have on the kinetics of domain growth in a different
model. Pinnings exist, but are not found to be definitive.

Although by now very much is known about the order-
ing kinetics of simple models, such as the Ising mod-
el,>%18720 the Potts model,”®!” and the axial next-
nearest-neighbor Ising ANNNI model,>® and the effect
of quenched (immobile) impurities*?! and random
fields,?? the effects of annealed (mobile) defects on the
time evolution has received relatively little attention.>>2%3
However, it is important to understand this is in order to
correctly interpet the experimental results on domain
growth. For quenches to very low temperatures, it is
generally accepted that both quenched and annealed de-
fects will pin the domain walls and give rise to the slowest
possible growth of the domains, namely a logarithmic
growth. However, for most practical purposes, and not
astronomical time scales, the systems can be assumed to
end in a metastable, final state with, in effect, no further
growth. We shall adopt this picture in this paper.

In our model, pinning centers on the domain walls can
be studied. They are intrinsic properties of the model;
they correspond to defect pinnings in an experimental sit-
uation and simulate, as well, important aspects of an-
nealed external impurities. The defects are, in principle,
mobile (depending on the temperature), and the model is
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describing a situation quite different from that studied in
the random-field problem?? with static, fixed defects or
impurities. At T ~0, some of the pinning centers in the
model become immobile. One of the purposes of this pa-
per is to investigate, for a twofold degenerate system, the
effect of drastic pinnings, which stop the growth (i.e., give
only logarithmic growth) and leave the system in an
essentially infinitely long-lived metastable state consisting
of a “polycrystal” with pinned domain walls or grain
boundaries. We will show that at very low temperatures
the defect pinning centers, in interplay with the tem-
porary pinnings constituted by the stacking faults
(straight walls), in effect, stop the growth in a metastable
state. It is important that the energy E,, of this can be
fairly accurately estimated. The growth toward this state
corresponds to a minimalization of the domain-wall
length between the pinning centers. It proceeds following
the normal, i.e., unpinned behavior. The growth law is
therefore of the type AE(t)= At~ "+ E,,. Since it is, in
experiment or simulation, very difficult to distinguish this
growth law from AE(t)=A't™" with an effective ex-
ponent n’ <n, it is crucial to have a knowledge of the en-
ergy E,, of the final state in order to determine the
correct growth exponent. This problem is particularly
important for analyzing an experimental situation, where
there will always be a number of defects and impurities
present that give rise to pinning effects. However, it is
still possible, in principle, and with great care, to extract
the ideal algebraic growth behavior from the approach
toward the logarithmic regime with effectively no
growth.

Experimentally, AE(¢) is not easily obtainable. But, if
we assume that the growth follows the scaling behavior
necessary for the algebraic time evolution, other quanti-
ties, e.g., the domain radius or the structure factor, will
exhibit the same exponent. Our conclusions obtained by
studying the self-averaging?* AE(t) are therefore expect-
ed to hold more generally. Experiments on ordering Kki-
netics in impure chemisorbed overlayers?® and off-
stochiometric alloys®® suggest that annealed, mobile im-
purities lead to a slow growth tending toward an effective
logarithmic growth law, in agreement with recent Monte
Carlo simulations® in a dilute Ising model. Measure-
ments on grain-boundary migration in Pb (Ref. 27) and
Sn (Ref. 28) show slow kinetics, as do experimental stud-
ies of grain growth kinetics in polycrystalline materials®®
concerning systems that have a high ground-state degen-
eracy. It might be fruitful to reanalyze the experiments
in the light of the present investigation.

II. THE MODEL

We wish to study a magnetic model Hamiltonian,
which, besides describing magnetic transitions,*® is also
useful for describing displacive structural transitions!>3!
and domain growth.!>!* Therefore we use a language
relevant to both cases. In the model there is a competi-
tion between an interaction K, favoring ferromagnetic
(FM) (called square in Ref. 13.) structure in the z direc-
tion, a pseudo dipolar interacton J, favoring an antiferro-
magnetic (AFM) (called triangular in Ref. 13.) structure

in the x-y plane, and finally an anisotropy term D (=2J),
which is introduced in order to reduce the number of
equivalent AFM domains to four. The interactions are
between nearest neighbors. The AFM structure consists
of ferromagnetically aligned spin chains stacked with al-
ternating directions. The Hamiltonian is

H=JJ[S,'S;—P(S;1;)S;1;)]
ij
— S KSS;—DI[(SH*+(S7)*] . (1)
i,j i

This Hamiltonian, apart from being physically relevant,
has a rich spectrum of possibilities for studying pinning
effects on domain growth. For the dipole parameter
P =3, the AFM domain walls are of two kinds: broad
soliton walls with spins turning out of the x-y plane into
the +z or —z directions for mismatch on an aligned
chain along the x or y direction, and sharp walls for a
twin boundary or a stacking fault in the sequence of the
chains. The model can be simplified further by reducing
the spin degrees of freedom in order to study selected
effects.

I. First, consider only continuous spins in the upper
half of the x-z plane. We call this model I or (*x,z, and
continuous). This can separately demonstrate the inter-
play between the broad curved walls and the sharp
straight walls, where the first have to wait for the straight
walls to disappear before being able to reduce their
length. We call this temporary pinning effect, and it was
shown!? that this hierarchical behavior alters, for all
times, the time evolution exponent to n = for quenches
to very low temperatures. At high temperatures, the
standard Allen-Cahn exponent n =1 is recovered.

II. In model II (£x, +z, and continuous), we allow the
soliton walls to deviate both in the +z and —z direction,
and we allow continuous-spin directions in the full x-z
plane. This gives rise to an interesting pinning center on
the walls, when two oppositely oriented soliton walls
meet. Although it is an intrinsic property of the model, it
is closely related to defect and impurity pinnings. When
combined with the temporary pinning of the stacking
faults in model I, it leads to an effective stop of the
growth, i.e., a logarithmic growth.

III. The full model III (£x, +y, +z, continuous, and
P =3) with continuous spins in the full space, combines
these effects and has, in addition, a possible topological
pinning, namely, where the four types of AFM domains
(+x, —x, +y, and —y) meet in a vortex point.

IV. In order to study the topological pinning separate-
ly, we can consider a full model IV, with P =2 (+x, *y,
+2z, continuous, and P =2). For this value of P, all walls
are essentially equal and sharp. The spins in the AFM
domains prefer to meet at an angle of 90°, and therefore
topological pinning centers of the vortex type are formed
where four domains meet. We will also study a further
restricted model, called the Potts model IV (£x, ty, *+z,
discrete, and P=2), in which we only allow the spins to
assume the discrete +x, =y, and *z directions.

In Fig. 1, we show the phase diagram for the three
models with P =3. The phase diagram for the full model
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FIG. 1. The phase diagrams for the models I, II, and III de-
scribed in the text. The quenches are performed along the line
at K/J=2.3.

IIT (P =3) is apart from a simple scaling identical to the
full model IV (P =2) which was studied previously.’! We
perform temperature quenches along the path indicated
at K/J=2.3. For model IV, K/J=1.8 was chosen.’!
The path crosses a first-order transition line between the
FM phase, corresponding to the cubic, and the AFM
phase, corresponding to the hexagonal phases, in an
analogous way as in the martensitic transformation. The
relevance of the magnetic model for this transition prob-
lem has been investigated elsewhere.!>3! Here we will
focus our attention on the self-pinning aspects of the
models and the influence on the domain growth that fol-
lows after a rapid quench from the disordered phase to
different temperatures in the AFM phase. An interesting
special feature of the restricted models I and II is the
reentrance of the FM phase at low temperatures. Such a
behavior has not been observed in experimental magnetic
or martensitic transformations, but it is conceivable. It is
caused by entropy stabilization of the AFM phase, when
the order-parameter variables are restricted to a plane,
giving a model similar to an XY model.

III. MONTE CARLO SIMULATION RESULTS

Using standard Monte Carlo (MC) simulation tech-
32,33 we follow the time evolution of the domain
growth after quenches from a high temperature in the
disordered phase to different low temperatures in the
AFM phase. Our system is a set of NV spins on a square
two-dimensional lattice, subject to periodic boundary
conditions. The unit of time, one Monte Carlo step per
spin (MCS), is defined as N attempts to flip N spins
sequentially. First, in Sec. IIT A we discuss quenches to
very low temperatures (T'=~0), where the pinning is, in
effect, definitive. Second, in Sec. III B we discuss the re-
sults corresponding to quenches to finite temperature,
where the pinning ceases to be effective. In Secs. IIIC
and ITI D, we discuss the various pinning mechanisms.

A. Quenches to very low temperatures (T ~0)

In this section we present the statistical analyses of the
MC simulation from the disordered phase to well inside
the AFM phase at 7=0.02J /kz=0.0087 along the
path indicated in Fig. 1: kgT¢ is 2.4J. If a quench has
been performed at ¢ =0, the excess energy at time ¢ is
defined as

AE(t)=E(t)—E;() , (2)

where E (o) is the equilibrium energy at the quench
temperature 7. The decay is furthermore usually expect-
ed to follow a power-law:

AE(t)=A"t" . (3)

This definition presupposes that the system evolves to
reach the one-domain equilibrium state for the tempera-
ture T, at t = co. The E;( o) for this state is easily calcu-
lated by the Monte Carlo simulation. Figure 2 shows a
log-log plot of the time evolution of AE(¢) for models II
and ITI. Results corresponding to model I were reported
in Ref. 13. For model II we have used both
N=100X 100 and 200X200 size systems; for model III
only, N=100X100. The result of a least-squares fit for
obtaining the exponent n for Eq. (3) is shown above each
curve. For model I we have averaged over 15 different
runs for the 100X 100 system and over five runs for the
200X 200 system. For model III the fit has been obtained
from an average over eight runs of the 100X 100 systems.
A common feature is the clear crossover at a time ¢t =¢%,
from an early time regime with exponent n, to a slower
decay with exponent n,. It has been demonstrated'® that
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FIG. 2. The excess energy AE(z) for the models II and III
for quenches to T=0.0087¢. Error bars are indicated at 2000
and 10000 MCS for N =100X 100 and at 2000 and 7000 MCS
for N =200X200.
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n, is an effective “exponent” which, in fact, represents an
exponentially fast optimization of the width of the
domain walls and of the order inside the domains. It is
not relevant for the time evolution of the domain-wall
system as such. We obtain ¢*=1200+300 MCS for
N =100X 100 for both models II and III, and, consistent-
ly, t¥*=1100%£200 MCS for the model-II 200X200 sys-
tem. The crossover does not significantly depend on the
size of the system. The least-squares fit to Eq. (3) gives
the late-time exponents for model II, n, =0.18+0.02 for
N=100X100 (and, consistently, n,=0.17£0.01 for
N =200X200) and for model III, n,=0.16+0.01. These
exponents are systematically smaller than the n ~ 1 ob-
tained!? for model I. This n characterizes the behavior of
a mixture of sharp straight walls (called S boundaries)
and broad curved walls (called C boundaries) with no pin-
nings, see Fig. 3. Equation (3) is valid when the system
evolves into the final thermodynamical equilibrium state
with only one domain. However, from our simulations,
we have observed that for models II and III the system
rather approaches a long-lived metastable state formed
by a pinned domain-wall structure. The difference be-
tween models I and II is the pinning centers residing
along the broad walls preventing the broad walls to
move. These were the only walls that could move. This
leads to, in effect, pinned domain structure for model II,
and the growth behavior crosses over from an algebraic

law, of the form AE(t)=_ A ’t"nz, to a late-time logarith-

FIG. 3. A typical late-time MC result for model II showing
pinning centers on the broad soliton walls, indicated by large
open circles surrounding two oppositely aligned spins. The
spins are shown as-O; only the disordered spins are shown, i.e.,
the walls. The details in their definition are given in Ref. 13.
The spins deviate in the x-z plane, but are, for illustrative pur-
poses, shown in the displayed x-y plane; see Fig. 6 for a
magnified plot. The pinning centers do not move at low temper-
ature. Some small movements of the broad walls are still possi-
ble. The arrow indicates one of these. However, the de facto
final metastable state can be predicted and the energy estimated.

mic regime. It is important that the energy of the meta-
stable state can be accurately estimated. The final state is
found from the latest-time configuration by applying the
knowledge about how the walls are able to move and
where they are pinned. By counting the final length L
of the C boundary, with the energy per unit length'?
=~4J, and the final length Lg of the S boundary with en-
ergy per unit length!®> ~2J, we obtain the energy of the,
in effect, final metastable state E,,=0.08+0.01J for the
100X 100, and, consistently, E, =0.06+0.02J for the
200X 200 size system. Under the assumption that the
pinning centers do not move, but rather change the final
state to an effectively, stable (metastable) state corre-
sponding to an optimal domain-wall network, the time
evolution is therefore of the form

AE(t)= At " "+E,, . 4)

A fit to Eq. (4) with a fixed exponent n =1 gives the con-
tinuous line shown in Fig. 2, with a fitted residual energy
E,,=0.05%£0.02J for N=100X100, and, consistently,
E,,=0.07£0.02J for the N=200X200 system. These
values of E,, agree within the statistical errors with the
E,, directly evaluated from our simulations. The time
evolution towards the, in effect, final state, therefore is
consistent with the unpinned time evolution of model I
with n=1. After this state has been reached, further
evolution proceeds logarithmically slow with no effective
growth. As a test we have also tried a fit to Eq. (4) with
the conventional Allen-Cahn exponent n =4. This corre-
sponds to the analysis proposed by Kaski et al.!’ Here,
we have identified the arbitrary constant used there'® as
the residual energy of the metastable state. In the fit with
fixed n =%, we obtain E,,=0.13+0.02J, which is much
larger than the residual energy estimated from the
configurations in the simulations. To show the relative
quality of the different fits, the deviations are plotted in
Fig. 4, as a check for systematic deviations. The data
alone do not allow a distinction between the first two fits
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FIG. 4. The deviations for three different least-squares fit to
the late-time data for model II (Fig. 2). The thick line is for
fixed n =-};, thin line for fixed residual energy E, =0, and the
dotted line for a fit with fixed n = 1.
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(thin and thick lines). The estimate of the residual energy
E,, favors the fit with n = . However, the fit with fixed
n =4 is clearly worse (dotted line), where both the sys-
tematic deviations and the E,, are too large. Conse-
quently, the exponent n=1 is not consistent with the
simulation results of model II, which is to be expected on
the basis of the results of model I giving n=21. This
analysis shows that it is difficult, but possible, to extract
the growth law from the behavior of the approach to-
ward, in effect, a pinned metastable state. It is somewhat
related to the previously discussed'>?° analysis of the
“slab” effect due to the periodic boundary conditions.
However, in the pinning case, it is a real physical effect.

The complexity of the wall structure exhibited by mod-
el III makes it more difficult to predict the final pinned
state and therefore to estimate the length of the remain-
ing domain walls. A least-squares fit with fixed n=1
gives E;;=0.14+0.01J. The remaining energy is clearly
larger than for model II, as expected. In model III there
might also be an effect of a topological pinning, which
could effect the value of n. We return to this question in
an analysis of the simpler model IV.

B. Quenches to finite temperatures

In order to study the behavior of the system, and in
particular of the pinning centers, as a function of the
quench temperature 7" we have followed the time evolu-
tion of model II, with N =100X 100 up to T=0.2T;. In
Fig. 5 we show the temperature dependence of the
growth exponent. The solid circles represent the ex-
ponent obtained from a least-squares fit with E,, =0 aver-
aged over 15 runs. The exponent increases with tempera-
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FIG. 5. The temperature variation of the exponents from
n=1 to the Allen-Cahn exponent n = at large temperatures.
The closed circles are obtained by a least-squares fit for model
I1, assuming E,, =0, and the open circles for E,,=0.05J. The
dot-dashed line represents the behavior of model II when the
pinnings are eliminated.

ture and exhibits around 7 =0.08T7. an additional
abrupt crossover, which is indicative of the onset of an
activated hopping of the pinning centers. The continuous
thin line'* corresponds to the smooth crossover found for
model I. The dot-dashed line is the assumed ‘“‘non-
pinned” behavior of model II if no pinnings were present.
By following the time evolution of the individual
configurations, we observe that for T'<0.08T the pin-
ning centers do not move, and the system is trapped in a
metastable state. For higher temperatures, the centers
become unpinned and do move with the C boundary.
This, of course, speeds up the evolution and increases n.
The behavior of the “nonpinned” curve at low tempera-
tures, open circles in Fig. 5, has been obtained by fitting
the data for T'<0.08T; to Eq. (4) with E,;,=0.05J, in-
stead of to Eq. (3), where E,; =0. The exponent both for
models I and II crosses over from n =1 at low tempera-
tures to n=1 at higher temperatures. The limiting
values are characteristic for curvature-driven growth.
The intermediate exponents are effective. As it was
shown from the analysis'® of model I that n =1 charac-
terizes a special case with a mixture of straight, tem-
porarily pinned walls and moving curved walls. When
the temperature increases,'* the temporary pinning time
of the S boundary is reduced. Additionally, the S bound-
ary starts to “‘curve’ by means of kinks. The hierarchical
movement of the walls then becomes irrelevant, and the
system approaches the standard Allen-Cahn law with
n=1. The initial slower increase of n with temperature
for model II is due to the additional pinning centers on
the walls. We have analyzed the possibilities for these
to move in the Appendix and find that the first jump
possibility has an activation energy of about

AE,, 1ier =0.02J=0.08kzT-. This is in qualitative
agreement with the rapid increase in »n around
T=0.08T.

C. The pinning center on the soliton wall

At late times the domain-wall network consists of an
interconnected mixture of S and C boundaries. This is
shown in Fig. 6, which further demonstrates that a pin-
ning center arises at the meeting point of a +z and —z
soliton wall, indicated as soliton walls with upward- and
downward-pointing deviations. The pinning center con-
sists of the two abruptly broken chains in the middle;
only the limiting spins in the domains are displayed. The
configuration has a relatively small energy as discussed in
the Appendix. This causes the pinning. In model I the C
boundary moves with a constant velocity, which is pro-
portional to its curvature, i.e., to 1/L.. Only after the
S-boundary length Lg has been eliminated, the C-
boundary length L. can start to be reduced. With the
additional pinning center the situation changes drastical-
ly. A typical, in effect, final metastable state can be pre-
dicted from the late-time state as shown in Fig. 3. The
density of pinning points does not depend on the size of
the system. We find the average number of pinning
points NP=9+1 for N=100X 100. They are distributed
along the C boundaries with an average distance
LE=42+6 solitons. Consistently, for the N =200X200
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FIG. 6. Typical example from the MC simulation showing a
pinning center where two oppositely pointing soliton walls
meet. The deviations +z and —z are indicated as upward- and
downward-pointing spins, here indicated as displaced atoms.
The figure defines the length of the C boundary, L, and of the
S boundary, Lg.

systems, we find that N*=28+3, and L=45+5 solitons.
We conclude that the drastic pinning effect is not due to a
finite-size effect of the kind leading to the “slab” effect.

D. Topological pinning effects

In model IV an extremely slow growth, with
n=0.131+0.03, was observed.!> It is of interest to at-
tempt to find the reason for this unexpected behavior. At
late times, after a quench to low temperatures, the system
is in a polydomain state formed by the four possible
AFM domains. Let us call them 1, 2, 3, and 4 for the
type +x, —x, +y, and —y domains. The domain walls
are sharp between all types of domains and are, in gen-
eral, not straight. Neighboring domain numbers are not
favorable. An additional domain is therefore always in-
troduced between two in a sequence, e.g., between 3 and
4 will appear a 1 or a 2. At an intersection point all
phases meet in a vortex-like structure. In Fig. 7(a), we
follow the time evolution of a small, almost spherical
domain found in the MC simulation. It is of type 3 in a
matrix of type 4; the “domain wall” is consisting of small
domains of types 1 and 2 meeting in topological pinning
points. The time evolution is extremely slow compared
to that for similar size domains for model I, which would
disappear after less than 1500 MCS. It is observed that
the walls move to reduce their curvature between the
fixed pinning points. However, when the angles at the
vortex becomes sufficiently small, the pinning point can
make a very small jump. Then it does not move until the
resulting wall curvature is still further reduced. This is in
contradiction to the behavior assumed by Safran'® in
which the angles a the vortex were supposed to be con-
stant, preventing the pinning point from moving. In this
model, as in the Potts model, there is no definitive topo-
logical pinning—although a temporary one. In the

1000

2000

3000

4000

FIG. 7. The time evolution at 7=0.0087. of two small
domains in model IV from 1000 to 4000 MCS. (a) A domain of
type 3 in a matrix of type 4 is surrounded by small domains of
types 1 and 2. All four phases meet in several vortex points,
which are pinned until the connecting wall angles get
sufficiently small, then a small jump is made probable. (b) A
domain 1 in a matrix of type 4 has sharp walls. The time evolu-
tion for (a) and (b) is similar. A similar size domain for model I
will disappear in less than 1500 MCS and, in the Potts model
IV, in less than 200 MCS. This shows that the configurations (a)
and (b) are both pinned.

Clock model, there is observed a definitive topological
pinning for quenching to zero temperature,** but not for
finite-temperature quenches.’® It is interesting that the
time evolution of a similar domain of type 1 in a matrix
of 4, where there are no topological pinning centers, de-
velops equally slow, [Fig. 7(b)]. An analysis shows that
the walls are temporarily pinned at almost all points. To
demonstrate this, we restrict the spins to try only the
relevant +x, *+y, and *z directions, instead of allowing
them to try all directions in space. This gives a model
that closely resembles a Potts model. The time evolution
of the small domain is now extremely fast in comparison.
It is interesting that, with this restriction in the spin de-
grees of freedom, the model IV behaves as a standard
Potts model, and that the growth exponent is (for an
average of over five runs, n =0.5210.02) quite consistent
with the classical Allen-Cahn exponent and also with pre-
vious studies of the Potts model.””®!7 This is shown on
Fig. 8. The difference between the continuous-spin model
and the Potts model now becomes clear. In the Potts
model, the spins are forced to attempt only the relevant
flips, whereas, in the continuous model, the probability
for finding the relevant flips is infinitesimally small. Only
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FIG. 8. A log-log plot of the excess energy for model IV and
the Potts-model IV. The last has an exponent consistent with
the Allen-Cahn n =%, whereas model IV has an exponent con-

sistent with n =1. Finite-size effects are apparent for the Potts

B
model IV for late times.

when the neighboring spin deviations are in a favorable
direction does the probability of finding a relevant flip be-
come significantly large. The wall movement therefore
becomes hierarchical, depending on the curvature and
the states of the neighboring several spins. We believe
this causes the slow, most probably algebraic, growth.
The growth is very difficult to distinguish from a loga-
rithmic growth law of the kind AE(z)= A /In(Bt), if both
constants 4 and B are free to be fitted. Such a behavior
was suggested for zero-temperature quenches in the con-
tinuous models.*® In Fig. 8 the time evolutions of model
IV and Potts model IV are compared.

IV. DISCUSSION AND CONCLUSION

By varying the parameters and the spin degrees of free-
dom of the dipolar coupling model introduced!® to de-
scribe displacive structural phase transition across a
first-order line, we have been able to realize a number of
effects of relevance for the domain growth after a quench
to a low-temperature multidegenerate state. We have
studied temporary pinning effects constituted by zero-
curvature walls, pinnings of the defect kind, as well as to-
pological pinnings. The defect pinnings are definitive,
whereas the topological pinnings in our model only slow
down the growth. Particularly interesting is that it is
possible to derive the exponent for an ideal algebraic
growth even for cases where the system is going to be
pinned into, in effect, a final metastable state. In order to
do this, one needs to be able to fairly accurately estimate
the final-state residual energy. In case other properties
are measured, a similar knowledge about the final state,
residual domain radius, or structure factor, etc., is need-
ed. We have found that, in our model, topological de-
fects do not give rise to definitive pinning centers but
only slow down the growth rate, changing the growth ex-
ponent n. A new slow-growth class probably exists be-

tween the n=1 class and the logarithmic growth. For

model IV an exponent of n =0.13%0.03 was found.'
The growth is here analyzed and found to be of the type
of a temporary pinning, which can be removed if a
hierarchy of wall movements takes place. In the simplest
case where there are only two interdependent evolutions,
we previously found'® that the growth exponent reduced
to n=1%. It was suggested! that several levels of the
hierarchy could lead to smaller exponents, such as n =%,
etc. Model IV is consistent with n =. However, it is
difficult to formulate a scaling theory to substantiate this,
as it was done in the case with n =1 for model I. The
slow growth in model IV is related to the continuous-spin
variables. This was demonstrated by restricting the spin
variables to only the most probable directions, namely
along *x, *y, and =*z. Then, the model reduces
effectively to a Potts model, and one retains the growth
exponent n =1, even for low-temperature quenches. In
this case, there is no hierarchical wall movement.

ACKNOWLEDGMENTS

We thank O. G. Mouritsen for useful comments on the
manuscript. One of us (T.C.) wishes to thank Risg Na-
tional Laboratory for the hospitality and Comissio In-
terdepartamental de Recerca i Innovacié Tecnologica
(CIRIT) of the Catalan Government for financial sup-
port.

APPENDIX: THE PINNING CENTER

The behavior and the reason for the pinning center in
model II is discussed further in this Appendix. The ener-
gy gain for models I and II lies, first, in the reduction of
the length Lg of the .S boundary. The pinning centers do
not move at low temperatures, but Lg is reduced until the
two connecting C boundaries form an optimum angle
close to 120°, both between the S and C boundaries and
between the meeting C boundaries (see Fig. 6). After this
configuration is reached, the time evolution effectively
stops. To illustrate this we have simulated the evolution
of test cases as shown in the insets of Fig. 9, where we
have plotted the motion of the C boundary for the model
I with no pinning and for model II with the pinning
center. Contrary to the temporary pinning exhibited by
the S boundary, which can be removed when L —0, we
are here in the combination dealing with a drastic pin-
ning, which cannot be removed by other wall motions.
The pinning center consists of two abruptly broken
chains. This has a low energy E(a) than the energy of
two soliton walls meeting directly E |; [see Fig. 10(a)].
Let us now analyze two possible movements of the pin-
ning centers.

They may either (i) expand along the C boundaries or
(ii) hop in favorable direction for the C-boundary move-
ment in order to reduce Lg. The movement (i) does not
reduce any boundary length, i.e., there is no major driv-
ing force. Nevertheless, it interacts with the dynamics of
the walls. In Fig. 10(a) we show the distribution of soli-
tons around the pinning center in the pinned
configuration as in Fig. 6. The energy of the
configuration E (a) is given in Fig. 10(e). The energy de-
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FIG. 9. The time evolution from a MC simulation of (lower
inset) an unpinned broad C boundary moving with velocity
v~1/L¢ and (upper inset) a pinned wall, for which no move
was observed, i.e., v =0.

pends on the position x between two lattice sites of the
maximum for the neighboring solitons in Fig. 10(a). An
expansion of the pinning center is possible when the C
walls are fairly straight [Fig. 10(b)], i.e., have not reached
the optimum-angle configuration [Fig. 10(a)]. An expan-
sion can take place provided that the lengths of the con-
nection C boundaries are long enough. If they are too
short, the system will evolve too rapidly and be trapped
in the pinned case [Fig. 10(a)]. For configuration (b) [Fig.
10(b)], the energy is E(b) [Fig. 10(e)]. This is slightly
higher than E(a). The energy can be decreased by con-
verting the neighboring soliton walls to sharp walls as
shown in Fig. 10(c). The energy E (d) for a soliton wall
was previously'> found to depend on x with a value be-
tween 3.9J and 4.1J. The sharp C wall has an energy
E (c)=4J independent of x. A sharp C wall is therefore
generally favorable for C boundaries with small curva-
ture, as shown in Fig. 10(e). However, the sharp-wall en-
ergy minimum is separated!®> from the broad-wall
minimum by the energy barrier AE,, ., indicated at the
bottom of Fig. 10(e). It has a minimum of 0.2J =0.087T.
Therefore only at temperatures above T >0.087 . can the
fairly straight C boundaries have a reasonable probability
of being converted into sharp walls, thereby gaining ener-
gy. If during such an expansion of the sharp C walls, one
pinning center collides with another, both mutually an-
nihilate. The whole C wall then optimizes the energy by
jumping back to the broad, curved configuration, which
is unpinned with an energy E (d). This wall is unpinned
and can move. The same happens if the expanding sharp
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FIG. 10. (a) The optimum-angle configuration of a pinning
center with energy E (a). (b) The pinning in a weakly curved or
straight situation with energy E (b). (c) An expanding pinning
point which is converting the soliton walls into sharp C walls
with energy E (c¢). (d) The straight soliton wall configuration
with no pinning point with energy E (d). (e) These energies are
compared. In addition, the energy E;, is given for a direct
meeting of two oppositely pointing soliton walls, and the barrier
AE,,.+ier between the broad and sharp C boundaries.

C wall meets an S boundary. When the pinning centers
cannot be eliminated by one of these processes, the C
boundary will be trapped in the optimum angle
configuration [Fig. 10(a)]. The described behavior is ob-
served in the simulations. For the case (ii), the energy
barrier for the pinning center to hop in the favorable
direction perpendicular to the C boundary is 2J. It corre-
sponds to inverting one of the oppositely aligned spins.
This is a very high barrier compared to the others dis-
cussed, and a jump is therefore very unlikely at low tem-
peratures. However, by also flipping the neighbor spin,
the energy cost of the two-flip event is close to zero. At
higher temperatures, the two-flip process is possible;
therefore, both this mechanism and the elimination pro-
cess become operative, and the pinning of the C boun-
daries ceases. The temperature dependence of the
effective exponents clearly shows this (Fig. 5).
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