
PHYSICAL REVIEW B VOLUME 43, NUMBER 12 15 APRIL 1991-II

Mesoscopic Auctuations of the ultrasound attenuation
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We compute the fluctuations of the longitudinal sound attenuation rate in mesoscopic metal sam-

ples in order to examine the efT'ects of screening in mesoscopic systems. For longitudinal sound at-
tenuation, it is essential to include the screening of the electron-phonon interaction by the electrons.
After including both the effects of the fluctuations of the stress tensor and the electron screening, we
are able to show that the fluctuations in the longitudinal sound attenuation are of the same order as
those of the transverse sound attenuation, where screening is not important. In the limit where the
dephasing length is large compared to a side L of the sample cube, the ratio of the fluctuations to
the average sound attenuation rate is of order 4'(vF7~)(kFL), where ~~ is the dephasing lifetime
and UF and kF are the Fermi velocity and wave vector, respectively.

I. INTRODUCTION

A wide variety of mesoscopic fluctuation effects in
disordered metal samples has been studied. ' For most of
the effects examined thus far, the fact that the electrons
are interacting can be neglected to lowest order in the
disorder parameter, (kFl) ', where kF is the Fermi wave
vector and I is the electron mean free path. This includes
the most extensively studied effect, the conductance Auc-
tuations. ' In this paper we examine the mesoscopic
fluctuations of the longitudinal ultrasound attenuation
because it is an effect that depends crucially on the
electron-electron interaction. Ultrasound attenuation
originates from the electron-ion interaction. For longitu-
dinal sound attenuation, the bare electron-ion interaction
must be screened by the conduction electrons. Such
screening is not important for the transverse sound at-
tenuation. The mesoscopic fluctuations of the transverse
sound attenuation have been correctly estimated by Scro-
ta. The main contribution of this paper is to show that a
similar result to that obtained in Ref. 4 for transverse
sound attenuation holds for longitudinal sound attenua-
tion once one takes proper account of the screening.

The paper is organized as follows. In Sec. II we review
the moving frame of reference technique for calculating
the ultrasound attenuation. In Sec. III we clarify the dia-
grams necessary for computing the Auctuations of the ul-
trasound attenuation. Using several identities, we are
able to show that large classes of diagrams partially can-
cel so as to become small. The remaining diagrams are
then evaluated to obtain the mesoscopic fluctuations of
the ultrasound attenuation. These results are summa-
rized in Sec. IV.

confirmed in microscopic calculations by Schmid and by
Czrunewald and Sharnberg. In reviewing the microscop-
ic calculation we use the frame of reference moving to-
gether with the lattice, which was used by Blount,
Tsuneto, and Schmid. This reference frame has the ad-
vantage that the impurities are motionless, which allows
us to neglect inelastic electron-impurity scattering and
hence greatly reduce the number of diagrams that must
be considered.

In the moving frame of reference the electron-phonon
vertex I o is equal to

(p q)(p e)
m(2MNco )'i

where p and q are the electron and phonon momenta and
e is the direction of polarization of the phonon. For lon-
gitudinal phonons e is parallel to q, while for transverse
phonons it is perpendicular to q. In Eq. (1) the frequency
of the sound is co, I and M are the masses of the elec-
trons and ions, and X is the number density of ions. We
will draw these vertices as shown in Fig. 1(a). The basic
quantity to be calculated is the phonon self-energy H.
The ultrasound attenuation rate y is the imaginary part

p+q

(a)

II. ULTRASOUND ATTENUATION
IN A BULK METAL

The sound attenuation in disordered metals due to the
electron-phonon interaction was first calculated by Pip-
pard using the Boltzmann equation, the Maxwell equa-
tions, and charge neutrality. These results were

FIG. 1. (a) The bare electron-phonon vertex. (b) A phonon
self-energy diagram.
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of the self-energy:

y = —21m[ Ii"(q, II) J
=i [II"(q,0)—II'(q, II)]~n

(g) q = n~nw

Because we will be setting Q equal to co from now on we
will use 0, for the phonon frequency.

In Eq. (2), the r and a denote the retarded and ad-
vanced part of the phonon self-energy. The simplest dia-
gram for the phonon self-energy is shown in Fig. 1(b).
There are two electron-phonon vertices. One is given by
Eq. (1), and the other is given by the complex conjugate
of Eq. (1). The internal lines are the electron Green's
functions. For transverse sound the diagram shown in
Fig. 1(b) is sufficient because screening is not important '

and the dressing by impurity lines of the vertex in Eq. (1)
is zero. For longitudinal sound attenuation the vertex
corrections are not zero, and screening is important.

In order to facilitate the calculation of the longitudinal
sound attenuation we will introduce a number of effective
vertices and interactions following the conventions of
Ref. 10. These will help in the following section, where
we calculate the mesoscopic Auctuations of the ul-
trasound attenuation. In Fig. 2(a) we define the screened
Coulomb interaction, V(q, co). The relevant vertex
correction is defined in Fig. 2(b). From Eq. (2) we see
that all we really need to calculate is the retarded self-
energy. Thus, for our purposes it will be sufficient to cal-

FIT&. 2. Effective vertices and interactions. (a) The screened
Coulomb interaction in the presence of disorder. (b) Impurity
scattering vertex corrections. (c) The screened electron-phonon
vertex. (d) The screened electron-phonon vertex with one or
more impurity line dressing the vertex.

culate just the retarded part of the screened Coulomb in-
teraction, V".

We begin by calculating the bare electron bubble Po,
which is P of Fig. 2(a) without any vertex corrections.
The retarded Po is

Po(q, ~)= —if, J [G"(p+q, a+co)G'(p, e)[S(s)—S(co+a)]d p dE,

(2')'
+G'(p+q, a+co)G'(p, c. )S(s+co)—G "(p+q, a+co)G "(p, c. )S(c,)], (3)

where the retarded and advanced Green's functions are
G" and G',

G""(p,s)=[a—s~+( —1)i/2r] ', s =p'/2m —p

where v is the density of states at the Fermi surface and

g„ is the integral,

1 0 p1 x "G"(p+q, a+co)G'(p, s), x =
mvr (2~)3

and S(v. ) is

S(e)= —tanh(e/2T) .

Po(q, co)= —v(1+icorgo), (6)

Throughout this paper we use units in which A' and k~
are equal to l. In Eq. (4) the electron-impurity scattering
lifetime is ~, and the chemical potential is p. The first
hne in Eq. (3) may be evaluated by treating the density of
states at the Fermi surface as constant because the princi-
pal contribution to the integral comes from electrons
near the Fermi surface. If one makes the same approxi-
mation for the second and third lines in Eq. (3), one ob-
tains zero because there are either two retarded or two
advanced Green's functions in the integral; however,
these two terms are not zero when one does the integral
exactly because of the factor of S(e). The complete re-
sult for Po is

The first term in Eq. (6), which is real, comes from the
G "G"and G'G' terms, while the second term comes from
the G'G' term.

Upon including the vertex corrections depicted in Fig.
2(a), Po becomes P, and our result for P "(q, e ) is

P "(q, e) = —v 1+
0

(8)

In the low-frequency, long-wavelength limit, ~~, ql &(1,
go may be approximated by 1 Dq r+icor. Here, t—he
electron mean free path and diffusion constant are I =Uz~
and D =U~l/3, respectively. Substituting into Eq. (8) we
find that P'(q, co), which is actually the density-density
response function, has the behavior one would expect
classically in the diffusive regime:
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Dq ~P "(q, ro) = —v
Dg 7 LN7

(9)

V()(q)
V"(q,co) =

1 P "(q,—co) V()(q)
(10)

The bare electron-electron interaction is Vo(q)=4ae /q . Because the phonon wavelengths we are
dealing with are much longer than the screening length,
Eq. (10) reduces to

It is important to note here that in order to get the
correct long-wavelength, low-frequency behavior in Eq.
(9), it was necessary to include both the G'G' and 6 "G"
terms as well as the G'6' terms. Had we omitted the
G'G' and G'G' terms, we would have obtained an i co~ in
the numerator of Eq. (9) instead of Dq r. This is different
from the conductivity, where the G'G' and 6"6"terms
are not important when impurity averaging. It is now
straightforward to compute the screened electron-
electron interaction, V"(q, co), of Fig. 2(a):

FIG. 3. (a) A typical diagram contributing to the longitudi-
nal phonon self-energy. (b) and (c) The two self-energy dia-
grams that give the Pippard result for the longitudinal sound at-
tenuation.

must be dressed. Evaluating the diagrams of Figs. 3(b)
and 3(c) and computing the imaginary part of the self-
energy, the Pippard result for the longitudinal sound at-
tenuation rate, y &, is obtained:

1 —
ko

V"(q, co)=-
v 1 go+ l cd'$ro

4 Zm z (17)

Before calculating the sound attenuation, it is useful to
introduce two effective vertices, I, and I f, shown in
Figs. 2(d) and 2(e). For simplicity we do not include the
factor gq,

kF'q
g = l

m (2MNQ)'
(12)

(ci)'r( ~go gp)I, =x ——'+
1 —go+ i cargo

(13)

The vertex I f is the screened vertex with one or more
impurity lines dressing the vertex:

(14)

in the definition of these vertices. These factors will be
included in the final result for the sound attenuation rate.
The first vertex I, is just the screened longitudinal pho-
non vertex of Eq. (1):

43't . (18)

Both the longitudinal and transverse sound attenuation
rates are proportional to q, as expected in the hydro-
dynamical regime. Equations (17) and (18) depend direct-
ly on the phonon momentum rather than their frequency.
They may therefore be applied to optical phonons. '

III. ULTRASOUND ATTENUATION
IN A MESOSCOPIC METAL SAMPLE

A typical diagram that must be considered for the Auc-
tuations of the longitudinal sound attenuation is shown in
Fig. 4(a). It consists of two diagrams for the self-energy
that have been impurity averaged together. This diagram

Here, the average charge per unit cell is Z. For trans-
verse sound one only needs to evaluate the diagram of
Fig. 1(b):

The screened vertex I, may have any of the three com-
binations of Green's functions, 6"6', O'G', or G'6', at-
tached to it, while the vertex I f may only have G'G' at-
tached to it because it is dressed by impurity lines. In the
long-wavelength, low-frequency limit these vertices may
be approximated by

I, =(x —
—,
' )+,4, ice~, (15)

A typical diagram contributing to the longitudinal
sound attenuation is shown in Fig. 3(a). With the intro-
duction of the effective vertices, we can sum all the dia-
grams, like the one shown in Fig. 3(a), just by computing
the two diagrams shown in Figs. 3(b) and 3(c). In order
to avoid overcounting terms, only one of the vertices

FIG. 4. Diagrams for the mesoscopic fluctuations of the
sound attenuation rate. (a) A typical diagram. (b) The structure
of a general diagram. The arrows indicate that vertices must be
inserted in all possible positions. These vertices may be
screened and/or dressed with impurity lines.
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FIG. 5. The diFerent possible inner loops for the diagrams of
the form of Fig. 4(b). The vertices I, and I f are defined in the
text. The phonon frequency is 0, and the energies of the
Green's functions are v+0/2 as in Eq. (3) with co~A.

I,+r =(x' —-') ——'.f (19)

From Eqs. (15) and (19) all of the vertices in Fig. 5 con-

has only one pair of screening bubbles, which is mutually
connected. Diagrams with more than one set of screen-
ing bubbles connected are higher order in (kFl) '. The
diagram in Fig. 4(a) also makes it clear that the fluctua-
tions in the longitudinal ultrasound attenuation include
fluctuations in the screening. Rather than draw the dia-
grams as shown in Fig. 4(a), we will be drawing them as
shown in Fig. 4(b). The arrows indicate that two vertices
must be inserted in all possible positions in each loop.
These vertices may contain impurity dressings and
screening. In the first part of this section we enumerate
the many possible combinations of vertices and retarded
and advanced Green's functions. Many of the diagrams
will be shown to be small through the use of graphical
identities. In the second part of this section the remain-
ing diagrams for the fluctuations in the sound attenuation
are evaluated.

To start we focus on only one of the loops in Fig. 4(b).
From Eq. (2) the physical quantity that we are calculating
is i(11"—II'). The different possible inner loops for y&

are shown in Fig. 5. The energy of the Green's functions
is 8+II/2, as in Eq. (3), with co —+Q. The factors of
S(e+II/2) are also the same factors that occur in the
imaginary part of Eq (3). The .vertices I, and I f are the
ones defined in Eqs. (15) and (16), and the complex conju-
gate of I, is 1,*. The complex conjugate of (I,+I f )

does not appear in Fig. 5 because we are approximating it
to be real:

FIG. 6. The four vector-vector vertex inner loops. There is
an overall factor of [S(E—Q/2) —S(E+0/2)], which is not
shown above.

tain a component whose angular average vanishes
(x —

—,
'

) and a constant term. We will call the x
component the vector vertex and the constant term the
scalar vertex. Thus, besides the different choices of re-
tarded and advanced Green's functions, there are three
possible combination vertices for each loop: two vector
vertices, two scalar vertices, or one vector and one scalar
vertex. Below we will show that only the terms with two
vector vertices are important.

The inner loops with only one vector vertex are shown
in Fig. 6. There is a common factor of
[S(E—0/2) —S(8+0/2) j, which because the phonon
frequency 0, is much less than the temperature may be
approximated by 20( —r)f/BE) where f is the Fermi
function. Thus, the loops with two vector vertices have
at least one power of 0,. The factors ~g ~

give additional
powers of q and Q '. A power of 0 corresponds to a
dimensionless factor of Q~. Likewise, a power of q corre-
sponds to a factor of ql. Thus, all the vector vertex loops
are of order (ql ) . Below we will show that the contribu-
tion from the vector-scalar loops is at most of order
(ql) (Qr), and the contribution from the scalar-scalar
loops is at most of order (ql) (Ar) . In the regime of in-
terest, both ql and Q~ are much less than 1, so it is only
necessary to keep all the vector vertex loops. The root-
mean-square fluctuations in the sound attenuation rate
are proportional to r '( ql ) .

To compute the lowest-order contribution to the ul-
trasound attenuation, we may set the momentum going
into each loop from the vertices equal to zero because
higher powers of q correspond to extra factors of ql. This
allows us to make use of the following identity, which we
write in both momentum space:

1 1 1 1 1

c, 0/2 c, +i /2w c, +0/2 c —i /2w i~ +Q v+0/2 c, i /2& c A/2 c, +i /2w
(20)
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and real space:

d XG'(x, x', 8 —II/2)6 "(x',x",8+0/2)= [6'(x,x",E —fl/2) —G "(x,x",s+II/2)],f 1

+
Gr(a)(x, x, E)= e&P x x 6" a (p E)

d3

(2~)

(21)

Thus, the graph shown at the left-hand side of Fig. 7(a)
with a scalar vertex on the top (dot) and either a vector
or a scalar vertex on the bottom (arrow) may be written
as the difference of the two graphs shown on the right-
hand side of Fig. 7(a). The dot in Fig. 7(a) represents a
scalar vertex and is not to be confused with the dot in
Fig. 2(c), which represents I, . Because Eqs. (20) and (21)
are algebraic identities, we can apply this graphical iden-
tity independent of what we connect to the inside loop.
By adding the graphs with all possible placements of the
scalar vertex, there is a cancellation between adjacent
placements of the scalar vertex, leaving only
(ir '+0) ' times the two graphs shown in Fig. 7(b). If
both of the vertices are scalar, there is an additional can-
cellation that takes place upon adding the two diagrams
like the one shown in Fig. 7(c). This cancellation reduces
the prefactor of the two diagrams in Fig. 7(b) from
(i~ '+II) ' to Q(ir '+0) . Identities similar to the
ones in Eqs. (20) and (21) may also be applied to scalar
vertices with two advanced Green's functions or two re-
tarded Green's functions:

G""(p,s —0/2)G""(p, E+0/2)

plied previously in conductance fluctuation calculations
to show that a certain class of very large diagrams is ac-
tually zero. " They can also be used to show that the
density-density response function and the mesoscopic
fluctuations of the density-density response function are
zero in the limit as q ~0. This is just the statement that
the total number of particles is fixed.

At this point we are prepared to show that the scalar-
scalar and scalar-vector loops are smaller than the
vector-vector loops by factors of Q~. If one applies the
above identities to the scalar-scalar parts of the diagrams
in Fig. 5, one finds that to lowest order in Aw the sum of
the diagrams with all possible placements of one scalar
vertex, including diagrams like the one in Fig. 7(c), is just
the difference of the two diagrams in Fig. 7(b) multiplied
by

( —,', ) 2iQ r [S(s—II/2) —S(E+II/2)] .

As for the vector-vector loops, the difference of the S

=1=—[6""(p,E+0/2) —6""(p,E —II/2) ] . (23)

The only difference between the G'6' or G "G" cases and
the G'6' case is that diagrams like the one in Fig. 7(c)
are zero. The identities of Eqs. (20)—(23) have been ap-

r a r

(a)
r a

(b) i

r

(c)

FIG. 7. Graphical identities. (a) The basic identity. The dot
on the top denotes a scalar vertex and is not to be confused with
I, of Fig. 2(c). {b) The two diagrams that remain after summing
over all possible placements of the scalar vertex in {a). (c) Addi-
tional inner loops that are important if both of the vertices are
scalar vertices.

FIG. 8. Diagrams for the fluctuations of the sound attenua-
tion rate. (a) and (b) The most-singular diagrams. (c) A less-
singular diagram.
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functions gives one power of Q. Thus, Eq. (24) has three
powers of A. Including the power of fI ' from ~gz~,
there is a net power of 0 from the scalar-scalar loops,
which makes them much smaller than the vector-vector
loops by (Qr) . If one applies the above identities to the
vector-scalar parts of the diagrams in Fig. 5, one finds
that to lowest order in Q~ the vector-scalar loops give a
contribution that is i( —,", )Qr times the derivative BIBc, of
the product of S(e) and the two diagrams in Fig. 7(b).
The integral of a total derivative is zero provided that the
function one is differentiating decays at +~. The func-
tion S(s) does not decay as s~+~; however, the dia-
grams of Fig. 7(b) when connected to the outside loop in-
volve impurity ladders, which decay for energies far from
the Fermi surface. Thus, the vector-scalar loops must
have at least a power of 0, which when multiplied by
the 0 ' from ~g ~

gives a net factor of Qw. The vector-
scalar loops are also smaller than the vector-vector loops.
This completes our proof that only the vector-vector
loops are important to lowest order in Q~.

At this point we must evaluate the diagrams like the

one shown in Fig. 4(b) with all vector vertices and any of
the combinations of retarded and advanced Green's func-
tions shown in Fig. 6. These diagrams are similar to the
ones for the conductance fluctuations, except that the
vertices are not current vertices, but the stress vertexx3 and loops containing all advanced or all retarded
Green's functions do contribute. For the conductance
there are no loops with all retarded or advanced Green's
functions. ' ' Three possible diagrams are shown in Fig.
8. If the diffusion propagators (ladder sums) carry
momentum k, then these diagrams have poles propor-
tional to k . The diagram in Fig. 8(c) has four diffusion
propagators, giving a factor of k; however, each of the
x

3
vector vertices occurring by itself gives a factor of

k so that the diagram in Fig. 8(c) actually has no singu-
larity, i.e., it is proportional to k . In a similar manner
one can show that the most divergent diagrams are the
ones in Figs. 8(a) and 8(b). Summing all such diagrams,
the mean square fluctuations of the ultrasound attenua-
tion are

'((~j I) ~ 8 (kFt)
y

de r)f J d—s' —Bf
(y()2 9 (n,(L3)~ 2~ Bs 2~ Bs'

2

=Dr — (m„+m +m, ) —i(s —c,')r+rlr& .

g [4lk I
'+12Re(& ')],

m

(25)

(26)

Here we have assumed that the sample is a cube of side
L. The dephasing lifetime is ~, and n, &

is the density of
electrons. Because we have an isolated sample, the in-
tegers m, take on the values 0, 1,2, . . . . The angular
brackets in Eq. (25) denote the average over the impurity
configuration at zero magnetic field. As usual if one mea-
sures the fluctuations for a given sample as a function of
magnetic field, the result is reduced by a factor of 2. For
transverse sound attenuation, where screening is not im-
portant, one sums the same set of diagrams, except that
the bare transverse phonon vertex of Eq. (1) replaces
x —

—,'. This just changes the result of Eq. (25) by a con-
stant factor in such a way that

(27)

An estimate in the fractional change in the sound at-
tenuation in the limit where the dephasing length is long
compared to the sample length is obtained by only keep-
ing the m; =0 term in the sum of Eq. (25):

der of magnitude, the factor of (kFL ) is much greater
than 1 for a typical metal sample. Thus, the fluctuations
in the ultrasound attenuation are very small.

IV. SUMMARY

In conclusion, we have computed the mesoscopic fluc-
tuations of the ultrasound attenuation in impure metals.
After carefully taking into account the effects of the
screening by the electrons, the fluctuations of the longitu-
dinal sound attenuation were shown to be of the same
size as the transverse sound attenuation. Physically this
means that for characteristic values of the sound frequen-
cy and wave number the condition of electroneutrality is
valid, and the mesoscopic fluctuations of the electron-
electron and electron-ion interactions are small. The size
of both the longitudinal and transverse sound attenuation
fluctuations is very small compared to their average
value.
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