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We have implemented an efficient self-consistent Green’s-function technique for calculating
ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method
within the tight-binding representation. In this approach the interlayer interaction is extremely
short ranged, and only a few layers close to the interface need be treated self-consistently via
a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface en-
ergies that are in excellent agreement with earlier calculations. For the bce(110) surface of the
alkali metals, we find surface energies in close agreement with values derived from surface ten-
sions of the liquid metals, and work functions that deviate less than 10% from the experimental

values.

I. INTRODUCTION

In order to evaluate the physical properties of surfaces
and interfaces, it is important to take proper account
of the breakdown of translational symmetry that occurs
perpendicular to the interface. In the past this has very
often been done in an approximate fashion by means of
standard one-electron methods applied to either a super-
cell or a slab geometry. While these methods will give ac-
curate results when carried to convergence in the number
of layers, they need extremely large computer resources,
and hence no comprehensive study of, for instance, work
functions of metals from first principles has yet been un-
dertaken.

A different and more natural approach to the inter-
face problem would be to use a Green’s-function tech-
nique. In such an approach, one deals directly with the
electronic states in a semi-infinite crystal having only a
single interface. This is in contrast to the usual slab
or supercell methods, where the symmetry forces one
to treat two interfaces simultaneously. During the past
two decades several Green’s-function techniques for sur-
faces and interfaces have been proposed,!=® and the for-
malisms have been thoroughly developed as far as for-
mal aspects are concerned. However, applications so far
have been limited mostly to empirical tight-binding and
non-self-consistent muffin-tin models, and it is only re-
cently, when the techniques were combined with local-
density theory, that self-consistent results have been
forthcoming.®7

In this paper we describe and present the first appli-
cations of a new and efficient, self-consistent Green’s-
function technique for structures with only two-dimen-
sional periodicity, based on the generalized linear-muffin-
tin-orbitals (LMTO) method.8~1% A very similar ap-
proach has been used successfully for point defects,!?—13
while an outline of part of the present scheme together
with some preliminary results were given by Lambrecht
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and Andersen.?

The generalized LMTO method is presented in depth
in the papers by Andersen and co-workers.2~10 In this
paper, we shall therefore only be concerned with those
details of the theory that are important for our Green’s-
function technique. As to exposition and notation we
shall follow closely the presentation given in Ref. 10,
and we shall take full advantage of the theory of linear
transformations between generalized MTQO’s in different
representations. Here, a representation is specified by a
particular choice of the matrix « used in the screening
calculation for the structure constants. In particular, we
shall make use of three representations, the conventional
(e = 0), the orthogonal (a = 7), and the most localized;
tight binding (a = 8).

One of the most important aspects of the present tech-
nique is the ability, within the atomic-sphere approxima-
tion (ASA) and in the tight-binding representation, to
generate the Green’s-function matrices for a real, two-
dimensional interface by a simple and efficient proce-
dure. In the present work we stay entirely within the
ASA as far as the potential is concerned, but for the
charge density we include the dipole moments. If the ac-
curacy of this approximation is inadequate, e.g., if non-
spherical contributions to the atomic-sphere potential are
important, one may transform to a Hamiltonian Green’s-
function representation and proceed as in a conventional
Green’s-function calculation. The present technique will
then serve as an extremely convenient way of obtaining
a Green’s function for a real interface.

II. LMTO GREEN’S-FUNCTION METHOD
FOR INTERFACES

Our adaptation of the LMTO method to the interface
problem is naturally separated into several distinct steps.
The starting point is formed by standard band calcula-
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tions and subsequent construction of the infinite-crystal
Green’s-function matrices for the two types of solids that
form the interface under consideration.

From these we construct the Green’s-function matrices
for the left- and right-hand semi-infinite sides of the in-
terface by a Lowdin downfolding technique. In the case
of a surface, the semi-infinite Green’s-function matrices
for the vacuum region are obtained by an analytical ex-
pression.

In the next step, the semi-infinite Green’s-function ma-
trices for the two sides are combined in a process inverse
to the Lowdin downfolding to form Green’s-function ma-
trices for an ideal interface. Here, ideal means that the
atomic positions and the electronic densities are unre-
laxed.

These ideal-interface Green’s-function matrices are
subsequently used as the zeroth-order Green’s functions
in a Dyson equation for those few atomic layers close
to the interface which must be treated self-consistently.
When the Dyson equation is iterated to self-consistency,
we have all the quantities needed to estimate physical
properties, such as work functions and surface energies,
connected with the interface.

A. The Green’s functions

In the following sections, we present the various
Green’s-function matrices that enter our interface tech-
nique and we describe in detail how they are obtained
numerically.

1. The initial calculations

At the outset of an interface calculation, one would
like to have appropriate starting potentials as well as
total energies corresponding to perfect, infinite crys-
tals of the atomic species that are brought together
to form the interface. To obtain this input, we per-
form self-consistent energy-band calculations by means
of the conventional LMTO method within the atomic-
sphere approximation.!® In the actual calculations we ap-
ply the most recent versions of the programs described
by Skriver,'® and use their output to start the Green’s-
function calculations.

2. Hamiltonian Green’s function for the perfect crystal
The Hamiltonian Green’s-function matrix G(z) for the
infinite crystal is most conveniently obtained from the
LMTO-ASA equations
(21— HM)G"(2) =1 (1)

within the orthogonal representation. Here, z is a com-
plex energy and H? the second-order LMTO Hamilto-
nian

HY(k) = C + VAST(k)VA (2)
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evaluated at a particular vector k in reciprocal space.
The center C, bandwidth A, and v potential parameters
are taken from the self-consistent bulk calculation.

The structure-constant matrix S7(k) that enters the
LMTO Hamiltonian is obtained in a three-step process.
First, we evaluate the tight-binding structure-constant
matrix S# by means of the Dyson equation

0
Slﬁz'L',RL = SpLpL + E SR'L’,R"L'“BI“Sg”L”,RL’
RIILII

(3)

where R indicate lattice sites and L refers to the com-
bined angular-momentum quantum numbers (I,m) cor-
responding to real cubic harmonics. Explicit expressions
for the conventional unscreened structure constants S°
may be found in Refs. 9 and 15. The choice®

0.3485, I=s
) 0.05303, 1=p
Pi=19 00107, 1=d (4)
0, I>d

for the diagonal screening matrix 3 leads to short-ranged
structure constants, and hence the lattice summation in
(3) extends only over a few shells of neighboring atoms.
In the actual calculations we use the iterative procedure
outlined in Sec. 4.10 of Andersen et al® Secondly, we
perform the Bloch sum

St re(K) = e*TSE i pir (5)
T

where R now runs only over the sites in the primitive
cell and T are three-dimensional (3D) lattice translation
vectors.

Finally, we transform to the orthogonal representation,
obtaining the structure constants

S7(k) = SP(K)[1 - (v - B)S? (k)] 7, (6)
which enter the eigenvalue equation
[(H7(k) — e1]u7(k) = 0 (M

with eigenvalues € and eigenvectors «”. This procedure is
efficient because the tight-binding structure constants S#
can be evaluated once and for all for a given surface by
short-ranged lattice summations in real space, because
the Fourier transformation implied in the Bloch sum (5)
makes the dimension of the matrix to be inverted in the
transformation to the orthogonal representation (6) fi-
nite, and because (7) is a simple eigenvalue problem that
can be solved by effective numerical methods.

The Green’s-function matrix for the perfect crystal
may now be obtained from

Ghprok 2) = uyL’z(li)E“gz:f)(k)]* ’ ()
7 i
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where ¢;(k) are the eigenvalues and u’}sz(k) the eigenvec-
tors obtained by diagonalization of (7), i.e.,

[ I [C + VASY (k) VA (k) = 8j¢(K), (9)
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[ ()] T (k) = 65 (10)

In a layer representation the Green’s-function matrix be-
comes

. s 2n/dy ) ,
Gy por, (), 2) = ;l—jre"kn'(“n“ﬁu)/o dkye”#*+(F=RUGY ok, 2), (11)

where d, is a layer distance, k = (k||,kL), and R =
(Ry, Ry ).

In the actual calculations the integral in (11) is eval-
uated by a procedure where the energy bands in the
denominator and the phase factor times the eigenvector
products in the nominator are linearized separately over
suitably small k; intervals. The contributions from each
interval are then obtained analytically by standard inte-
grals of rational functions and summed numerically over
the period 2w/d; . This has proven to be a sufficiently
accurate and efficient technique, especially because the
Green’s-function matrix need only be calculated once for
a given surface. An even more efficient technique has
recently been developed by Wenzien et al.’

8. KKR-ASA Green’s function for the perfect crystal

In the second step of our procedure, where we con-
struct the Green’s-function matrix for the semi-infinite
crystal, it is important to work within a representation
that has short range. Hence, it turns out to be most con-
venient to use the Green’s-function matrix defined by the
KKR-ASA equations in the tight-binding representation,
i.e., by

[P(2) = S*(Kk)]g*(k,2) =1 (12)
with o = 3. Here, the LMTO potential function P(z),
which is essentially the cotangent to the phase shift, may
be given by the parametrization

re 1

Pa(z):Va—z—{—'y——a’

(13)

correct to second order in (z — €, ), where €, is an arbi-
trary real energy, and the representation-dependent pa-
rameters are

A A
Ve=C-— , I'* = ————.
7—a (y—a)?

(14)

Within the orthogonal representation (a = ) the poten-
tial function has a particularly simple parametrization,
l.e.,

z—C

P =122,

(15)

and if this form is inserted into (12) and the result com-

pared with the LMTO-ASA equations (1) we find the
relation

9'(z) = VAG(z:)VA (16)
between the Hamiltonian Green’s-function matrix and
the KKR-ASA Green’s function matrix, valid to second
order.

The transformation of the KKR-ASA Green’s function
between different representations has the form® 19

P(z) = P(z) P(z)
B — _ @
which only involves energy-dependent scalings. The

Hamiltonian Green’s-function matrix (11) for the perfect
crystal may thus be transformed into the tight-binding
KKR-ASA representation via

z—=VP VP z—VP

gl =y

Y R R
(18)
as obtained from (17) with @ = v, (15), and (13) with
a = . This completes the construction of the Green’s-

function matrix for the perfect crystal, which forms the
starting point for interface calculations.

9° (ky,2) = —

4. Perfect-vacuum Green’s function

In our implementation we have chosen to treat internal
interfaces and surfaces by the same procedure. Hence, for
a surface we “fill” the vacuum region with spheres which
we take to be the same as those of the infinite crystal.
The Green’s-function matrix for the three-dimensionally
infinite perfect vacuum may therefore in principle be ob-
tained from free-electron potential parameters in exactly
the same manner as desribed in the preceding section.
This is, however, an inefficient procedure, and in prac-
tice we use an analytic expression,!” which we state be-
low in a form valid for an energy z in the complex plane
cut along the positive real axis. This procedure allows
one to form the 2D Bloch sum directly, thus avoiding the
integration over k; otherwise needed to form the layer-
indexed Green’s-function matrix.

The Green’s function for the perfect vacuum in the
conventional representation (e = 0) is given in Ref. 17
as
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() = FWHIE,I0) (5°6) - b IO wis), a0, (19)

where the Wronskians are defined by

W{f,9} = s*[f(5)g'(s) — g(s) (5] (20)

and where the LMTO envelope functions are
i[nw!”‘l 1)
Kk, r)= ISV hy /' (kr),

Tk, 7) = (@2‘—‘—-13%2> (k).

(kw

(21)

In these expressions kK = —+/z where the principal root
must be taken, s is the radius of the atomic sphere, and w
is some dimension of the lattice, taken to be the average
Wigner-Seitz radius. Finally, h§1) and j; are complex
Hankel and Bessel functions, respectively.

The range of the irregular envelope function K;(x,r)
may be chosen to be exponentially short. Since

h{D () ~ €7 = emIVE (22)

this requires that Imk > 0, and hence that the z plane is
cut along the real axis. In the present application, where
the Fermi energy is always below the vacuum level and
the complex energy contour lies in the lower half-plane,
both the imaginary and the real part of z are negative,
and the structure constants given in (23) below decay
exponentially.

The energy-dependent conventional (@ = 0) structure
constants may be expressed in the two-center form!® with
the ¢ axis chosen along the interatomic vector R — R’ of
length d, i.e.,

Stanr(wd) = 3 (ixw) = glp K (s, d), - (23)
III

where g{,';M is essentially a spherical-harmonic Gaunt co-
efficient given by
b1 20 =1t

(21 = Ny —nn

9{:;1\1 = (-1 CIH(I’MJM)»

(24)

. 4T 1/2
i = ~ * A
C (l'm" lm) = (*21" T 1) /d'l"YL(T’)YLI(T’)YLH(T‘),

V=|V=1|U=1]42,...,0' +1,

IMIKU <], m=m=M, m"=m'—m.

For a general direction of the ¢ axis, e.g., the global ¢ axis
of a crystal, we obtain the structure constant matrix from
(23) and Table I in Ref. 18. Finally, we perform the 2D

[

Bloch sum, which converges rapidly, owing to the short

range of the structure constants, and obtain the Green’s-

function matrix (19) directly in the k| representation.
The tight-binding Green’s-function matrix for a vac-

uum region is now simply given by

PO PO PO
gﬁ(k”,z) = ﬂpﬁ((i)) + Pﬁ((i))go(k”’z)pﬁ—gzz;’ (25)
where the scaling analogous to (18) is
PO (g, prP N\

and VP, T# and v are free-electron potential parameters
for the chosen ¢, (< 0).

5. Green’s function for the semi-infinite crystal

Equation (12) for the layer-indexed KKR-ASA
Green’s-function matrix (18) for a perfect crystal may
be written in the block form

( PX —Saa —SaB ) (gffA 9AB )
P% — Spp 9BA 9BB

—SBa
laa Oam
= . 27
(OBA 1BB ) (27)

Here, the superscript X refers to the atomic species
of the perfect crystal for which the potential function
is calculated, and the subscripts A and B refer to the
layers on the left- and right-hand sides of the interface,
respectively. The tight-binding superscript 8 has been
suppressed on the potential functions, the structure con-
stants, and the Green’s-function matrices.

Now, we cut the crystal in two by putting Sy = 0 and
want to find the Green’s-function matrix for the semi-
infinite left-hand side, i.e., for the system with the KKR
matrix Pf — Saa. This is

GXa = (PX — Saa)™%, (28)

which we shall presently express in terms of matrix el-
ements of the perfect-crystal Green’s function (18). To
perform the inversion (28) we make use of the fact that
the structure constants have a limited range, so that

Sap =0 for {AB} # {ab}, (29)

where {ab} is a small subset of layers close to the inter-
face. By inserting (28) into (27) and writing out the first
row we find

(§X4) " 9%a — Savgia = laa, (30)
(554) 7 94 — Savgiy = Oas, (31)

which upon elimination of S4; now leads to the desired
expression,
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- -1, X
TAa = 944 — 9K (908) " gia, (32)
for the Green’s-function matrix for the left-hand side of
the semi-infinite crystal. Similarly, one finds for the right-
hand side with atomic species Y,

Gbp = 955 — 95a(922) " 9an- (33)
It follows that any matrix element of the Green’s function
for the idealized semi-infinite crystal may be found by
inversion of a single finite matrix, the dimensions of which
are given by the “hopping” range of the tight-binding
structure constants.

The above derivation of the expression for the semi-
infinite Green’s-function matrix is a particular applica-
tion of Lowdin!® downfolding, which in the present con-
text was termed the “ideal construction” by Williams et
al.2% Similar procedures were derived by Lannoo?! for
point defects and by Velicky and Kurdnovsky?? for sur-
faces.

6. Interface LMTO Green’s function

At this stage, from the band calculations and the sub-
sequent transformations detailed in the previous sections
we know the Green’s-function matrix defined by

0aB ) (55& 9?;3 >
PY — Sgs Opa dBB

_ (lAA O4B ) L (34)

Opa lBB

( PX —Saa
0Ba

which is simply the Lowdin-downfolded Green’s-function
matrices [(32) and (33)] for the two noninteracting semi-
infinite crystals taken together.

The desired Green’s-function matrix for the combined
system may be written

—ab

) gaA gAB>
PY — Spp gBA UBB

_ <1AA (Y] ) (35)

0a 1BB

Pf — Saa
—Sba

where we have reintroduced the tight-binding structure
constants that couple the two sides of the interface. A
comparison between the last two equations shows that
(35) may be obtained from the Dyson equation

EF
ng(rr) = D Yi(Er)" (/ de ¢ (e, rR)DRL'.RL/'(G)%w(f,TR)> Yz (Fr)

L'L"
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~ ~ O0ga Sa
g=g+g(sba Ob:)g,

which within the double layer {a, b} becomes a finite ma-
trix equation. If this is written out block for block we find

(36)

9aa = Jaa + JaaSabGba, (37)

gbva = GvbSbaYaa, (38)
and substitution of g;, into (37) leads to

9aa = (Laa = GaaSav§spSsa) ™" Jaa- (39)
Similarly, we find for the other sub-blocks

gab = JaaSabgvb, (40)

9us = (Los — G55 SbaFaaSas) ™' Gbb, (41)

and hence we have the complete Green’s-function matrix
inside the interface region defined by the “hopping” range
of the tight-binding structure constants.

The interface Green’s function derived above is given
in terms of quantities obtained from band calculations
on perfect crystals of the atomic species X and Y. This
means, in particular, that the potential functions retain
their bulk values right up to the interface. For a real
system the relaxation AP = P? — P that occurs in the
potential functions close to the interface may be taken
into account by means of the finite Dyson equation

¢ =g+ gAPig, (42)

giving the interface Green’s-function matrix in terms of
the unrelaxed g. In the actual calculations it is (42)
which, together with the Poisson equation, is solved re-
peatedly until self-consistency is achieved in potentials
and charge densities.

B. The charge density

At each iteration one needs to evaluate the charge den-
sity on the basis of the one-electron spectrum. In the
present technique we obtain the valence charge density
from the one-center expression

(43)
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where rg = r — R is inside the atomic sphere at R, Y7 (1)
is a cubic harmonic, Drr/ rr~(€) is the partial-wave de-
composed state density as derived from the Green’s func-
tion [see (48) below] , and where the partial wave itself
¢%,(r) 1s normalized in the atomic sphere of radius Sg,
ie.,

Sr
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around ¢, are inserted into (43) and a core charge density
is added, the total charge density inside the sphere at R
may be found from the cubic-harmonic expansion

nr(rr) = Y nhp(rR)YL(ER) + n&(rR)Y:(ER),
L

v = 1y Ly
},(e,r)Zrzdr =1. (44) mhe(rr) = L,ZL,, Croeefrier (r), (46)
If the first three terms of the Taylor expansion s .
CLL'L” = /dTYL (T’)YLI(’I‘)YLU(T),
Y — 47 _ LY
Srale,r) = ”11:“(7‘) + (26 oy )by r(r) where to second order in € — ¢, and neglecting the index
+3(e—€)’d p(r) + - (45) v R on the radial functions
il
frepn(rr) = ¢ (rr)é} (rR)YMEL L0 + ¢7/ (73)4;;1“ (rrR)YMEL L + &) (7'R)¢Z'(7’R)771?21L1L~ + (7.57'(7’13)4)7”(713)”1}1?0["14“
+%¢}Y’(TR)¢}Y"(TR)mOR2L’L" + %fﬁ' (rr)$] (rRYM3L 1 (47)
and the moments of the state density are given by
11 EF 7 "
mbl, = de(e — eyr1r)? Drrs,rLv(€)(€ — €vrr)?
1 / 1
=5 P da(z - &wrr)? Ghpo ren(2)(z — r)? (48)

In the last equation we have used the residue theo-
rem in conjunction with the fact that the eigenstates of
the interface are the poles of the Hamiltonian Green’s
function, and hence, the contour should enclose all the
occupied states and cut the real axis at the Fermi level.
However, since the Green’s-function matrices obey the
relation

G’}{’L’,RL(Z)Y = Gk'L/,RL(Z*)»

as one may deduce from the spectral representation (8),
the contour may be reduced to a semicircle in the lower
half-plane and, e.g.,

}{dz G}%’L’,RL(Z)

4Gt~ ([ 45Chwat)
(50)

(49)

i
STl _
ST LdrYL(r) (SR) nr(r) — Zgbys

Viar

Y nl

Sr ]
r
2041 > CLL’L”/ dr <75;) r? froipn(r) = zR61 s

f

The Green’s-function matrices which enter the contour
integral are found by the transformation

Nivi

z—ved

VTR

z—V8

1

2l = B
G'(ky,2) = v + (kyj, 2) (51)
inverse to (18). In general, the extra poles introduced at
V# might fall within the contour, and hence one might
worry that the evaluation of the moments could be inval-
idated. However, close to V? the tight-binding Green’s-

function matrix behaves as

z—VP
whereby the effect of the poles cancel and the contour
integral is left unchanged.
In order to solve Poisson’s equation for the interface,
and also to calculate the electrostatic contributions to
the total energy, one needs the multipole moments of the

charge density. These are calculated from

(53)
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where Zp is the atomic number, zr the valence, and
Crp:n are cubic-harmonic Gaunt coefficients.

C. The one-electron potential

Once the charge density is obtained, the electrostatic
part of the one-electron potential in the spheres may be
found as a solution to Poisson’s equation. This solution
can be written in the one-center form

Ve(r) = Z Ve,ro(TR)YL(ER), (54)
RL

i.e., as an atom-centered cubic-harmonic expansion. In
the ASA we use only the spherically symmetric, i.e., L =
s part of the potential, and hence the potential in the
atomic sphere at R in the two-dimensional unit cell is
approximated by

Veir(rr) = Voirs (rR)Ys + 5 LS MEQY,

R'L!

(55)

where the intrasphere contribution is obtained by numer-
ical integration of the radial Poisson equation

d? 2 d
(W + oo ) Ve,rs(TR) = —8mngs(rr), (56)
with the boundary condition
2 s
VC;RS(SR)YS = —%y (57)
R

and where the intersphere contribution is given by a mul-
tipole expansion, the coefficients of which are given in the
following section.

It is the monopole, dipole, and quadrupole terms which
J

H. L. SKRIVER AND N. M. ROSENGAARD
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govern the long-range behavior of the electrostatic poten-
tial, and for many systems, e.g., impurities in metals, it
is sufficient to include only the monopole contribution,
i.e., the Madelung potential, to the last term in (55).
However, in two-dimensional systems, where the charge
density may be rather nonspherical, it is important to
include also the dipole, i.e., L' = p,, contribution to
the multipole potential in order to ensure correct behav-
ior at infinity. Thus, in the present implementation the
dipole potential barrier has two contributions, one from
the monopoles, i.e., the net charges in the spheres, and
one from the dipole charges in the spheres. These con-
tributions are of the same order of magnitude but have
opposite signs, and it is only when they are combined in
the self-consistency procedure that one obtains an accu-
rate estimate of the dipole barrier.

With these assumptions the one-electron potential in
the sphere at R is

2Zgr
VR(T'R) = ——7; + VC;R("’R) + lj'xc[nRs (TR)YS]: (58)
where the first term is the potential from the nuclei and
the last term the exchange-correlation potential in the
local-density approximation.??

1. Multipole potential

The evaluation of the multipole matrices M3k, that
enter (55) requires a 2D Ewald technique in analogy with
the usual 3D case. We have developed such a technique
based on the complete solution to the 3D Poisson equa-
tion, assuming spherically symmetric Gaussian charge
densities distributed on planes parallel to the interface.
For the two most important matrices we find

1 1
Mg = 222 ((Rl Ru)erfe{A(R) = Ru)} = 5= ‘*2“**‘”)
1 (4, 227%) 2
iky - (Ry — ) 12 \2 59
+25< Z k| RJ.RI (k”)e U ﬁ E T \/“63;,3 ) (59)
k| #0 il
L3, NTH R, — R/
$ps iky (R — Y 1
ME: = 4382 <—-—;VR e ()™ =) g o - g: 3 = : (60)
1] I
[
where S is the average Wigner-Seitz radius in all space, and
A the surface area of the 2D unit cell, A an Ewald conver- ,
gence parameter, and where the prime on the summation T=t +R - (62)

sign indicates that 7" = 0 should be excluded from the
sum. In addition, we have defined

k
VR R, (ky) = ekn(Ra— Rerfc (-2—|/|\ + ARy — R’l))
ky
e FI(RL=RL)erfe ( — ARy — Rl))
(61)

where t is a translation vector of the 2D lattice.

Parry?* has obtained an expression for the M**

Madelung matrix similar to (59) by integrating the usual
Ewald expression over the third dimension. However,
his result is only valid for systems where each individ-
ual layer is neutral, and does not include electrostatic
dipole-barrier terms. In contrast, the present result only
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assumes charge neutrality in the entire two-dimensional
unit cell, and hence gives the correct description of the
interface dipole barrier.

2. Charge neutrality

At each iteration the charge density in the 2D cell is es-
timated from the Green’s function and the partial waves.
Since the total charge derived in this manner may in
general not be neutral, charge neutrality must be im-
posed at each iteration. In a conventional self-consistent
energy-band calculation, charge neutrality is established
by shifting the Fermi level until a known state density ac-
commodates the appropriate number of electrons. This
procedure cannot be used in an interface calculation be-
cause the Fermi level is determined by the perfect crys-
tal(s), and because the number of electrons is obtained
from a contour integral, not from a state density. In-
stead, we apply a site-independent shift to the potentials
in the interface region, and hence to AP in the Dyson
equation (42). The shift converges rapidly and is found
to be very small.

D. The dipole barrier and the work function

In the solution to Poisson’s equation for a semi-infinite
metal occupying —oo < r; < 0 one may choose the en-
velope function of the electrostatic potential, as given by
the Madelung term in (55), to be zero deep inside the
metal, i.e., Vo(ry — —o0) = 0. In that case, the electro-
static dipole barrier across the surface may be obtained
from (55), (59), and (60), and we find

A¢ =Ve(ry — o0) — Vo (ry — —o0) (63)
Ty (ot ) o

In the ASA, the envelope function of the electrostatic
potential is the potential from the monopoles and dipoles
at the sphere centers. For a 3D crystal this envelope
potential is chosen to be periodic and of zero average,
i.e., Ve(r) = 0, which is then taken as the zero of energy
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FIG. 1. Schematic representation of the electrostatic

dipole potential near a metal surface (top), and the effec-
tive one-electron potential where the dipole contribution has
been subtracted (bottom). The full one-electron potential is
the sum of the two potentials shown.

in an ASA band-structure calculation. For a 3D crystal
with one sphere per cell this energy zero coincides with
the electrostatic potential at the surface of the atomic
sphere, and the work function of the corresponding semi-
infinite metal may be estimated from

W = A¢ — Ep, (65)

where E'p is the Fermi level for the 3D crystal with the
ASA energy zero. In Fig. 1 we have sketched the potential
near the surface of a metal and indicated the relevant
energies.

E. The total energy

In the Born-Oppenheimer, local-density, atomic-
sphere, and frozen-core approximations, the total energy
of the interface may be expressed in terms of the quanti-
ties already defined as?®

S [ OV )+ V)

1 1 3r 0% (P)ege[nS. (r )
+ER:7T? /R R IO Wy = /R @B 1y (P)eelnes (r)Ya). (66)

Here, the R summation runs over those atoms inside
the 2D unit cell that are included in Dyson’s equation
(42), and the atomic-sphere projected kinetic energy may
be obtained from

—

v 00 10
Tp = E (evrimRrLr +mEry)
T
1

v Rd3r g, (r)Vr(r). (67)
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In (66) the charges and the electrostatic potentials have
been separated into valence and core contributions, in-
dicated by the superscripts v and ¢, respectively. In ad-
dition, we have neglected terms that only pertain to the
(frozen) core. Hence, when we calculate surface energies
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FIG. 2. Comparison of values of the surface energy (a)

and the work function (b) calculated - within the uniform
positive background (jellium) model. The solid line gives
the results obtained by Lang and Kohn (Refs. 26 and 27).
Asterisks and squares give the results of the LMTO-ASA
Green’s-function technique for the two close-packed surfaces
fcc (111) and bee (110), respectively. In the LMTO-ASA
calculations the charge perturbation was confined to four lay-
ers of spheres on the metal side and two layers of spheres
on the vacuum side. The sphere radii were chosen equal to
rs such that each sphere within the bulk contained one elec-
tron. All calculations, including those of Lang and Kohn, were

performed within the exchange-correlation approximation of
Wigner (Ref. 28).
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as the difference in total energy of bulk and surface, we
shall assume that the same terms have been neglected in
the calculations for the perfect crystal.

I11. ASA JELLIUM, A TEST CASE

The surface of a simple metal may be approximated
by a model in which the conduction electrons move in
a uniform neutralizing semi-infinite charge density. This
so-called jellium model was first solved self-consistently
within local-density theory by Lang and Kohn,?¢ 27 and
their calculated work functions and surface energies, re-
produced in Fig. 2, provide a test of the accuracy of our
Green’s-function method.

In the ASA, we approximate a jellium surface by lay-
ers of overlapping atomic spheres, each charged with a
uniform neutralizing background density to simulate the
metal side of the surface, and layers of atomic spheres
with no background charge to simulate vacuum. This
approximation models a warped surface, and we would
expect the calculated work functions and surface ener-
gies to be close to the conventional jellium results only
for close-packed surfaces such as fcc (111) and bee (110).

In Fig. 2 we present surface energies and work func-
tions for two close-packed jellium surfaces calculated over
a wide range of densities by means of the LMTO-ASA
Green’s-function technique. In these calculations, the
sphere size was such that the 3D jellium contained one
electron per sphere, i.e., S = r;, and to be consistent
with earlier calculations we used the exchange-correlation
approximation due to Wigner.?® The close agreement
between the results of these calculations and those of
the conventional jellium model shows that the present
LMTO-ASA calculations are well converged, that the
LMTO-ASA method is accurate, and that the ASA jel-
lium is a good appoximation to the exact planar jellium
model.

This agreement with Lang and Kohn’s jellium results
is extremely satisfying because we would expect a jellium
surface to be the strongest possible test of the LMTO-
ASA method and because we have implemented and ap-
plied the method in a particularly simple form. That
is, potentials and charge densities are assumed to be
spherically symmetric except for the dipole contribution
M;Fz, included in the potential (55) and total energy
(66). Hence, as far as surface energies and work functions
are concerned there seems to be no need to go beyond the
atomic-sphere approximation.

IV. THE ALKALI METALS

For many years the alkali metals have served as a
testing ground for surface calculations and exchange-
correlation approximations starting with Lang and
Kohn’s jellium calculations?%:27 and presently culminat-
ing in the recent work by Zhang et al.,?° who cite most of
the previous results. The basis of most of these calcula-
tions has been the jellium model, to which was added the
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effect of the ion lattice treated either within first-order
perturbation theory or by a variational approach.®°

The outcome of the jellium-type calculations for real
alkali metals may be judged from Fig. 3, where we present
surface energies and work functions plotted as functions
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FIG. 3. Calculated surface energies (a) and work func-
tions (b) compared with experimental values. Circles give
the original Lang and Kohn results (Refs. 26 and 27) in-
cluding an ion-lattice correction; triangles give LMTO-ASA
results with the Ceperley-Alder (Refs. 31 and 32) exchange-
correlation approximation. Squares and diamonds give results
from Zhang et al. (Ref. 29) with von Barth-Hedin (Ref. 33)
and Langreth-Mehl (Ref. 34) exchange-correlation function-
als, respectively. Solid circles give (a) surface energies derived
from surface tensions (Refs. 35 and 36) and (b) experimental
work functions (Refs. 37 and 38).
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of the density variable r;. It is seen that the jellium-based
models give surface energies that are in good agreement
with values derived from the measured surface tensions
of the liquid metals, except for Li, where the surface en-
ergy is underestimated by 25%. Similarly, they lead to
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work functions, which, over the whole density range, are
typically 30% larger than the experimental values.

We have used the LMTO-ASA Green’s-function tech-
nique in conjunction with various exchange-correlation
functionals to calculate surface energies and work func-
tions for the alkali metals. In Fig. 3 we show the re-
sults obtained with the exchange-correlation functional
of Ceperley and Alder,3! as parametrized by Perdew and
Zunger,3? which we have found to give the best overall
agreement with experiment. It is seen that the combined
effect of an accurate treatment of the ion lattice and the
choice of exchange-correlation functional leads to close
agreement with the experimentally derived surface ener-
gies, as well as the experimental work functions for all
alkali-metals, the main deviation being an overestimate
of the work functions for Li and Na by approximately
10%.

If one compares the Lang and Kohn jellium calcu-
lations without the ion-lattice correction reproduced in
Fig. 4 to LMTO-ASA results obtained with Wigner and
with Ceperley-Alder functionals one may assess the effect
of the ion lattice and the choice of exchange-correlation
approximation separately. It is seen that the lattice con-
tribution to the surface energy, Fig. 4(a), is considerable
at high densities (low 7,) and insignificant at low den-
sities. In contrast to this, the difference between the
Wigner and the Ceperley-Alder surface energies is essen-
tially constant through the alkali-metal series. For the
work functions, Fig. 4(b), it is seen that both the lat-
tice contribution and the effect of the choice of exchange-
correlation approximation are large at small densities and
insignificant at high densities.

A comparison between Figs. 3(a) and 4(a) shows that
perturbation theory as well as the single-parameter vari-
ational approach®® used by Zhang et al.?® provide good
approximations for the lattice contributions to the sur-
face energy for the less dense metals Na, K, Rb, and Cs
but underestimate the contribution in Li by 30%. For
the work functions, Figs. 3(b) and 4(b), one finds that
both perturbation theory and the variational approach,
in contrast to the LMTO-ASA, lead to positive lattice
contributions, and hence to significantly overestimated
values.

At densities corresponding to Li and Na our
LMTO-ASA calculations with Ceperley-Alder exchange-
correlation overestimate the work functions by 10%, see
Fig. 4(b). A comparison with Fig. 2(b) indicates that the
LMTO-ASA gives accurate jellium work functions in this
density range, and for that reason the overestimate might
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be attributed to a failure of the Ceperley-Alder exchange-
correlation approximation at high densities. On the other
hand, the LMTO-ASA overestimates the jellium work
function at high densities, and since the density in real
Li and Na is not uniform, and in certain parts of space
will exceed 7, values of 3, the failure might be attributed
to the ASA.

V. SUMMARY

This paper reports the implementation of a self-
consistent Green’s-function technique for calculating
ground-state properties of large classes of interfaces. The
ground state is found within the local-density approxi-
mation, and the Green’s-function technique is based on
the linear-muffin-tin-orbitals method in the tight-binding
representation. The atomic-sphere approximation is used
for the potential, but for the charge density a dipole con-
tribution is included.

The jellium model is used as a test of the accuracy of
the method, and we find that the LMTO-ASA technique
yields surface energies and work functions, which over a
large density range are in extremely good agreement with
earlier jellium calculations.

In a series of calculations for the bce (110) surface
of the alkali metals we find surface energies that are in
very good agreement with zero-temperature values de-
rived from surface tensions of the liquid metals. In addi-
tion, we find that for K, Rb, and Cs (low densities) the
calculated work functions are in close agreement with the
experimental values. For Li and Na (higher densities) the
work functions are overestimated by 10%. This may be
attributed to a failure in either the local-density approx-
imation or the atomic-sphere approximation.
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