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We apply the Korringa-Kohn-Rostoker Green’s-function method and perform ab initio calcula-
tions based on local-density-functional theory for the vacancy-solute interaction energies in Cu, Ni,
Ag, and Pd. In particular, we calculate the nearest-neighbor interaction of vacancies with 3d and
4sp impurities in Cu and Ni as well as with 4d and Ssp impurities in Ag and Pd. We also calculate
the divacancy binding energies in these hosts. Further we demonstrate that the Hellmann-Feynman
theorem with respect to the nuclear charge provides a useful tool to calculate and understand in-
teraction energies. We discuss applications to jellium calculations for Cu and to the stability of

larger agglomerates.

I. INTRODUCTION

The interaction of solute atoms with vacancies is of
fundamental importance for the understanding of
diffusion in dilute alloys, since a substitutional impurity
can only migrate if a vacancy is present on a neighboring
site. The first theoretical work on this problem is due to
Lazarus,! who used Thomas-Fermi theory to describe the
screening of the impurity. Despite the well-known
deficiencies of this method the results? are more meaning-
ful than one would expect. Deplanté and Blandin® ex-
tended this work by taking the oscillatory behavior of the
screening into account. Using reasonable assumptions
for the impurity phase shifts, they were able to obtain the
correct trends for the interaction of 3d and 4sp impurities
with vacancies in Cu, as our present calculations will
demonstrate. Despite this very early and successful
work, the further progress of the theory on this subject
has been slow. Subsequent work has been based either on
jellium models,* on pseudopotential-perturbation
theory,>® or on the tight-binding method.” Jellium mod-
els as well as pseudopotentials in connection with
second-order perturbation theory can only be used for
simple metals. Already impurities with nuclear charges
AZ =1 represent a problem for these methods,® and
even more so do vacancies, as has been discussed by
Evans.® For transition metals tight-binding calculations,’
while containing a lot of physics, are notoriously plagued
by unknown parameters. Thus, despite the numerous
theoretical papers and the even larger amount of experi-
mental work, the conclusion of Doyama’ in 1978 still
seems to be true: “Very few convincing experimental and
theoretical values are available at present.”

We have recently been able to perform realistic ab ini-
tio calculations for the vacancy-impurity interactions in
Cu and Ni.!° Calculations of vacancy formation energies
have also been published.!! The calculations are based on
density-functional theory in the local-spin-density ap-
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proximation and apply the Korringa-Kohn-Rostoker
(KKR) Green’s-function method for impurity calcula-
tions. While the potentials are assumed to be spherically
symmetric atomic sphere potentials, the full anisotropy of
the charge density is taken into account in evaluating the
total energies. As an improvement of these results, ! in
the present paper cellular integrals are not approximated
by integrals over atomic spheres but evaluated exactly us-
ing shape functions.’> Details about the calculational
procedure are described in Sec. II. The most important
approximation of the present calculations is the neglect
of lattice relaxations and of the resulting elastic interac-
tion between the defects. In order to minimize these
effects we only calculate the interaction of vacancies with
impurities from the same row of the Periodic Table as the
host. Thus, in Sec. III we present the central results of
our paper, i.e., the interaction energies of vacancies with
3d and 4sp solutes in Cu and Ni hosts as well as with 4d
and 5sp solutes in Ag and Pd hosts. We only calculate
the dominating interaction on the nearest-neighbor sites
and compare our results with the experimental informa-
tion from diffusion and positron annihilation. In Sec. IV
we present results for the interaction of divacancies in
Cu, Ag, Ni, and Pd.

In Sec. V an alternative expression for the interaction
energy is derived being based on the Hellmann-Feynman
theorem as applied to the nuclear charge of the impurity.
It allows a description of the interaction purely in elec-
trostatic terms. Using this theorem we demonstrate in
Sec. VI that jellium calculations for single impurities in
Cu can indeed explain the qualitative trends for the
vacancy-solute interactions in Cu, provided the calcula-
tions are performed accurately and consistently. As
another application of the Hellmann-Feynman theorem,
in Sec. VII we discuss the stability of larger agglomerates
of impurities with small valence differences AZ using
only the information available from the dimer interac-
tion. In Sec. VIII we summarize the main results of the

paper.
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II. THEORETICAL METHOD

We employ density-functional theory in the local-
density approximation of van Barth and Hedin!? but with
the parameters as determined by Moruzzi et al. 4 Our
calculational method is based on multiple-scattering
theory. The Green’s function of the electrons which are
multiply scattered by a collection of nonoverlapping
muffin-tin potentials centered at positions R”, is expand-
ed into eigensolutions of these spherically symmetric lo-
cal potentials:'>

G(r+R", r'+R";E)
=8,,VE 3 Y, R)R/r . ,E)H[(r . ,E)Y,(}")
L

+ 3 Y (R)RMrE)G/ (E)R} (r',E)Y (T), (1)
LL

in rydberg atomic units. The position vectors r,r’ are re-
stricted to the Wigner-Seitz cell and . and r. are, re-
spectively, the smaller and larger of » =|r| and »'=|r'|.
The subscript L =(/,m) collectively denotes angular
momentum quantum numbers and Y; are real spherical
harmonics. The irregular H; and the regular R solu-
tions of the radial Schrodinger equation for the nth
muffin-tin potential at energy E are defined by their
asymptotic behavior outside the muffin-tin sphere of ra-
dius Ryp (F ZRyp):

H/r,E)=h,rVE) ,

_ _ _ (2)
RMr,E)=j,(rVE)+VEtMEh(rVE),

where j; and h; are the spherical Bessel and Hankel func-
tions and ¢/’ the usual ¢ matrix for the nth single poten-
tial.

The information about the multiple scattering between
muffin tins is contained in the structural Green’s-function
matrix GJ%.. It can be related to its counterpart for the
host crystal by an algebraic Dyson equation:

G (E)= G (E)
+ 3 G (BNt} (E)—t (E)]IGp7.
n',L"

Ny
(b
S

where the O superscript refers to the host. The equation
describes correctly and in a very efficient way the embed-
ding of the defect into the ideal crystal. In our calcula-
tion the angular momentum expansion in the Green’s
functions includes s, p, d, and f electrons.

Since we consider the interaction of two different im-
purities 1 and 2 on nearest-neighbor sites in a fcc lattice,
we allow the potentials of these two atoms as well as the
potentials of all nearest-neighbor host atoms to deviate
from the host potentials. Therefore the n’’ summation in
Eq. (3) includes 20 atoms, the geometry of which is
shown in Fig. 1. All nonequivalent atoms are numbered
from 1 to 9. In solving the Dyson equation (3) we make
use of the symmetry point group C,, of the 20-atom clus-
ter. The largest irreducible submatrix is then of size
92 X 92, instead of 320X 320 for the unsymmetrized ma-
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FIG. 1. Geometrical arrangement of two impurities (1 and 2)
on nearest-neighbor sites in a fcc crystal. Also shown are all
host atoms which are nearest neighbors to at least one of the im-
purities. The nonequivalent atoms are numbered from 1 to 9.
The potential perturbations of all 20 atoms shown in the figure
are calculated self-consistently.

trix.
The charge density is obtained from the Green’s func-
tion by

E
n(r)=—=2 [ "dE ImG (r,5E) . @
o

For the valence states this integral is transformed into a
contour integral in the complex energy plane'® which can
be calculated with rather few (64) energy points. The
core electrons are allowed to relax.

For the calculation of the total energies we split the to-
tal energy in single-particle contributions Egp and
double-counting terms Epc. The single-particle contri-
butions are given by!’

Egp=2X¢,—Ep
i

Jnwar—n]| (5a)

E
=E.N— [ "deN(e), (5b)

where N is the total number of electrons and N (¢) the in-
tegrated density of states. The additional term ~E in
(5a) guarantees that also non-particle-conserving charge
densities n (r) can be used without violating the extremal
properties. The change of the integrated density of states
AN (E) with respect to the host is evaluated by using a
version of Lloyd’s formula,'® which is generalizable to
complex energies:!’

2 al(E)
AN (E)= = 3 Imln—,
T WL a;"(E)

- %Im In det|8,,-8,; — G (E)ALf (E)| .

(6)

The introduction of the a}(E) functions, which are close-
ly related to the phase shifts, ensures the correct analyti-
cal properties for complex energies, which is essential for
the evaluation of Egp by a contour integration.
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The double-counting contributions Ep can be written

aS17

Epc=— [drn(n)¥4(r)

+% [drn (Ve =3 Z"V) (R

+ [drn(re(n(n) . )

Here V 4(r), the trial potential used in the Kohn-Sham
equations, is a sum of spherically symmetric potentials.
Vc(r) and Vy,(r) are the Coulomb and the generalized
Madelung potentials [see Eq. (12) below], which are eval-
uated with the full, i.e., nonspherically symmetric, charge
densities.

For evaluating the potential energy Epc we write all
space integrals in (7) as sums of integrals over the
Wigner-Seitz cells of the individual atoms. As it is natu-
ral for the multiple-scattering method we expand all
relevant quantities, e.g., n(r), V(r), e, (r), in each cell n
into spherical harmonics:

nr)=3 nf(NY (F), VD)= Vi(rY, (F). 8)
L L

The integrals over the Wigner-Seitz cells are then evalu-
ated exactly by introducing a Heaviside unit-step func-
tion O(r), being equal to 1 within the Wigner-Seitz cell
and zero otherwise, and by expanding ©(r) into spherical
harmonics:

O(r)=30,(NY,(?) . 9)
L

The radial shape functions O, (r), introduced by Ander-
sen et al.,'® can be calculated very accurately.!? Since
they scale with the lattice constant, they must be evalu-
ated only once for each structure, e.g., fcc or becc. They
are continuous functions of r, but their derivative is
discontinuous at certain r values, e.g., at the muffin-tin
radius. The integrals over the Wigner-Seitz sphere of
atom n then have the form

[ drfrn= [drom)fir)
ws

’
max

=3 fo“’dr r20,.(r)f1(r) . (10)
<

Here f"(r) is a smooth function of r, e.g., the product
n(r)V(r) occurring in the second term of Eq. (7). Due
to the angular momentum cutoff of the Green’s function
at [, =3, the charge density »n"(r) and the Coulomb po-
tential V' 2(r) have only nonvanishing components n; and
Vi" up to [ =6, so that the angular momentum expansion
of the product f(r)=n(r)V(r) has only nonvanishing
components f;. up to I’=12. Therefore we find that an
accurate evaluation of all cellular integrals occurring in
(7) for the Coulomb and exchange-correlation energies is
possible if in (10) we evaluate all terms up to I, ,, =4/ .-

For spherical potentials entering into the Kohn-Sham
equation we do not use muffin-tin potentials since they
cannot describe the adjustment of the perturbed poten-
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tials in the interstitial region. Therefore, we prefer slight-
ly overlapping potentials, which better fill up the volume.
The simplest example is a spherically symmetric atomic
sphere potential which has a sharp cutoff at the Wigner-
Seitz radius. The calculations are actually performed us-
ing the / =0 component of the full cell potential V g(r),
which can be constructed from the full charge density.
This potential has a smoother cutoff which is essentially
determined by the shape function ©;_(r). Test calcula-
tions show that for practical purposes both potentials
give very much the same interaction energies.

In evaluating the integrals (10) and in solving the
Kohn-Sham equations for central potentials truncated by
©,-,(r), the singularities of the ©; functions at certain
critical radii require special care. Therefore we adjust
our radial mesh to these radii and calculate the integral
(10) piecewise from one critical radius to the next by
Simpson’s rule. Likewise we solve the radial Kohn-Sham
equations separately in each interval using as initial con-
ditions the value and slope at the last point of the previ-
ous interval.

III. VACANCY-SOLUTE INTERACTIONS

Figure 2 shows the calculated interaction energies of a
vacancy with 4d and 5sp impurities in Ag and Pd. Posi-
tive energies mean a repulsion of the two defects, nega-
tive energies mean attraction. For the sp impurities in
Ag and Pd one obtains an attraction roughly proportion-
al to the valence difference AZ. Contrary to this, for the
transition metal impurities the interaction is repulsive
and shows a parabolic behavior with a maximum in the
middle of the row. Note that the curve for the Pd host
lies completely below the one for Ag, meaning that the
repulsion of the 4d impurities is weaker in Pd than in Ag,
whereas the attraction of the sp impurities is stronger.

4d impurities in Ag show a rather broad virtual bound
state!® being a result of the hybridization of the impurity
4d electrons with the 5sp electrons of Ag. The resulting
4d-5sp bonds are not as strong as the 4d-4d bonds of the
elemental transition metal; therefore the solubility of 4d
impurities in Ag is endothermic and rather small. Never-
theless this bonding is clearly stronger than the bonding

interaction energy (eV)

1 1 1 1 1

Cd In Sn S

1 1 1 1 1
Zr Nb Mo Tc Ru R

h Pd Ag

FIG. 2. Interaction energies of a vacancy with 4d and Ssp im-
purities in Ag and Pd. Positive energies mean repulsion; nega-
tive ones, attraction.
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forces in pure Ag. Therefore by creating a vacancy it is
more favorable to break such a Ag—Ag bond than the
relatively strong 4d-5sp bond, meaning that the 4d impur-
ity is repelled from the vacancy.

The parabolic behavior across the 4d series is a band-
filling effect and is qualitatively very similar to the para-
bolic behavior of the cohesive energies as explained by
Friedel. For the early 4d impurities only the lower
“bonding” parts of the virtual bound state are occupied,
whereas for the later 4d impurities also the higher anti-
bonding states are filled. In the presence of a vacancy the
virtual bound state of a nearby impurity becomes nar-
rower due to the loss of hybridization which then ex-
plains the loss of bonding and the repulsion from the va-
cancy.

The calculated interaction energies for the 4d impuri-
ties look very much like a scaled-down version of the
cohesive energies and the surface energies of the corre-
sponding 4d metals. In these cases the much stronger
4d-4d host bond is responsible for the cohesion and has to
be broken at the surface, which explains why these ener-
gies are so much larger. The parabolic behavior found in
both cases is due to the same band-filling effect.

In Pd the interaction of 4d impurities with vacancies
can be explained similarly. The interaction of the impuri-
ty 4d orbitals with the Pd 4d orbitals is stronger than the
4d-5sp bonds in Ag, but also the reference 4d-4d bonds of
the Pd host are much stronger than the Ag—Ag bonds,
so that in total the solute-vacancy repulsion is weaker
than in Ag. This trend is expected to continue for a
neighboring transition metal host like Rh, for which the
curve of the interaction energies should fall totally below
the one for Pd. In fact, for a host in the middle of the
transition-metal series, say Tc, we expect that all impuri-
ties, whether 4d or Ssp ones, are attracted by the vacancy.
The reason is very simple: Tc has the strongest cohesion
in the 4d series, since all bonding states are occupied in
the middle of the series. Therefore the 4d-4d bonds in Tc
are stronger than the bonds with neighboring elements,
so that the corresponding impurities should be attracted
to the vacancy.

For the interactions of sp impurities with the vacancy
we cannot offer any convincing, simple-minded picture in
terms of bond strength and one-particle energies. Here
the simplest possible explanation seems to be the electro-
static argument derived by the Hellmann-Feynman
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FIG. 3. Interaction energies of a vacancy with 3d and 4sp im-

purities in Cu (solid line) and Ni (dashed line). The open circles
refer to non-spin-polarized calculations for 3d impurities in Cu.

theorem in Sec. V. We therefore postpone this discussion
until Secs. V and VL

Figure 3 shows the interaction energies of 3d and 4sp
impurities with a vacancy both in Cu and Ni. Similarly
to the results for Ag and Pd, the sp impurities are attract-
ed by the vacancy, with the binding energy scaling with
the valence difference AZ. However, the behavior of the
3d impurities in these hosts is very different from that of
the 4d’s in Ag and Pd. This is due to the magnetic mo-
ments of the 3d impurities, which are absent in the 4d
series. Indeed, calculations without spin polarization for
Cu yield a similar parabolic dependence as found for 4d
impurities in Ag (Fig. 2). The reduction of the interac-
tion energies in the middle of the 3d series can then be ex-
plained as follows. On a neighboring site of the vacancy
the hybridization of the 3d orbitals of the impurity with
the host states is reduced. This leads to an enhancement
of the local moments and to a corresponding gain of ex-
change energy. As a result one obtains, e.g., for Mn in
Cu or Ni, only a small repulsive energy, since the loss of
the bonding is counterbalanced by the gain of exchange
energy.

A detailed comparison with experimental information
about the solute-vacancy interaction is made in Table I
for Cu, Table II for Ni, and Table III for Ag. Unfor-
tunately, for Pd (Table IV) no experimental data are
available. The most detailed information is available for

TABLE 1. Solute-vacancy interaction energies calculated for 3d and 4sp impurities in Cu and compared with experimental data.
The data marked by asterisks (8Q values) are the changes of the solute diffusion energies with respect to the self-diffusion energy of
Cu and are taken from a recent data collection (Ref. 26). For their evaluation a self-diffusion energy for Cu of Q =2.14 eV (Ref. 27)
has been used. All values are given in eV.

Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se
Theory —0.22 —0.01 0.08 0.03 0.03 0.08 0.13 0.10 0 —0.10 -—0.18 —0.28 —0.37 —0.48
Expt. —1.30° —0.11% 0.09* —0.02* 0.09* 0.11* 0.19* 0 —0.07° —0.10* —0.23¢ -0.31*% -—0.27*
—0.05¢ —0.27¢
—0.18f

2Reference 45.
"Reference 23.
°Reference 20.

dReference 24.
*Reference 21.
fReference 22.
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TABLE II. Same as Table I but for Ni host. The 8Q values marked by asterisks have been evaluated from impurity diffusion data
(Ref. 26) using a self-diffusion energy of Q. =2.90 eV for Ni (Ref. 28).

Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se
Theory —0.35 —0.13 0.01 004 0.01 0.02 0.03 0 —0.06 —0.14 —022 —0.35 —0.46 —0.60
Expt. 0 —0.27* —0.20° —0.30*
—0.50°

#References 29-31.
YReference 32.

Cu alloys. From positron-annihilation experiments in
CuGe Triftshiuser and Jank®® obtain a value of
—0.23x10 eV for the binding of the Ge impurity to the
vacancy, whereas Doyama et al.?! obtain a slightly larger
value (—0.27+10 eV). From vacancy-concentration
measurements in CuGe Hehenkamp and Sander?? deduce
a binding energy of —0.18+0.08 eV, which still com-
pares reasonably well with our calculated value of —0.28
eV. From diffusion experiments in CuZn alloys Heu-
mann?® and Hagenschulte and Heumann?* estimate bind-
ing energies of —0.07 and —0.05 eV, which are slightly
smaller than our calculated value of —0.10 eV. Note
that the binding energies obtained by diffusion and con-
centration measurement are high-temperature Gibbs free
energies, which also contain some unknown entropic con-
tribution. The extrapolation of these data to low temper-
ature is difficult.?’> The other data in Table I, marked by
an asterisk (8Q values), are obtained by solute diffusion
measurements. They represent the difference between the
impurity activation energy in Cu and the self-diffusion
energy of Cu. While the determination of the binding en-
ergy from the diffusion data is a difficult process, one
would nevertheless assume that the binding energy gives
the most important contribution to the 8Q values. For
the 3d impurities, where only solute diffusion measure-
ments are available, we find indeed a good correlation.
Especially the small energy value for Mn, which is due to
the large gain of magnetic exchange energy, as well as the
binding energies for Sc and Ti, are well reflected in the
diffusion measurements.

For the Ni host, only little experimental information is
available. From positron-annihilation experiments

Smedskjaer et al.?° report a value of —0.20+0.04 eV for
the binding energy of a Ge impurity. The same value is
also obtained by Faupel et al.>® (—0.2040.06 eV) from
solvent diffusion as well as by Mantl et al.?! from tracer
diffusion. From surface segregation in NiGe Lam et al.*?
estimate a value of —0.50 eV.

For the Ag-host, perturbed angular correlation mea-
surements by Butt et al.3} yield a binding energy of
—0.191+0.04 eV of an In impurity to the vacancy. Oth-
erwise, only binding energies deduced from diffusion ex-
periments”“zs’y“36 are available. For Cd, In, Sn, and
Sb impurities these data correlate quite well with our cal-
culations. (Note that we give no values for In in Ag and
Pd. Because of numerical problems the host Green’s
functions for Pd and Ag are not reliable in the energy re-
gion of the 4d bound state of In. Therefore we cannot re-
liably calculate the binding energy of In. Its value can,
however, be easily estimated from the neighboring ele-
ments Cd and Sn.) The reported 8Q values for the 4d im-
purities Ru and Pd are positive, indicating a repulsion
from the vacancy. While this is in qualitative agreement
with our results, the cited values seem to be too large.

IV. DIVACANCY BINDING ENERGIES

Using the same method as for the impurity-vacancy in-
teraction, we have calculated the binding energy E,; of
divacancies on nearest-neighbor sites in Cu, Ni, Ag, and
Pd. The calculated binding energies are given in Table V;
they all have about the same magnitude of about 0.07 eV.
In a simple bond model one would expect that the diva-
cancy binding energy is about 1 of the vacancy formation

TABLE III. Solute-vacancy interaction energies calculated for 4d and 5sp impurities in Ag and compared with experimental data.
The 8Q values (Ref. 26) marked by asterisks have been evaluated using a self-diffusion energy of Q.s=1.97 eV for Ag (Ref. 34) (all

values in eV).

Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb
Theory 0.09 0.20 0.24 0.25 0.23 0.19 0.10 0.0 —0.07 —0.20 —0.24
Expt. 0.88* 0.49* —0.09? —0.19° —0.20° —0.264
—0.07% —0.18° —0.18f —0.20°
—0.068 —0.118 —0.128 —0.15¢8
—0.048 —0.098

*Reference 23.
bReference 33.
‘Reference 36.
dReference 25.

‘Reference 34.
fReference 35.
8Reference 24.
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TABLE IV. Same as Table III but for Pd host. No experimental values are available (all values in eV).

Zr Nb Mo Tc Ru

Pd Ag Cd In Sn Sb

Theory —0.02 0.14 0.21

0.20 0.15 0.08

0 —0.08 -—0.14 —0.30 —0.35

energy, since due to the agglomeration of two vacancies
two bonds fewer are broken than for the isolated vacan-
cies. The calculated values are however a factor of 2-3
smaller, indicating the importance of many-body forces.
Note that our calculations do not include the effect of lat-
tice relaxations. However, we do not expect this elastic
interaction to be very important for the binding since the
relaxation contribution to the formation energy of mono-
vacancies is rather small, typically about 0.05 e¢V,*” and
since the relaxation contribution to the interaction
should be only a fraction of this.

Experimental information about divacancy binding en-
ergies can be obtained from equilibrium measurements of
vacancy concentrations. The results cited® for Au (0.32
eV) and Al (0.28 eV) are considerably larger than the
values calculated here for Cu, Ni, Ag, and Pd. Note,
however, that these data are obtained by fitting the non-
Arrhenius behavior of the vacancy concentration by a
two-vacancy model, which neglects any anharmonic tem-
perature dependence of the formation energies. The cited
values should therefore be considered with caution.

V. Z HELLMANN-FEYNMAN THEOREM
FOR INTERACTION ENERGIES

Total energies are in general difficult to interpret espe-
cially since they are the differences of very large partial
energies. This is a serious problem for the interaction en-
ergies because of their small values. Therefore it is desir-
able to have a formula for the interaction, which is to a
large extent free from these disadvantages. Here we
derive such an expression which is based on the
Hellmann-Feynman theorem and which gives a direct re-
lation of the interaction energies to the screening charge
densities of the impurities. For the derivation we consid-
er the nuclear charge Z , of the defect 4 as an external
continuous parameter.’* The derivative dE /dZ , of the
total energy is given by

dE _ OE  _OE dn(r)
dZ, 3Z4 |, on(r) dZ
=V, (R ,)+Ej . (11)

The first term, the derivative with respect to the explicit
dependence of the functional E{n(r)} on the nuclear
charge Z ,, yields the generalized Madelung potential

TABLE V. Calculated binding energies E,, of divacancies in
different fcc metals (all values in eV).

Cu Ni Ag Pd
E,y 0.076 0.067 0.079 0.11

Vy(r) at the nuclear position R 4, due to all other nuclei
and all electrons:

= Jar 22

The second term in (11) arising from the implicit depen-
dence on Z , yields the Fermi energy E because the con-
sidered states are always neutral and 8E /8n(r)=Ej.
The result (11) allows a simple classical interpretation:
Vyu(R 4)dZ 4 is the energy gain obtained by increasing
the nuclear charge against the Coulomb potential of all
other charges, while EpdZ , is the energy gain obtained
by adding dZ , electrons to the system in order to
achieve neutrality. By integrating (11) from the host
value Zj to the true value Z , of the impurity we obtain
the energy difference E(Z ,)—E (Zy). In order to obtain
a formula for the interaction energy AE between the de-
fects 4 and B, we ““create” the defect 4 once with defect
B on a nearest-neighbor site and once without defect B,
which is equivalent to defect B being infinitely far away.
We obtain for the interaction energy

Va(r)= 2 (12)

(# 4) Ir—R,| R|

z
AE= sz"dz;,{VM(RA;z;,zB)—VM(RA;z;,,zH)} ,

(13)

where V(R 4;Z!,Zp) is the Madelung potential at the
nuclear site R, of defect 4 with nuclear charge Z/,, if
the second defect has the charge Zj.

In order to express (13) in terms of the charge density
and the nuclear charges, we write n (r) in the form

n(r)=ny(r)+An (r)+Ang(r)+An (1) . (14)

Here ny(r) is the host density, An ,(r) and Ang(r) are the
changes induced by the single defects Z, and Zp,
whereas An 4p(r) is the additional change due to the
simultaneous presence of both defects. Then we obtain

from (13)
AZ , AZ, ng(r)
AE= ——————AZ dr———~—~
IRA ”‘RB| Af |RA _r‘
An 5 (1; 2, 2Zg)
_f az;, [dx R, (15)

This is an exact relation for the interaction energy be-
tween defects A and B. The derivation by the
Hellmann-Feynman theorem ensures that it is a
difference of total energies and that it implicitly also con-
tains the relevant kinetic and exchange-correlation ener-
gies. It clearly shows that AE is uniquely determined by
the charge density, which however is needed for all inter-
mediate charge states Z/,. This is even true in the case of
spin polarization where usually the total energy is ex-
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pressed in terms of the charge density and the magnetiza-
tion density. However, the advantages of the above for-
mula must be paid for by the linear order, in which
charge-density errors enter, as compared to second-order
errors in the total-energy expression by virtue of its ex-
tremal properties. As we have shown in Ref. 10, in prac-
tical calculations reliable values for the interaction ener-
gies can be obtained from (13) if the Z/; integral is evalu-
ated with a step width of AZ =1,

The main advantage of the Hellmann-Feynman expres-
sion is its simplicity, i.e., the direct relation to the poten-
tial and the charge density which enables an interpreta-
tion of the interaction in classical electrostatic terms.
Clearly Eqgs. (13) and (15) are not symmetrical in both nu-
clear charges Z, and Zjy, as one would expect. Of
course, a similar relation can also be obtained with inter-
mediate nuclear charges Zj, if defect B is “created” in
the presence of defect 4. Also a symmetrical formula
can be obtained, if both defects are ““created” simultane-
ously.

For practical purposes the limiting case of a weak de-
fect 4 with small AZ , is most important. In this case
the last term in Eq. (15) can be neglected, since it is pro-
portional to (AZ ;)% Then one obtains to first order in
AZ ,

AE=AZ, AV;;(RA)

AnB

:AZ r— s
4 IRA—RB{ f IR ,—

(16)

where AVE (R ;) is the change of the Madelung potential
at site R, with respect to the host value, if the defect B
alone is present in the crystal. Note that no assumption
is made about the strength of B. If in addition to A4 de-
fect B is also weak, the interaction energy AE is propor-
tional to AZ , AZy, which is essentially the result of
second-order pseudopotential theory.>

When we restrict ourselves to small valence differences
AZ , and consider the vacancy as the strongly disturbing
defect B, so that Z; =0, then according to Eq. (16) the
vacancy-induced change AV (R ,) of the Madelung po-
tential gives the slope of the AE curve at Z , =Zy. Due
to the almost linear behavior of the AE curves for sp im-
purities (see Figs. 2 and 4), Eq. (16) should be a reliable
approximation for these impurities. In Ref. 10 we have
calculated in this way the distance dependence of the in-
teraction energies for four shells around the vacancy. In
all four hosts the nearest-neighbor interaction is the
strongest. Especially for Cu and Ag the interaction for
the further neighbors is much weaker and shows an oscil-
latory behavior.

It is clear that in an all-electron approach as the
present one, the vacancy cannot be considered as a weak
defect, since the valence difference AZ ,=—Z , is ex-
tremely large. However just this assumption has been
made m the historic work of Lazarus,!? Deplanté and
Blandin,® and others* which considered the noble metals
as jellia with one valence electron and the vacancy as a
weak defect with AZ, ,=—1. From our present
knowledge about the electronic structure of the noble
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metals this is a doubtful procedure. In order to find out if
such a very simple interpretation of the solute-vacancy
interaction in the noble metals is possible, we have re-
peated these jellium calculations with the present state of
the art, i.e., using density-functional theory. The main
results are given in the next section and a more detailed
account will be published elsewhere.*°

VI. JELLIUM CALCULATIONS FOR Cu

In order to describe a substitutional impurity in jelli-
um,*! first we must remove the positive background
charge density in a Wigner-Seitz sphere, thus creating a
vacancy. In the center of the sphere we then put the nu-
clear charge of the considered impurity and let the elec-
trons relax. In order to compare with the “host” charge
density, we put the nuclear charge of Cu (Z =29) in the
center of the sphere, so that the Cu impurity in Cu jelli-
um serves as the reference host system. Only the per-
turbed jellium charge density is recalculated and deter-
mined self-consistently. The calculations include angular
momenta up to / =4 and use an outer cutoff radius of 10
bohr radii for the range of the perturbing potential.

Figure 4 shows the change of the charge density due to
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FIG. 4. Charge-density changes due to 3d impurities (a) and
4sp impurities (b) in a jellium corresponding to the valence den-
sity (Z=1) of Cu. The vertical line indicates the nearest-
neighbor distance R. The charge densities refer to calculations
without spin polarization.
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3d impurities [Fig. 4(a)] and 4sp impurities in Cu [Fig.
4(b)]. For the sp impurities we observe for Zn and Ge a
shallow minimum at the nearest-neighbor distance
R =4.78a; which deepens and shifts inwards for the
higher valent impurities. From these results it is clear
that a Thomas-Fermi description’? of the charge-density
changes is completely wrong, since it yields a positive and
exponentially decreasing charge density for the sp impuri-
ties. Thus, the approach of Lazarus! and Le Clair? for
the interaction energies is unjustified and the good agree-
ment obtained with the experiment is purely accidental.
For the 3d impurities [Fig. 4(a)] we observe a positive
charge-density change at the nearest-neighbor site which
strongly increases with the valence difference.

In order to calculate the interaction energy in first-
order perturbation theory [Eq. (16)], the change AV, (r)
of the Madelung potential induced by the impurities is
needed. This is shown in Fig. 5 for 3d impurities (a) and
4sp impurities (b). For the transition-metal impurities
only the results of paramagnetic calculations are given.
In the sequence Ca to Ni the first maximum of the poten-
tial shifts strongly inwards, so that the potential at the
nearest-neighbor site is always repulsive and strongest for
Ti, when the maximum is at the nearest-neighbor dis-
tance R. For the 4sp impurities the potential is always at-
tractive at R and roughly scales with the valence charge.
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FIG. 5. Changes of the Madelung potential AV, (r) due to 3d
(a) and 4sp impurities (b) in Cu jellium. Spin polarization is not
included in the calculation.
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A more detailed discussion will be given elsewhere to-
gether with jellium results for Ag.*

For the interaction energy, according to Eq. (16) we
need the perturbed Madelung potential at the nearest-
neighbor distance, since the vacancy is considered as a
substitutional defect with AZ=—1. However this
point-charge model for the vacancy is not consistent with
the jellium approach, since in order to create a vacancy
one must remove the positive background charge density
in the whole Wigner-Seitz sphere of the vacancy. There-
fore Eq. (16) has to be modified in such a way that the
average of the potential AV, (r) over the nearest-
neighbor Wigner-Seitz sphere is taken. The averaging is
done numerically. The effect of the averaging can also be
studied analytically, if one expands the potential in a
Taylor series around the nearest-neighbor distance R and
averages each term separately. For symmetry reasons,
the first-order term being proportional to the gradient of
the potential vanishes. The second-order term containing
the second derivaties of the potential can be evaluated us-
ing the Poisson equation relating AV, (r) to the per-
turbed charge density Ap(r). The third-order term again
vanishes. Thus up to third order the average of the
Madelung potential over the nearest-neighbor sphere is
given by

(AVM(r))EAVM(R)—Z?WR%VSAp(R) : (17)

where Ryg denotes the Wigner-Seitz radius. This equa-
tion describes the effect of the averaging qualitatively
correct. Quantitatively it is, however, not reliable.

The results obtained for the interaction in the jellium
model are shown in Fig. 6 together with the results ob-
tained by the KKR Green’s-function method. It is seen
that both approaches give quite similar trends. The devi-
ations essentially arise from the d band of Cu, which can-
not be taken into account in the jellium model; a discus-
sion of the origin of these differences will be given else-
where.*

Averaging the potential over the nearest-neighbor
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FIG. 6. Interaction energies of a vacancy with 3d and 4sp im-
purities in Cu as calculated in the jellium model (dashed line).
Also shown are the total-energy results obtained by the KKR
Green’s-function method (see Fig. 3). Open symbols refer to
calculations without spin polarization.
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sphere is quite important, as comparison with AV, (r)
(see Fig. 5) shows. For instance, in the 3d series AV,,(R)
has its maximum for Ti (0.43 eV) whereas the interaction
energy AE is maximal for Mn (0.27 eV) and has a value of
0.16 eV for Ti. (These values refer to jellium calculations
without spin polarization.) The difference is caused by
the large charge perturbation Ap(R) for the early-
transition-metal impurities (see Fig. 4). Therefore the
Madelung potential AV, (r) deviates for smaller dis-
tances strongly from its value at R (see Fig. 5). On the
contrary, for the sp impurities the corrections to the
point-charge model are not very important, since the cor-
responding perturbed charge densities Ap(R) are much
smaller.

By summarizing we conclude that the jellium model to-
gether with the first-order perturbation theory gives a
qualitatively correct description of the solute-vacancy in-
teraction in Cu, both for the 3d as well as for the 4sp im-
purities. Therefore, it provides a very simple explanation
of the interaction in terms of the Madelung potential of
the single impurity. However, we have also shown that a
consistent and reliable calculation of the Madelung po-
tential is required. The close agreement found in earlier
calculations! ~* is more or less accidental and due to error
cancellations of the different unreliable approximations
involved. In the work of Deplanté and Blandin® these
are, e.g., the use of the asymptotic formula for the Friedel
oscillations, the rough estimate of the impurity phase
shifts, and the point-charge model for the vacancy. Simi-
lar jellium arguments should also hold for the other
noble-metal hosts, but of course, not for transition metals
like Ni and Pd.

VII. LARGER AGGLOMERATES IN Cu AND Ag

As another interesting application of Eq. (16) we con-
sider the agglomeration of a third impurity with small
AZ , to an already existing dimer complex which as a
whole entity we identify now with defect B. Defect A
might be an sp impurity like Zn or Ga for which we ex-
pect in analogy to the vacancy-solute energies (see Figs. 2
and 3) that the interaction energy with the dimer scales
linearly with AZ ,, at least for small valence differences.

As a first example Fig. 7 shows the change of the
Madelung potential AVM(R ;) for a divacancy in Ag.
The heights of the column give the strength of the
Madelung potential AVH on the nearest-neighbor sites
R“ of both vacancies which are numbered as in Fig. 1.
Here and in the next figures downward columns mean
negative values AV <0 (e.g., binding of an impurity
with AZ ,>0), upward columns (dark) mean positive
values. The potentials are only shown for sites 6, 3, and 7
from which the potentials on the other sites can be in-
ferred. One finds that the binding on site 3, which are
nearest neighbors to both vacancies, is about twice as
strong as the binding on all other sites, being about equal
for all sites which are nearest neighbors to only one of the
vacancies. This is a consequence of two important facts.
Firstly, the interaction with a single vacancy is strongly
dominated by the nearest-neighbor interaction, as dis-
cussed in Ref. 10. Secondly, the interaction with both va-
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V=V in Ag

0.1 eV

GHJL mz’/Hfﬂr

FIG. 7. Change of the Madelung potential induced on the
nearest-neighbor sites 6, 3, and 7 (see Fig. 1 for explanation) by
a divacancy V-V (on sites 1 and 2) in Ag. In first-order pertur-
bation theory the interaction energy with an impurity is ob-
tained by multiplication with AZ. For impurities with AZ >0
downward columns mean attraction.

cancies is in a good approximation additive, so that the
binding energy on site 3 is about double the interaction
energy for a single vacancy, whereas the interaction on
the other sites is unperturbed by the second vacancy.
Quite similar results are also found for the interaction
with divacancies in Cu.

As a second example we consider the interaction of a
Z 4 impurity with a vacancy-solute dimer in Cu. Figure
8 shows the change of the Madelung potentials for dimers
consisting of a vacancy on site 2 and a Ni, Zn, Ga, or Ge
impurity on site 1. For an sp impurity with small AZ >0
we find a weak attraction on sites 6, 4, and 8 which are
adjacent to the Ni impurity only, a somewhat stronger at-
traction on the common neighboring sites 3, and a more
or less unperturbed attraction to the vacancies on sites 7,
5, and 9. While the latter is also true for vacancy dimers
with Zn, Ga, and Ge impurities, the behavior on the oth-
er sites changes drastically. On sites 6, 4, and 8 an sp im-
purity is strongly repelled, with the repulsion energy in-
creasing almost linearly with the valence difference of the
dimer impurity. On the common neighbor site 3 we have
a balance between the attractive interaction with the va-
cancy and the repulsion with the impurity, so that for a
Zn dimer these sites are still attractive but repulsive for
the Ge dimer. In all cases we have studied, the interac-
tion with the dimer can be well understood by superim-
posing the interaction of the Z , impurity with the indivi-
dual dimer defects and by restricting all interactions to
nearest neighbors. A qualitatively similar behavior is
also expected for the other hosts, i.e., Ag, Ni, and Pd.
Clearly all these results are restricted to small AZ ,. The
exact range of validity can only be found in more refined
calculations. Nonperturbative results for the impurity-
impurity interactions will be given elsewhere.*

Our calculations show that a single vacancy can bind
more than one sp impurity, since the binding of the
second impurity on positions 7, 5, and 9 is practically un-
changed. The major change is a configurational one: of
the 12 neighboring positions of the single vacancy five are
blocked by the first impurity. By considering the ag-
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Ni =V in Cu

0.1 eV

FIG. 8. Change of the Madelung potential induced on the
nearest-neighbor sites 6, 3, and 7 by an impurity-vacancy X-V
complex in Cu (impurities X =Ni, Zn, Ge on site 1; vacancy V
on site 2; see Fig. 1 for explanation). The interaction energy
with an additional impurity is obtained by multiplication with
AZ. For AZ >0 upward columns (dark) mean repulsion, down-
ward columns (open) mean attraction.

glomeration of further impurities in such a blocking pic-
ture, we find that at most four sp impurities can be bound
to a single vacancy with the total binding energy roughly
equal to four times the binding energy of a single impuri-
ty.

It is also experimentally well known that a vacancy in
Cu can bind more than one sp impurity. This has been
studied in detail in vacancy concentration measurements
in CuGe alloys?? and in solvent diffusion measurements in
GaSn (Ref. 35) and AgSb (Ref. 43) alloys. Considerable
binding of up to four sp impurities is found. The data are
analyzed by the model of Dorn and Mitchel,** according
to which the additional impurity occupies with equal
probability one of the ‘““free” nearest-neighbor positions
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of the vacancy. The binding energy for the additional im-
purities then slowly decreases with cluster size. Our
above calculations suggest a different model, since two sp
impurities strongly repel each other, e.g., in Cu two Ge
impurities have a (repulsive) interaction of 0.39 eV.*?
Therefore, the number of sites available for the additional
impurities is strongly reduced, i.e., for the third impurity
only seven sites are available with roughly unperturbed
binding, compared to 11 sites in the statistical model.**
A reanalysis of the experimental data with our more real-
istic “blocking” model should lead to somewhat larger
binding energies for the larger agglomerates.

VIII. SUMMARY AND CONCLUSION

The aim of this paper was to present accurate data for
the interaction between vacancies and impurities in Cu,
Ag, Ni, and Pd. We apply density-functional theory in
the local-density approximation and solve the Kohn-
Sham equations by using the KKR Green’s-function
method for impurity calculations. In order to minimize
the effects of lattice relaxations which are not included in
these calculations we consider only impurities from the
same row of the Periodic Table as the host, i.e., 3d and
4sp impurities in Cu and Ni and 44 and 5sp impurities in
Ag and Pd.

In all four hosts, sp impurities are strongly attracted to
a nearest-neighbor site of the vacancy, with a binding en-
ergy roughly proportional to the valence difference AZ.
In contrast to this, transition-metal impurities are re-
pelled from the vacancies, with a maximal repulsion ener-
gy of about 0.2 eV in the middle of the 4d series. For 3d
impurities in Ni and Cu magnetic exchange effects lower
this repulsive energy considerably, so that a double hump
structure of the interaction energy is observed. The cal-
culated energies are in good agreement with the available
experimental information.

By applying the Hellmann-Feynman theorem with the
nuclear charge as a parameter we derive a new formula
for the interaction energy which allows a simple electro-
static description of the interaction. Using this theorem
we have shown that the trends for the vacancy-solute in-
teraction in Cu can be easily understood within the jelli-
um model, by considering the vacancy as a weak defect.
As another application we discuss the stability of larger
agglomerates, using only the information available from
the dimer interaction.
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