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The electronic and magnetic structure of {111} stacking faults in nickel is investigated utilizing a
fully self-consistent, layered multiple-scattering approach which does not require full three-
dimensional symmetry or the use of finite-size slabs. The electronic and magnetic structures of a
twin boundary, an intrinsic fault, an extrinsic fault, and two other stacking sequences are calculated.
In addition, total energies of the faults are calculated and found to be in good agreement with the
available experimental results. Localized states appear in all the studied stacking faults; the state’s
energies and exchange splittings are tabulated. The presence of a stacking fault results in a decrease
in the spin polarization near the faults. This decrease arises from subtle changes in the electronic
structure arising from the fault. For all the faults, the spin polarization is found to be insensitive to
the orientation of the nearest-neighbor atoms, but instead can be related to the distance to the
nearest atom in the direction perpendicular to the fault plane. Very simple empirical expressions
for calculating the total energy and spin polarization of any stacking configuration are presented.

I. INTRODUCTION

Stacking faults are known to influence elastic proper-
ties of metals and may also influence bulk magnetic prop-
erties through magnetic-domain-wall-stacking-fault in-
teractions. It follows that the electronic and magnetic
structure of {111} stacking faults in transition metals is
of considerable interest. Recently, attention has been fo-
cused on the theoretical' ¢ and experimental proper-
ties’ ™ '* of transition-metal films and surfaces, but rela-
tively little attention has been given to planar defects in
bulk transition metals. This is somewhat surprising since
a thorough understanding of {111} stacking faults in the
pure transition metals may lead to a better understanding
of transition-metal films and surfaces.

This paper is concerned with the calculation of the
electronic and magnetic properties of {111} stacking
faults in nickel. Yndurain and Falicov'® studied this
problem using an unpolarized tight-binding method and
found that localized electronic states appear at the inter-
faces, but they did not examine the faults’ magnetic
structure. Grise et al.!® performed tight-binding calcula-
tions utilizing large unit cells containing stacking faults
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and found a 3% change in the spin polarization on the
central layer of an extrinsic fault as well as a rich elec-
tronic structure including numerous localized states, but
they did not calculate total energies for the faults.

Recent advances in electronic-structure calculations
permit a fully self-consistent calculation of the faults’
properties without the imposition of periodic boundary
conditions or the use of finite-size slabs. The electronic
and magnetic structures are calculated exactly, within the
one-electron local-spin-density approximation, using a
fully  self-consistent layer—Korringa-Kohn-Rostoker
(LKKR) technique."’ )

The spin polarization and total energies of face-
centered-cubic (fcc) nickel, hexagonal-close-packed (hcp)
nickel, and several types of stacking faults are calculated
and analyzed. The calculated total energies agree well
with experimental estimates. It is argued that small
changes in the spin polarization at a stacking defect are
the result of two, subtle effects: (1) a symmetry-induced
rearrangement of the majority-spin states near the Fermi
level and (2) a local broadening in the bandwidth of the
minority-spin band which crosses the Fermi level. The
energies and exchange splittings of the localized states,
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which appear at all of the studied faults, are calculated
and tabulated. In addition, the total energies and spin
polarization are fitted to simple empirical expressions
which can be used to calculate the properties of any
stacking sequence.

Section II of this paper contains a brief description of
the method of calculation. Section III presents the re-
sults of the calculations. Section IV contains the analysis
of the results, and simple empirical relations for the spin
polarization and total energy are discussed and analyzed
in Sec. V. The conclusions are presented in Sec. VI.

II. METHOD OF CALCULATION

In the LKKR method, the properties of a three-
dimensional periodic solid are calculated by dividing the
solid into two-dimensional planar components. The
method proceeds by first calculating the T matrix of a
two-plane unit. The T matrix of the two-plane unit is
then used to generate the T matrix of the four-plane unit.
This process, referred to as layer doubling,18 is repeated
until the 7" matrix of a complete half-space is generated.
The T matrices for the left and right half-spaces are then
combined to generate the T matrix of the complete solid.
Layer doubling provides an extremely efficient method
for calculating the properties of the three-dimensional
solid.

Once the T matrix of the entire solid is known, the
single-particle Green’s function is calculated from the
Dyson equation,

G:G0+GoTGO 5 (1)

where G, is the free-particle Green’s function and T is
the T matrix for the complete solid. The Green’s func-
tion can then be used to calculate the physical properties
of the solid. For example, the spectral function [spatial-
and energy-resolved density of states (DOS)], p(r,E), is
given by

p(r,E)=—(1/7m)ImG(r,r,E) , ()

where r denotes the position and E denotes the energy.
The spectral function can then be used to calculate the
charge density, Fermi energy, and electronic energy of
the system merely by integrating over the appropriate
variable with the appropriate weighting factor.

In the self-consistent iterations, the charge density cal-
culated from the Green’s function is used to generate a
new potential which includes contributions from both the
Coulomb interaction with the nuclei and other electrons,
and the exchange-correlation potential in the local-spin-
density approximation (by means of the expression of
Hedin and Lundqvist!®). The generated potential is then
converted to the so-called muffin-tin form, an approxima-
tion which is known to produce good results for close-
packed metals. The phase shifts of these potentials are
calculated, including the semirelativistic corrections of
Koelling and Harmon,?° and a new T matrix is calculat-
ed. (Spin-orbit coupling, which is probably only impor-
tant in the regions of k space where two bands of oppo-
site polarization cross near the Fermi level, is neglected.)
The entire process is then iterated to self-consistency.
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The LKKR formalism easily adapts to a three-
dimensional system containing a stacking defect. In cal-
culating the properties of a stacking defect, the first step
is to characterize completely the bulk material. The
second step embeds NN layers of material, containing the
stacking defect, within the bulk system. The self-
consistent formalism described above is then applied to
the N-layer region; the potentials of the atoms in the N
layers are allowed to change but the potentials in the bulk
regions are restricted to having their bulk values, as is the
Fermi level of the complete system (stacking fault and
bulk). The constraint that the potentials be bulklike out-
side the N-layer region provides the boundary condition
for the adjusted region. Structural relaxations near the
faults are not considered. The close-packed structure of
the stacking faults suggests that this is a good approxima-
tion.

A mixed basis set is used in the LKKR method. The
multiple-scattering equations in each plane are solved in
a spherical-wave basis containing the / =0 to [ =2 (s, p,
and d) partial waves. The spherical-wave basis is then
transformed into a plane-wave basis containing 19 plane
waves. The plane-wave basis is used to connect the
separate planes. A triangular contour, containing 28
points in the upper-half complex energy plane, is used for
the energy integrations. It is necessary to use 45 k points
in an irreducible wedge of the two-dimensional Brillouin
zone to obtain convergence. Earlier calculations®! using
only six k points and eight points for the energy contour
produced results with similar trends in spin polarization
although larger in magnitude and similar total energies.
For the bulk systems, the potentials are iterated until the
Fermi energies are stable to at least 10~ ° hartree. The
potentials of the interface calculations were iterated to
obtain a similar accuracy. At this level of self-
consistency, the spin polarizations are stable to better
than +0.001up, where pp is the Bohr magneton.

III. RESULTS

The muffin-tin density of states MTDOS), i.e., the den-
sity of states resulting from integrating p(r,E) over the
muffin tin, for fcc nickel is shown in Fig. 1. The nearest-
neighbor distance was chosen to be that of Moruzzi,
Janak, and Williams?>—4.63155 a.u. The calculated
Fermi energy is 0.3530 hartree above the muffin-tin zero
(all energies are quoted relative to the muffin-tin zero),
and the muffin-tin spin polarization, which is the polar-
ization of the charge within the muffin-tin radius, is
0.584up. The spin polarization of the charge within the
Wigner-Seitz sphere is 0.569u 5, indicating that the inter-
stitial charge is polarized in the directions opposite to
that in the muffin tin, a feature common to all the calcu-
lations below. The exchange splitting, as measured by
the peak in the MTDOS closest to the Fermi level is
0.022 hartree (0.60 eV), which agrees well with the value
0.68 eV given?® by Wang and Callaway.

The electronic and magnetic properties of hcp nickel,
with ideal ¢ /a ratio, were also calculated. The nearest-
neighbor distance was fixed to be the bulk fcc value quot-
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FIG. 1. The muffin-tin density of states (MTDOS) for bulk
fcc nickel. The solid line is the majority spin and the dashed
line is the minority spin. The dotted line represents the Fermi
level.

ed above. While the hcp phase of nickel is not seen ex-
perimentally, its calculated properties can be used to help
in understanding the properties of {111} stacking faults
in the fcc phase. ({111} stacking faults have layers of
atoms in which the nearest-neighbor atoms occupy the
positions they would occupy in the hcp lattice.) The Fer-
mi level of hcp nickel is found to lie at 0.3534 hartree.
The spin polarization within the muffin tin is 0.579upg;
that within the Wigner-Seitz sphere is 0.564u 5. The spin
polarization changes by less than 1% in going from the
fcc phase to the hcp phase; one expects that the changes
in spin polarization near a stacking fault should be simi-
lar in magnitude. The calculated total energy of the hcp
phase is 85 erg/cm? (111)-plane larger than the total en-
ergy of the fcc phase.

The ABC notation** is used to describe the stacking of
the (111) planes. Each (111) plane forms a triangular net.
There are two distinct (low-energy) sites in layer A4 on
which the next (111) plane can be stacked, referred to as
B and C. The fcc structure is built by stacking the planes
in the sequence ABC ABC, and the hcp structure is con-
structed by stacking the planes in the sequence
AB AB AB. 1In the notation used below, the fcc structure
is denoted by (:--{ABC)---) where the angular
brackets indicate that the structure within them is repeat-
ed to infinity in the direction indicated by the bracket im-
mediately adjacent to the “---.” Hence the hcp struc-
ture is denoted by (---{ AB) ---). The five types of
faults investigated are shown in Fig. 2 and are referred to
as (a) a twin-boundary fault (- - - (BCA YB{ ABC) - - - ),
(b) an intrinsic fault (- - - (CAB){ ABC) - -), (c) an ex-
trinsic fault (---(CAB)A{(CAB) - --), and, for the
lack of established names, (d) a superextrinsic fault
(+-+(BCAYCB(ABC) ---) and (e) a hyperextrinsic
fault (---(BCA)YCBA(CAB)---). (The letters in
Fig. 2 are staggered to aid in visualizing the structure of
the faults.) The number of layers allowed to readjust in
each calculation is the number of pictured layers less 2
(the two end layers were constrained to be bulklike).
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Each of the faults (b)—(e) is composed of twin-boundary
faults separated by 0-3 (111) planes, respectively. An
analysis of the trends in this series of faults should pro-
vide a good indication of the importance of interactions
between twin-boundary faults, as well as healing lengths
for the electronic and magnetic structure.

The muffin-tin spin polarizations for each of the stack-
ing sequences are presented in Table I. (Muffin-tin spin
polarizations are quoted because full-cell spin polariza-
tions are unavailable. The Wigner-Seitz approximation
to the full-cell polarizations shows trends identical to
those demonstrated in the muffin-tin spin polarizations.)
The labeling of the layers in Table I corresponds to that
shown in Fig. 2, where the first entry under each struc-
ture is the uppermost layer in Fig. 2. Since the spin po-
larizations are symmetric about the midpoints of the
faults (indicated by arrows in Table I), the table contains

A A
B
B
c
c A
(a) A c (b)
c
B A
A B
c
A A
B
c B
A c
B
(c) c A (d)
B
c
c A
A B
B
A
B
c
B
(e) A
c
B
c
A

FIG. 2. The investigated stacking faults: (a) The twin-
boundary fault, (b) the intrinsic fault, (¢) the extrinsic fault, (d)
the superextrinsic fault, and (e) the hyperextrinsic fault. The
layers allowed, in the calculation, to adjust for the presence of
the fault are those shown, with the exception, in each case, of
the top and bottom layers, which are restricted to having the
electronic and magnetic structure of the bulk. The letters are
staggered to aid in visualization of the stacking-fault structure
(the [111] direction of the lattice points straight up in the
figure).



43 ELECTRONIC AND MAGNETIC STRUCTURE OF {111} ...

9445

TABLE I. Muffin-tin spin polarization (up). The muffin-tin spin polarization of the bulk hcp struc-
ture is 0.579u 5. The arrows indicate the central point of each fault.

Twin Intrinsic Extrinsic Superextrinsic Hyperextrinsic

A 0.584 A 0.584 A 0.584 A 0.584 A 0.584
B 0.584 B 0.585 B 0.584 B 0.579 B 0.579
(o 0.579 C 0.579 o 0.580 C 0.584 C 0.587
— A 0.587 A 0.582 A 0.586 B 0.577 B 0.579
— —C 0.571 — — A 0.583

the results for only the upper half of each fault. The
values of the spin polarization for layers immediately ad-
jacent to the bulk suggest that the regions in which the
potential is allowed to readjust are sufficiently large. The
changes in spin polarizations induced by the presence of a
fault are very small, the largest difference (the central lay-
er of the extrinsic fault) representing only a 2% decrease
in spin polarization. This difference should be compared
with the 16% reduction in spin polarization of the {111}
surface predicted by tight-binding theory.*>

Table II contains the calculated values for the
stacking-fault energies. The energy of a single twin-
boundary fault is 78+5 erg/cm?. (The error bars reflect
the numerical stability of the calculation.) The energies
of the remaining faults are roughly twice that of the
twin-boundary fault, which is consistent with the fact
that each of the faults is composed of two twin-boundary
faults. The energy of the extrinsic fault is slightly less
than twice the twin-boundary fault, indicating that there
is a slight interaction between two twin boundaries
separated by one (111) plane.

Overall, the agreement between the theoretical result
and experimental results is quite impressive. Experimen-
tal estimates? for the intrinsic stacking fault range from
79 to 410 erg/cm?, with the best estimates near 120—130
erg/cm?. The calculations presented here give the value
of 155 erg/cm?,

Figure 3(a) is the two-dimensional Brillouin zone used
for the calculations. The dashed line demarcates the irre-
ducible wedge over which the integrations were per-
formed. Each point in the two-dimensional Brillouin
zone corresponds to a direction in the three-dimensional
Brillouin zone. For example, the T point includes all the
states with k directed along the I'—L direction. This is
indicated in Fig. 3(b) by labeling the T point by I" and L.
Similarly, the M point includes all the states with k
directed along the L —X direction. (The two-dimensional

TABLE II. Total energies of stacking faults.

Fitted energy

System Energy (erg/cm?) (erg/cm?)
Twin 78+£5 81
Intrinsic 155+5 150
Extrinsic 145+5 156
Superextrinsic 160£10 150
Hyperextrinsic 170+10 162

projection points of the K points of the three-dimensional
zone are shown for completeness.) Any alteration in the
spin polarization resulting from a stacking fault will in-
volve the majority- and minority-spin states nearest to’
the Fermi level. The minority-spin states pass through
the Fermi level along the I'-X and I'-L directions.
Hence changes in these states should be reflected in the
M and T MTDOS, respectively. The majority-spin states
nearest the Fermi level lie along the X —W directions.
Changes in the states at X should be reflected in the M
MTDOS.

Figure 4 is the two-dimensional projection of the
three-dimensional band structure of fcc nickel, plotted
along the symmetry directions of the two-dimensional
zone. The shaded regions of this figure correspond to
points for which three-dimensional band states exist. The

(a) —
M
K
® L, X
R K

FIG. 3. Panel (a) is the two-dimensional Brillouin zone used
in the calculations. The dashed line demarcates the irreducible
wedge over which the integrations were performed. Panel (b)
show the projection points of the symmetry points of the full
three-dimensional Brillouin zone of the fcc lattice, labeled by
their corresponding three-dimensional labels.
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FIG. 4. The two-dimensional projected band structure of
bulk fcc nickel. The shaded regions of this plot correspond to
points for which three dimensionally extended band states exist.
The white regions, in which no three-dimensional band states
are found, are the regions where localized states may be found.
The error bar indicates the accuracy to which the figure is
drawn. From the figure it is clear that localized states (in the
depicted energy range) may be found near T and K, but not near
M.

white regions are gaps for which there are no three-
dimensional band states. Localized states can appear in
these gaps. Evidently, there is the possibility of finding
localized states in the immediate vicinities of I’ and K,

0.0

0.0

MTDOS (arb. units)

0.0

0.0 T franss
0.20 0.25 0.30 0.35

energy (hartree)

FIG. 5. The layer-projected MTDOS for the T point of the
twin-boundary fault. The solid curve is the majority-spin states
and the dashed curve is the minority-spin states. The dotted
line represents the Fermi energy. The labels correspond to the
layers contained in Table I. The arrow indicates the majority-
spin resonant states. (The corresponding minority-spin resonant
state, not indicated by an arrow, lies 0.021 hartree above the
majority-spin state.) (The energies and exchange splittings of
the resonance are given in Table II1.)
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FIG. 6. The layer-projected MTDOS for the K point of the
twin-boundary fault. The solid curve is the majority-spin states
and the dashed curve is the minority-spin states. The dotted
line represents the Fermi energy. The labels correspond to the
layers contained in Table I. The arrows indicate the majority-
spin localized states. (The corresponding minority-spin local-
ized states, not indicated by arrows, lie approximately 0.02 har-
tree above their majority-spin counterparts.) (The energies and
exchange splittings of the states are given in Table III).

but not about M (for this range of energies).

Layer-projected MTDOS were calculated and plotted
for the T and K points in the two-dimensional Brillouin
zone for all of the studied faults. In all cases, states local-
ized at K were found. In addition, a nearly localized res-
onance was found at T. The energies and exchange split-
tings of the localized states are tabulated in Table III.
These states may be observable in photoemission experi-
ments, although their presence may be masked by surface
states. Figures 5 and 6 are the layer-projected MTDOS
for T and K of the twin boundary, respectively. The T
resonance (Fig. 5) is clearly visible at 0.300 hartree (0.321
hartree) in the majority (minority) spin. In addition, the
three localized states at K are also apparent (Fig. 6).

IV. ANALYSIS

This section of the paper is divided into two separate
subsections. The first considers the effects of the stacking
faults on the spin polarization near the faults. The
second analyzes the properties of the localized states.

A. Magnetic structure

As stated above, the changes in spin polarization in-
duced by the presence of the faults represent a very small
percentage change, the largest change (the central layer
of the extrinsic fault) corresponding to approximately
2%. While the effects reported here are most likely to be
too small to be observed experimentally, an understand-
ing of the source of the changes in spin polarization may
be useful in predicting the magnetic properties of stack-
ing faults in other materials, e.g., cobalt.

The Wigner-Seitz-sphere spin polarization on the cen-
tral layer of the extrinsic fault is 0.556up, which is re-
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TABLE III. Energies and exchange splittings of localized states (energies are in hartrees). Asterisks indicate that the state ap-

peared as a shoulder on another peak.

r K
Structure Majority Minority Splitting Majority Minority Splitting
Twin 0.300 0.321 0.021 0.307 0.330 0.023
0.289 0.308 0.019
0.205 0.221 0.016
Intrinsic 0.297 0.320 0.023 0.313 0.335 0.022
0.294 0.316 0.022
0.286 0.307 0.021
0.204 0.219 0.015
Extrinsic 0.299 0.320 0.021 0.307 0.330 0.023
0.289 0.308 0.019
0.205 0.222 0.017
Superextrinsic 0.300 0.321 0.021 0.307 0.330 0.023
0.289 0.308 0.019
0.205 0.222 0.017
Hyperextrinsic 0.300 0.322 0.021 0.308 * *
0.306 0.328 0.022
0.289 0.308 0.019
0.205 0.222 0.017
duced from the bulk fcc value, 0.569u;. An analysis of  passes through the minority-spin d states. These

the angular-momentum-resolved charge distribution aids
in understanding the source of this reduction. Table IV
contains the angular-momentum-resolved Wigner-Seitz-
sphere charges (excluding the core electrons) for bulk fcc
nickel, bulk hcp nickel, and the central layer of the ex-
trinsic fault. This table also contains the angular-
momentum-resolved difference in charge between the
bulk fcc structure and the two other structures.

Analysis of the data in the table indicates that the
change in spin polarization in going from the fcc to the
hcp structure arises, in the calculation, via a transfer of
charge from the majority-spin s, d, and mostly p states
into the minority-spin d states. This is exactly what one
would expect from the structure of the density of states in
bulk fcc nickel where the majority-spin states nearest to
the Fermi level are s and p states, and the Fermi level

minority-spin d states have wave vectors lying along the
I to L line ([111] direction) of the full three-dimensional
Brillouin zone, and hence are likely to be influenced by
the changes in symmetry of the crystal along that direc-
tion.

Details of the change in electronic structure leading to
the reduction in the spin polarization are reflected in
Figs. 7 and 8. Figure 7 compares the MTDOS of hcp and
fcc nickel at T'. The T point includes those states with k
along the I' to L direction of the fcc three-dimensional
Brillouin zone; the corresponding states in the hcp zone
lie along T" to 4. The d band nearest to the Fermi level is
significantly broadened in the hcp case. In addition, the
minority peak nearest to the Fermi level lies, in the hcp
structure, completely below the Fermi level. The band
broadening is consistent with the fact that the effective

TABLE IV. Wigner-Seitz charge distribution.

Majority spin

Minority spin Total charge

Charge Difference Charge Difference Charge Difference
fcc s 0.3256 0.3291 0.6547
P 0.3663 0.3858 0.7521
d 4.5928 4.0004 8.5932
hcp s 0.3253 —0.0003 0.3279 —0.0012 0.6532 —0.0015
p 0.3647 —0.0016 0.3855 —0.0003 0.7502 —0.0019
d 4.5922 —0.0006 4.0044 0.0040 8.5966 0.0034
ext. s 0.3252 —0.0004 0.3285 —0.0006 0.6537 —0.0010
p 0.3640 —0.0023 0.3849 —0.0009 0.7489 —0.0032
d 4.5884 —0.0044 4.0079 0.0075 8.5963 0.0031
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FIG. 7. A comparison of the I'-projected MTDOS for bulk
fcc nickel (upper panel) and bulk hep nickel (lower panel). The
solid lines are the majority-spin states and the dashed lines are
the minority-spin states. The vertical dotted line represents the
Fermi level of fcc nickel (the position of the Fermi level of hcp
nickel is indistinguishable at this scale). The width of the d
band nearest to the Fermi level is noticeably increased in the
hep structure. This broadening can be correlated with a reduc-
tion in spin polarization, which is consistent with the simple
Stoner theory of magnetism which suggests that spin polariza-
tion is inversely related to the bandwidth.

density of atoms along the [0001] direction of the hcp
structure, which is the direction equivalent to the {111}
directions of fcc structure, is higher than that found in
the fcc structure. The calculated reduced spin polariza-

fce

MTDOS (arb. units)
g

0.0

— .I aat T I‘
020 025 030 035
energy (hartree)

FIG. 8. A comparison of the M-projected MTDOS for bulk
fcc nickel (upper panel) and bulk hep nickel (lower panel). The
solid lines are the majority-spin states and the dashed lines are
the minority-spin states. There is a symmetry-induced rear-
rangement of the majority-spin states near the Fermi level in go-
ing from the fcc to the hep structure; a gap opens in the majori-
ty states and a peak appears above the Fermi level. The rear-
rangement of states pushes majority-spin states of mostly p
character above the Fermi level. The electrons which formerly
occupied these states are then forced to occupy minority-spin
states near the Fermi level.
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tion in the hcp structure is consistent with the simple
Stoner theory of magnetism which suggests that spin po-
larization is inversely proportional to the bandwidth.
Figure 8 is the MTDOS of hcp and fce nickel plotted at
M. The M point includes the states which lie along the
line connecting X and L of the fcc three-dimensional Bril-
louin zone (the corresponding direction in the hcp zone is
the L to M direction). The most significant feature of this
plot is the peak in the majority-spin density of states
which appears above the Fermi level in the hcp structure.
In addition, a gap opens in the majority-spin states at the
Fermi level. In the fcc structure, the majority-spin states
which cross the Fermi level lie near the L point and the
majority-spin d states nearest to the Fermi level lie at the
X point. In going to the hcp structure, the cubic symme-
try is lost and the states at L and X are mixed, resulting
in the observed changes, including the gap at the Fermi
level and the majority-spin peak above it. The result of
this symmetry-driven change is that majority-spin states,
mostly p states, are pushed above the Fermi level and the
electrons formerly in those states are forced to occupy
the minority-spin d states along the I" to A4 direction of
the hep zone.

The physics underlying the differences between hcp
nickel and fcc nickel can also help to explain the small
changes in spin polarization observed near a stacking
fault. There are two types of layers which appear in the
stacking sequences. One type, which has the local sym-
metry (i.e., all 12 nearest neighbors and their relative lo-
cations) of the hcp lattice, trigonal prismatic, is referred
to as a P layer. The other layers, which have the local
structure of the fcc lattice, octahedral, are referred to as
O layers. The hcp lattice is composed entirely of P layers
and the fcc lattice is composed entirely of O layers. The
stacking-fault structures studied here are composed of P
layers embedded in an O layer bulk. These P layers
might be expected to have some of the properties of the
hep bulk.

Consider the twin-boundary fault, which consists of
one isolated P layer in an otherwise fcc structure. The
most unusual feature of this fault is that the layers with
the spin polarization of the bulk hcp lattice are actually
the O layers immediately adjacent to the P layer. Furth-
ermore, the P layer of the fault has a spin polarization
near that of the fcc structure. This trend is exactly oppo-
site to what one would expect from naive arguments
based on local structure, but can, in fact, be understood
quite simply as follows. In the twin-boundary fault, the
O layers immediately adjacent to the P layer each have
one neighbor in the [111] direction at a distance of two
(111) planes away, whereas in the fcc structure each atom
has two neighbors at a distance of three (111) planes
away. The presence of a neighbor at only two (111)
atomic planes away results in a local broadening of the
MTDOS associated with the states with wave vectors
along the I" to L direction, which are exactly the states
that appear broadened when going from the fcc structure
to the hep structure. This local broadening is apparent in
the T layer-projected MTDOS for the twin-boundary
fault (Fig. 5).

This local broadening of the ' MTDOS on layers with
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neighbors in the [111] direction at a distance of only two
(111) planes away is a feature common to all of the stud-
ied faults, and the spin polarization of these layers is re-
duced relative to the bulk fcc value. (This reduction,
while very small, is believed to be a real prediction of
local-density-functional theory, and does not arise from
the slight charge imbalance of the stacking faults which
could account for at most 0.001uy of the change in mo-
ment.) It is worthwhile noting that the largest calculated
reduction in spin polarization appears on the central O
layer of the extrinsic fault—a layer with two neighbors
along the [111] direction at a distance of two (111) planes
away. [Examination of the M spectral function (not
shown) of the extrinsic fault reveals the beginnings of the
formation of the majority-spin peak above the Fermi lev-
el as well.] The relationship between spin polarization
and neighbors in the [111] direction can be made more
quantitative, and is discussed in Sec. V.

The small changes in spin polarization would most
likely not be present if the Fermi level did not cross those
bands composed of states with k along the [111] direc-
tion. Thus the mechanism of the reduction in spin polar-
ization seems very specific to nickel. This, however, may
not be the case. The band structure of cobalt?® shows
some of the very features necessary to produce the ob-
served effects: A minority-spin d band crosses the Fermi
level along the T" to A4 direction (equivalent to the [111]
direction in the fcc structure), and the majority-spin band
along the M to L direction of the hcp zone nearest to the
Fermi level is in nearly the same configuration relative to
the Fermi level as that in hcp nickel. The presence of O
layers in the P layer bulk of cobalt may, therefore, result
in an enhanced spin polarization on the O layers.

B. Electronic structure

Figures 5 and 6 are the layer-projected MTDOS for the
twin-boundary fault plotted at T' and K, respectively.
The most notable feature of Fig. 5 is the pronounced res-
onant state which splits off the lower edge of the upper d
bands for both spin polarizations. This resonance is
present in all the studied faults, and effectively increases
the local bandwidth. Three localized states are apparent
in the K MTDOS (Fig. 6), one at 0.307 hartree (0.330 har-
tree), another at 0.289 hartree (0.308 hartree), and a third
state at 0.205 hartree (0.221 hartree) in the majority
(minority) -spin MTDOS.

The twin-boundary fault is unique among the faults
studied in that it is the only fault with one P layer. The
remaining faults each contain two P layers with a various
number of intervening O layers, ranging from zero in the
intrinsic fault to 3 in the hyperextrinsic fault. It is in-
teresting to study to what extent P layers interact when
separated by different numbers of planes.

A simple anlaysis suggests the following arguments.
Consider the K point of the two-dimensional Brillouin
zone. Each P layer should result in three states localized
at that P layer. Therefore, in the faults with two P layers,
there should be six states localized at the faults. Interac-
tions between the states centered on different P layers
should split the states, resulting in three symmetric and
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three antisymmetric states. Inspection of Table III, how-
ever, reveals that, at most, four localized states appear at
the faults.

Figure 9 is the layer-projected MTDOS for K of the
hyperextrinsic fault. The localized state at 0.205 hartree
(0.222 hartree) in the majority (minority) spin appears to
be the antisymmetric state of a symmetric-antisymmetric
pair (i.e., the state has a node on the central layer of the
fault). However, it may be simply that the state is very
well localized and does not interact with the localized
state centered on the other P layer of the fault. Inspec-
tion of the K MTDOS for the twin-boundary fault (Fig. 6)
suggests that this is in fact the case. The localized state
at 0.205 hartree has zero spectral weight on all but the P
layer and the two O layers immediately adjacent to it.
The same holds true for the state at 0.289 hartree (0.308
hartree) in the majority (minority) spin. The states at
0.308 and 0.306 hartree in the majority-spin band do,
however, appear to be a symmetric-antisymmetric pair.
(The state at 0.308 hartree is the antisymmetric state.) So
simple arguments explain the behavior of the hyperex-
trinsic fault quite well.

It is not a bold step to assume that as the P layers are
brought closer together, the interactions between the
states localized on different P layers will become larger.
If this were the case, one would expect the splitting ob-

0.0

0.0

0.0

MTDOS (arb. units)

0.0

T
020 025 0.30 0.35
energy (hartree)

FIG. 9. The layer-projected MTDOS for the K point of the
hyperextrinsic fault. The solid curves are the majority-spin
states and the dashed curves are the minority-spin states. The
dotted line represents the Fermi energy. The arrows indicate
the majority-spin localized states. (The corresponding
minority-spin localized states, not indicated by arrows, lie ap-
proximately 0.02 hartree above their majority-spin counter-
parts.) (The energies and exchange splittings of the states are
given in Table III.) The states at 0.308 and 0.306 hartree in the
majority-spin states, indicated by only one arrow, appear to be a
symmetric-antisymmetric pair of states split by interactions be-
tween the states centered on different P layers. This splitting,
which is present even in non-self-consistent calculations, is not
observed in any of the other faults and appears to be related to
the specific structure of the hyperextrinsic fault and the states
involved in the splitting.



9450

served in the hyperextrinsic fault to be smaller than that
in the superextrinsic fault. Surprisingly, no splitting is
observed in the superextrinsic or even in the extrinsic
fault. The states on different P layers appear to be essen-
tially noninteracting, until the P layers are immediately
adjacent (the intrinsic fault). It is not easy to understand
these observations within a simple theory. The splitting
observed in the hyperextrinsic fault appears to be a
symmetry-induced phenomena (it is present even in non-
self-consistent calculations) which depends on the de-
tailed structure of the hyperextrinsic fault, as well as on
the nature of the localized states.

V. SIMPLE EMPIRICAL EXPRESSIONS

As discussed in Sec. IV, the spin polarization of a layer
is most sensitive to the distribution of atoms along the
[111] direction orthogonal to the fault plane, and is not
very sensitive to the orientations of the nearest and next-
nearest neighbors. This dependence can be described
quantitatively.?! The spin polarization of any layer can
be fitted to an expression of the form

3
u=My+ 3 na;, (3)
i=2

where u is the spin polarization of the layer under con-
sideration and y; is the number of layers, i layers away,
that are identical to the layer under consideration, (e.g.,
for the fcc structure, 17,=0 and 1;=2, while for the hcp
case, 1,=2 and 17;=0). From structural considerations,
1n,=0 always. The parameters M, a,, and a; are fitted
to the results of all calculations based on the bulk fcc
structures (i.e., not including the bulk hcp results). The
fits were performed giving the fcc bulk result an infinite
weight resulting in a two-parameter fit. (The parameters
M, and a; are not independent because of the infinite
weight given to the bulk fcc result.) The fitting parame-
ters have the values M;=0.584up and o,= —0.005u5.
The results of the fitting for the extrinsic and intrinsic
faults are shown in Fig. 10. The fit accurately reproduces
the trends in spin polarization for all of the faults. The
predicted value of the hcp bulk spin polarization is
0.573up, a result slightly smaller than that calculated by
the LKKR method. This discrepancy probably stems
from the fact that the Fermi level in the hcp bulk differs
from that of the fcc bulk, and the simple linear fitting
scheme described above cannot be expected to be fully re-
liable.

The energy of the stacking faults can also be modeled
by a simple linear fitting scheme. The energy of the
stacking faults is fitted to the following expression:

E=3

layers

) 4)

4
E,+ > &
i=2

where E, is zero for O layers and a nonzero constant for
P layers and &; is the number of planes located i (111) lay-
ers away that are different from what they would be in
the fcc case (e.g., £§,=2, £3=2, and §,=2 for the hcp lat-
tice). The parameters E, and the y;’s are energies to be

fitted to the complete calculation. They are given in
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FIG. 10. A comparison of the LKKR spin polarization and
spin polarizations predicted by the simple fitting scheme for the
intrinsic and extrinsic faults. The solid lines are guides for the
eye. The simple formula accurately reproduces the trends in
spin polarization for both pictured faults. Fits to the LKKR
data for other faults are equally good.

Table V. The resulting energies, as given by (4), are con-
tained in Table II. Overall, the fitted energies are in
reasonable agreement with the energies calculated by the
LKKR method and are certainly in reasonable agreement
with the experimental values.

Hirth and Lothe?’ suggested, based upon geometrical
arguments, an expression for the energy of the twin-
boundary, intrinsic, and extrinsic stacking faults in fcc
metals. The resulting formulas were expressed in terms
of pairwise bonding interactions. Including the effects
from up to the eighth nearest neighbor suggests that

EintzEethZEtwin . 5)

The results presented here give roughly the same rela-
tionship between energies, but show a slight reduction in
energy for the intrinsic and extrinsic faults, possibly aris-
ing from interactions between adjacent P layers. The en-
ergies calculated here are not precise enough to draw
strong conclusions. The P layers do interact, however, as
is aptly demonstrated by the splitting of the states in the
hyperextrinsic fault, and the energy of the extrinsic fault
does seem to be slightly less than twice the twin-
boundary fault energy.

TABLE V. Energy fitting parameters (erg/cm?).

E, 67
Y2 13
V3 —10
Ya 3
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The fitted fault energies and the splitting of the local-
ized electronic states suggest anomalous behavior for the
hyperextrinsic fault. Its energy is predicted to be twice
the twin-boundary-fault energy, but the faults with four
and five layers separating the P layers are predicted to
have lower energies (156 erg/cm?), thus making the hy-
perextrinsic fault a local maximum in the energy versus
separation curve.

VI. CONCLUSIONS

The electronic and magnetic properties of {111} stack-
ing faults in nickel have been calculated using a fully
self-consistent LKKR formalism which does not require
finite-sized slabs or periodic boundary conditions. The
total energies and spin polarizations of all of the faults
were calculated and tabulated. The total energies were
found to be in good agreement with experiment.

The reported changes in spin polarization are very
small (less than 29%). Nevertheless, the mechanism
behind the reduction appears to be a physical prediction
of the local-density-functional theory used to calculate
the properties. The decrease in spin polarization can be
related to the distance to the nearest neighbor in the
[111] direction, and does not seem to depend on the
changes in the relative orientations of the nearest neigh-
bors. The close proximity of atoms in the [111] direction
results in a local broadening of the states formed from the
band states with k along the [111] direction. This
broadening is accompanied by a symmetry-induced rear-
rangement of the majority-spin states near the Fermi lev-
el, and results in a slight decrease in spin polarization.
These effects, while depending directly on the specific
features of the nickel band structure, may be present in
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cobalt stracking faults.

Localized states appear at all of the studied faults.
Their energies are calculated and tabulated. The split-
tings of the states suggest anomalous behavior for the hy-
perextrinsic fault, i.e., that fault in which two trigonal
prismatic layers are separated by three (111) close-packed
planes. These localized states may be observable in pho-
toemission experiments, but the presence of surface states
may mask the stacking-fault states.

Finally, simple empirical fits are used to describe both
the spin polarization and total energy of any stacking se-
quence. The fits are in reasonable agreement with both
the experimental and LKKR results. The formulas
should be useful for analyzing more complicated stacking
sequences.
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FIG. 4. The two-dimensional projected band structure of
bulk fce nickel. The shaded regions of this plot correspond to
points for which three dimensionally extended band states exist.
The white regions, in which no three-dimensional band states
are found, are the regions where localized states may be found.
The error bar indicates the accuracy to which the figure is
drawn. From the figure it is clear that localized states (in the
depicted energy range) may be found near T and K, but not near



