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Fabry-Perot transmission resonances in tunneling microscopy
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We have used the tunneling microscope to observe stacking-fault contrast in conductance and
topographic images of the Si(111)-7X7surface as a function of applied gap bias. This contrast is

found to be a strong function of the bias, with the maximal contrast occurring near energies
where standing-wave formation, between the surface and a buried interface, is predicted in a
one-dimensional resonant-tunneling theory. The agreement between experiment and theory indi-

cates that this technique is useful for probing details of buried interfaces formed by surface
reconstruction and in heteroepitaxial growth.

An important structural aspect of the Si(111)-7X7
reconstruction in the dimer-adatom-stacking-fault
(DAS) model proposed by Takayanagi et al. ' is the ex-
istence of a subsurface stacking fault in one half of the
diamond-shaped unit cell. This fault gives rise to an
asymmetry in the electronic properties of the unit cell that
have been detected with the tunneling microscope under
various biasing conditions. These asymmetries include
a Fermi-level state at + 0.15-eV tip bias ' that gives rise
to a height asymmetry at positive-tip bias voltages, ' an
adatom T4 backbonding state ' ' at —1.5 eV that is
slightly shifted in energy between the faulted and unfault-
ed halves of the unit cell giving rise to an observable
height asymmetry around —1.5-eV bias, and a stacking
fault state over the faulted half of the unit cell at —2.8
eV that gives rise to an asymmetry in conductivity map-
pings at —2.0 eV. We have used the tunneling micro-
scope to probe locally the diA'erential and total tunneling
conductance of the Si(111)-7&7surface as a function of
bias between —0.25 and —10.0 eV and have found that
the differential-conductivity contrast is oscillatory in bias
about the short diagonal of the unit cell. In particular, the
diff'erential-conductivity oscillations are found to bracket
states at —0.20-, —2.8-, and —7.8-eV bias that gives rise
to a height asymmetry between the two halves of the unit
cell, indicating an increased state density over the faulted
half of the unit cell at these tip biases. We have found
that these states can be predicted in a one-dimensional
model of resonant tunneling between the sample surface
potential and a buried potential barrier that is spatially in-
homogeneous due to the stacking fault. By variation of a
single parameter, the depth of the stacking fault below the
surface, we are able to fit three "particle in a box" type
states to thos found experimentally. This model ties to-
gether the previous observations of the Fermi-level state
at —0.15-eV tip bias, the conductivity contrast at —2.0-
eV (Ref. 4) bias, the extra state density found over the
faulted half of the unit ceil at —2.8-eV bias, and leads to
the prediction of a new state at —7.8 eV that has been ex-
perimentally observed. In addition, fitting the three ex-
perimentally determined states to the results of the one-
dimensional model yields a reasonable value of 4.9 A for
the depth of the buried stacking fault below the surface.

The sample was cut from an arsenic-doped, 0.005-0-
cm Si(111) wafer, and prepared ex situ with a thin pas-

sivating oxide. The oxide was sublimated in situ at a sam-
ple temperature of 875 'C by passing a direct current
through the well outgassed specimen. The operation of
the microscope to obtain conductivity maps has been de-
scribed previously, ' so that it will only be described
brieAy here. We collect a tunneling topograph and a con-
ductivity map simultaneously by superimposing a small
(0. 1 V) ac signal at 4.5 kHz on the dc bias of the vacuum
gap, and detect the in phase ac component of the tunnel-
ing current with a lock-in amplifier.

Figure 1 shows a series of topographic (I) and conduc-
tance (II) images that were taken at different biases tun-
neling into the empty states of the Si(111)-7X7surface.
Each image pair [(I) and (II)] was collected simultane-
ously. The data in Fig. 1(d), taken at a tip bias of —2.0
eV and a demanded tunneling current of 1 nA, correspond
to the conditions used in the first study of stacking-fault-
conductivity contrast by Becker et aI. and the data are
similar. The conductivity image shows contrast between
the two halves of the unit cell; one equilateral triangle ap-
pears lighter than the other, indicating that it is an area of
higher conductance. Becker et al. associated this con-
ductivity contrast with the diA'erent substructures of the
two halves of the unit mesh. In the DAS model proposed
by Takayanagi et al. ,

' the outermost complete double lay-
er in the unit mesh consists of two triangular subunits that
are respectively faulted and unfaulted with respect to the
substrate. The high-conductivity (bright) triangles point-
ing towards the right-hand side in Fig. 1(d) correspond to
the faulted half" of the unit cell at this bias. From the se-
quence of images in Fig. 1, it can be seen that at some
biases, —0.25 eV (a), —2.0 eV (d), and —3.5 eV (f), the
stacking-fault contrast is apparent; while at other biases,—1.0 eV (b), —1.5 eV (c), —2.5 eV (e), and —4.5 eV
(g), this contrast is minimal, with the conductivity image
rendering a reverse image of the topograph that is uni-
form across the two halves of the unit cell. In addition to
these biases, similar stacking-fault contrast has been ob-
served at —0.05, —7.5, and —8.0 eV, but these data are
not shown in Fig. 1. At —0.05 eV, the topographic image
is distorted due to the small gap width at this bias;
whereas beyond —5.0 eV, the topographic images de-
grade due to a decreasing signal-to-noise ratio with in-
creasing gap width. From the sequence of images shown
in Fig. 1, it can also be seen that the phase of the
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FIG. 1. Tunneling (I) and conductivity (II
The gray scale range for the topograph is als
—2.0 eV (0.8 A), (e) —2.5 eV (0.5 A), (f)
quired at a demanded tunneling current of 1 nA

) images of the unoccupied states of Si(111)-7&&7as a function of applied tip voltage.
o indicated. (a) —0.25 eV (1.0 A), (b) —1.0 cV (1.2 A), (c) —1.5 eV (1.0 A), (d)

—3.5 eV (0.5 A), (g) —4.5 eV (0.2 A), and (h) —5.0 eV (0.2 4). All images were ac-

stacking-fault contrast in the conductivity images oscil-
lates between the two halves of the unit cell as the applied
bias is increased. The biases at which these phase rever-
sals occur can be grouped into pairs: [—0.05, —0.25 eV
(a)], [—2.0 eV (d), —3.5 eV (f)], and [—7.5, —8.0eV];
where at the first bias the high-conductivity triangle
points to the right-hand side (faulted half of the unit cell),
and at the second bias it points to the left-hand side (un-
faulted half). Between these phase oscillations in the
conductivity images, the topographic image renders
stacking-fault contrast as an apparent increase in height
over the faulted half of the unit cell. Such contrast can be
seen in the topographic images at —0.25 (a) and —2.50
eV (e), where the faulted half of the unit cell is 0.2 A
higher than the unfaulted half. Stacking-fault contrast
can also be seen in the topographic images at —1.5 (c)
and —4.50 eV (g) where the unfaulted half of the unit
cell is 0. 1 A higher than the faulted half; however, the im-
ages at these biases are not bracketed by a phase reversal
in the conductivity maps as found above and may be asso-
ciated with a diAerent phenomenon as discussed below.
To test if the contrast oscillations associated with the
stacking fault in Fig. 1 could arise from standing-wave
formation between the sample surface at Z=0 and a
buried interface at Zo, labeled as n =1, 2, and 3 in Fig. 2,
we have calculated the conductivity for this one-
dimensional potential.

The six parameters that enter into this model are the
work functions of the tip and sample, the eA'ective tunnel-
ing area, the Fermi energy of the tip, the strength of the
&function scattering potential V;, and its depth below the

surface Zo. To justify the use of this simple model, it is
worthwhile to consider the inAuence of each of these pa-
rameters on the theoretical results. As we are measuring
and calculating unoccupied states of the sample, the tip's
electronic properties have little inAuence on the results. '

We have chosen values of PT =3.5 eV and ps =3.1 eV to
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FIG. 2. Potential-energy diagram used in the calculations.
The standing-wave resonances excited outside of the sample, be-
tween the surface and the classical turning point ZT, have been
labeled m =1 and 2. The calculated electron probability densi-

ties y* y, corresponding to standing-wave formation between
the sample surface and buried interface at Zo, have been labeled
n =1, 2, and 3. The energy levels of the standing waves have

been indicated by heavy lines under the electron probability
densities.
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place the first standing-wave peak, labeled m =1 in Fig. 2,
at —5 eV as found in the experimental conductivity
curves. The reduction of these values from the typical
values for the work functions refIects the reduced barrier
heights found in tunneling microscopy. " The effective
tunneling area infiuences the initial gap width and hence
the number of standing-wave peaks in a given bias inter-
val. The value of 200 A has been chosen to allow the for-
mation of the m = 1-4 standing-wave peaks in the bias in-
terval from —5 to —10 eV as found in the experimental
data. For the Fermi energy of the tip, we have used a typ-
ical value of 8 eV. The 8-function strength and its posi-
tion are variables in the present model and have been la-
beled V; and Zo, respectively, in the potential energy dia-
gram shown in Fig. 2.

Figure 3 shows our calculated differential conductivity
as a function of the applied gap bias for a constant
demanded tunneling current of 1 nA. The tip trajectory
calculated for this bias path is in excellent agreement with
that found experimentally. An oscillatory behavior of the
conductivity beyond a gap bias of —5 eV is obtained for
V; =0 in Fig. 3(a) as has been reported previously in asso-
ciation with electron standing-wave formation. ' ' Here
each successive oscillation in dI/dV incorporates an addi-
tional standing wave in the gap, labeled as m =1, 2 in Fig.
2. When the interface 8-function strength increases, new
structure appears in the conductivity spectrum that has

0.0 -1.0 -2.0 -30 -40 -50 -60 -70 -80 -90 -10.0
BIAS VOLTAGE (V)

FIG. 3. Calculated conductance spectra vs Vb;, , for (a)
V~ =0, (b) V; = 1.5 eV A, Zo =5.2 A, (c) V; = 1.5 eV A, Zp =5.0
A, (d) V; =1.5 eVA, Z0=4.9 4, and (e) experimental spectrum
over the faulted half of the unit cell for a demanded tunneling
current of 1 nA.

been labeled as n =2 and 3 in Fig. 3(b). This spectrum
corresponds to values of V; =1.5 eV A and Z0=5.2 A.
The value of 1.5 eV A has been selected as it represents a
value beyond the I-eV-A threshold for obtaining the addi-
tional peaks, as discussed below. The depth of the scatter-
ing potential of 5.2 A has been chosen to represent the
theoretically determined value for the depth at which the
symmetry of the bulk crystal ends on the faulted half of
the unit cell at the second bilayer into the solid. To derive
this value, we have added together the height of the ada-
toms above the first bilayer, ' 1.7 A, one half the width of
a bilayer, 0.4 A, and an interatomic spacing of 3.1 A. On
the unfaulted side of the unit cell, the symmetry of the
bulk crystal continues up to the first bilayer. In Fig. 3(b),
we have identified the new peaks as the n =2 ( —2.5 eV)
and n =3 ( —7. 1 eV) standing waves by examining the
electron probability density y y between the surface at
Z=0 and the buried interface at Z=Zo. The electron
probability density is plotted in Fig. 2. In addition, by ex-
amining y*y at low bias, we have been able to identify
the n =1 standing-wave state at —0.2 eV. This peak is
lost in the conductivity spectrum due to the large increase
in conductivity as the bias approaches zero. The conduc-
tivity spectrum is calculated for V; =1.5 eV A and
Z0=5.0 A in Fig. 3 to show the shift in the standing-wave
peaks with a shift in the scattering-potential depth. The
n =2 peak has shifted up to —2.7 eV, and the n =3 peak
has increased to —7.5 eV; the calculated values scale al-
most as (n/Zo) . In Fig. 3(d), the conductivity spectrum
is calculated for V~ =1.5 eV A and Zo =4.9 A in order to
match the n =2 ( —2.8 eV) standing-wave peak to the
peak found at —2.8 eV in the experimental spectrum
shown in Fig. 3(e). The n =3 peak in Fig. 3(d) has shift-
ed up to —7.7 eV. The experimental spectrum 3(e) has
additional structure, labeled 8 at —1.6 eV and B at —6.0
eV, which does not appear in the theoretical curve. Un-
like the peak at —2.8 eV, which is localized to the faulted
half of the unit cell, the structures at —1.5 and —6.0 eV
are found on both sides of the unit cell and thus are not
predicted by this theory as discussed below. The n =3
peak has not been labeled in the experimental spectrum as
it is not clearly discernible from the m =3 state. We have,
nonetheless, been able to detect the n =3 state near —7.8
eV bias due to its spatial contrast in conductivity maps.

We have also calculated conductivity spectra for vari-
ous 8-function strengths in the range of 1 to 4 eV A.
Beyond a threshold strength of 1 eV A. necessary to obtain
the additional structure, the peak positions remain sta-
tionary and only grow in magnitude with increasing
scattering strength. Thus the peak positions are indepen
dent of the 6 function strength V; -over a wide range of
strengths, whereas they vary almost as (n/Zo) with the
scattering potential depth Z0.

The connection between the predictions of standing-
wave formation in the one-dimensional resonant-tunneling
theory, and the experimental observations of stacking-
fault contrast in the topographic and diA'erential conduc-
tivity images can be seen by consideration of the conduc-
tivity peak n =2 in Fig. 3(e). This peak is similar in ener-

gy to the —2.8-eV peak in conductivity that was found to
be localized over the faulted half of the unit cell by Becker
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et al. Just below this peak, at —2.0 eV, the topographic
image in Fig. 1(d) is uniform between the two halves of
the unit cell, whereas the differential conductivity image
II shows that the conductivity is increasing with bias on
the faulted (bright) side of the unit cell. This increase in
conductivity can be associated with an increase in the den-
sity of states with an incremental increase in bias, or an
enhancement in the transmission coefficient with a change
in bias. Examination of the theoretical results indicate
that both eff'ects are occurring. As the bias increases to-
wards —2.8 eV, an increased density of final states be-
comes available over the faulted half of the unit cell in as-
sociation with the formation of the n =2 standing wave
shown in Fig. 2. Also, as the resonant condition is ap-
proached, the tunnel-barrier penetration probability is in-
creasing. At resonance, in Fig. 1(e), the topographic im-
age I renders stacking-fault contrast where the faulted
half of the unit cell is high indicating an increased density
of states over the faulted half of the unit cell. ' At this
bias, the theory predicts extra final-state density on the
faulted half of the unit cell from the excitation of the n =2
standing wave. The stacking fault contrast is minimal in
the conductivity image at this bias as the tip follows con-
tours of constant local density states. ' To first order, the
tunneling microscope will act to nullify density of state
contrast in diff'erential conductance images through com-
pensation in the tunnel gap width. As the barrier reso-
nance at —2.8 eV falls below the source injection bias at—3.5 eV in Fig. 1(f), the stacking-fault contrast in the
diA'erential conductivity appears with reverse phase
(stacking-fault dark), indicating a decrease of state densi-
ty and barrier penetration probability over the faulted
area with an incremental increase in bias. The topograph-
ic image once again becomes uniform over the two halves
of the unit cell. In addition to the agreement between
stacking-fault contrast predicted by the resonant-
tunneling model and the stacking-fault contrast observed
previously at —2 eV by Becker et al. , the theory also
predicts stacking-fault contrast associated with the forma-
tion of the n = I barrier resonance near —0.20 eV, and
with the n =3 resonance near —7.7 eV. As mentioned
previously, we have also observed topographic stacking-
fault contrast with phase oscillation in the conductivity
images that are bracketed by the bias pairs of ( —0.05,—0.25 eV) and ( —7.5, —8.0 eV) corresponding to the
formation of the n =1 and 3 standing-wave states, respec-
tively.

Finally, we consider the additional features labeled A
and 8 in the experimental conductivity spectrum that are
not predicted by the resonant-tunneling theory. Feature
A in Fig. 3(d) occurs at —1.6 eV, and a small amount of
stacking-fault contrast can be seen in the topographic im-
age at —1.5 eV shown in Fig. 1(c). As shown by Becker
et al. , this feature appears on both sides of the unit cell in
the conductivity spectra; however, it is shifted down by 0.3
to —1.3 eV on the unfaulted half. This 0.3-eV diAerence
in the density-of-states maxima on either side of the unit
cell would give rise to the stacking-fault contrast seen in
Fig. 1(c). As this peak occurs on both halves of the unit
cell, it is not explained by the theory presented here. The
feature at —6.0 eV, labeled B in the experimental con-
ductivity spectrum, can also be seen to be present on both
halves of the surface unit cell in the data of Becker et al.
We attribute this feature, and the contrast in the conduc-
tivity map in Fig. 1 (h), to the formation of the n = 1

standing-wave state within the adatom layer. This feature
grows in strength when either tin or germanium is substi-
tuted for the silicon adatoms in T4 sites. ' Application of
the resonant-tunneling theory leads to a scattering depth
of 1.5 A for the formation of this state, which is in good
agreement with theoretical adsorption heights for T4 ada-
toms. '

In conclusion, we have observed stacking-fault contrast
in topographic and diA'erential-conductivity images of the
Si(111)-7x7 surface as a function of applied gap bias.
The biases at which this contrast appears shows good
agreement to biases at which a one-dimensional model of
resonant tunneling predicts the formation of standing-
wave solutions to the Schrodinger equation between scat-
tering potentials located at the sample surface and at a
buried interface. The agreement between experiment and
theory demonstrates that electron standing-wave spectra,
in conjunction with bias-dependent topographic and con-
ductivity images, are useful for probing details of buried
interfaces formed by surface reconstruction and in hetero-
epitaxial growth. '
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