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Spontaneous polarization in quantum-dot systems

15 APRIL 1991-I

K. Kempa, D. A. Broido, and P. Bakshi
Department of Physics, Boston CollegeC, hestnut Hill, Massachusetts 02167-38ll

(Received 26 November 1990)

We show that the dipole-dipole interactions can lead to a spontaneous polarization of quantum
dots. For a square lattice of dots we find that the phase transition into the polarized state is of
the second order, and leads to an antiferroelectric arrangement.
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Recent advances in semiconductor technology have lead
to the fabrication of quantum-dot structures, ' in which
carriers are confined in all three spatial dimensions.
Quantum dots can be viewed as artificially structured
atoms. Most common arrangements of dots are two-
dimensional (2D) periodic arrays, which can be construed
as planar crystals. Therefore, some phenomena that
occur in crystals might also be expected to occur in such
dot systems. In this Rapid Communication we explore
one such phenomenon: the spontaneous phase transition
into a ferroelectric or antiferroelectric state. Such a
phenomenon is of intrinsic scientific interest and, in addi-
tion, could lead to important device applications, such as
nanometer-size switching elements for novel computer ar-
chitectures. '

Thus far, most of the investigations of quantum-dot sys-
tems have focused primarily on the far-infrared response
of individual dots, " and have neglected the interdot in-
teractions. In a previous paper we have shown that the
strength of the interdot interaction depends on the ratio
N/a, where N is the number of electrons per dot and a is
the interdot spacing. For most current semiconductor dot
systems, the interdot effects are negligible. However, for
closely spaced dots that contain a suKciently large num-
ber of electrons, this interaction can be large. In this pa-
per we show that under such conditions a phase transition
may occur in which the dot system will polarize spontane-
ously. In particular, we show that a second-order phase
transition can occur that leads to both ferroelectric and
antiferroelectric arrangements, with the latter being the
most stable phase.

We consider a system of quantum dots arranged in a
2D lattice that is taken to lie in the x-y plane. We model
the dots as interacting point dipoles. This model assumes
that the electronic charge density in each dot remains well
separated from that of its neighbors. The internal proper-
ties of each dot are reAected through a dipole polarizabili-
ty a(ro), which is determined from the intradot physics.

Previously, we studied the electromagnetic response of
such a system of dots within the linear response theory.
We found that the dispersion relation of the transverse
plasma mode in this system is

1 =4tra(ro) g(k)/a '

where, for a square lattice of dots with lattice constant a,

and

v(l) =—1 g 1
1

3n
4tr (l2+n2) 3/2 l2+ 2

n&0 for l =O. (3)

The first few values of v(l) are v(0) =0.383, v(1)
= —1.16x 10, v (2) = —1.54 x 10, v (3) = —6.4
x10

Since the confining potential inside a dot is roughly par-
abolic, ' ' "the N interacting electrons in each dot can
be viewed ' as a single quasiparticle with charge Ne and
mass Nm oscillating in a parabolic we11 whose frequency
is coo. Therefore, a(co) can be assumed to have the form
a(co) =Ne /em(too —co ), where e is the dielectric con-
stant of the dot material and m is the electron effective
mass. The dispersion relation of the transverse plasma
mode is then given by

ro'(k) =roo2 —&(k)ro,', to~2 =
CPla

Note that the downward shift from mo corresponds to a
softening of the mode, and that a significant shift in ro can
be achieved most efhciently by reducing the interdot sepa-
ration a. When the interdot interaction is strong enough
that co(k) =0, the plasma mode becomes "frozen out" and

describes an arrangement of dipole moments in the dot
system arising from static deformations of the electronic
charge densities within each dot. This point corresponds
to the onset of spontaneous polarization in the dot system.
For a given lattice spacing a, the critical number of elec-
trons required for this to happen, N, (k), is given from Eq.
(4) with co(k) =0, i.e., coo = [g(k) ] ' 'rot, :

ENl CO

(5)
4tre g k

It can be seen, from Eqs. (2)-(4), that the dispersion is
negative. As a result, the intersection with the m =0 axis
occurs first at the boundary of the first Brillouin zone:
k =n/a. If N exceeds N, (n/a), the to=0 crossing of the
dispersion occurs for k~ & tr/a, predicting a stable static
arrangement with wavelength 2tr/k ~. The higher-k modes
(k~ & k ~ tr/a), however, now become unstable [Im(co)
WO] and spontaneously begin to grow exponentially on
a time scale r(k) =[Im(to)] ' =too '[N/N, (k) —1]'
Thus the dominant instability occurs for k =tr/a. Non-
linear effects should set in over a time period a few times
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We now analyze this phenomenon through an electro-
static analysis, including nonlinear eAects. For a static
(ro =0) external electric field, E=E(x)y, the dipole mo-
ments of the dots become polarized in lines that are paral-
lel to E. The dipole moment P(l) of a dot lying on the lth
line can be written in terms of a local field expansion of
the form

P (I) =a r Er„(l) +a 3Er„(l) +
(6)

Er„(l)=E(la)+
3 g v(l')P(l'),

a I'

where the local field at the line l, Er„(l), is composed of
the external field and that produced by the other dipole
lines. The linear polarizability ar =a(0) =Ne /emroo,
while the third-order polarizability Q3 and all higher or-
ders are determined from the anharmonicity of the poten-
tial seen by the quasielectron in the dot. ' This potential,
including the first anharmonic term, can be expressed as

and combining Eqs. (9) and (12) yield

1 B g3 Q3

C g)
' C g4] Q)4

(i3)

For vanishing external electric field E=O, this yields a
nonvanishing moment:

' 1/2
N, (k) —N=DP =

Q3
r i 3/2

1 Na
4~(

(i4)

When the phase transition occurs, N & N„and the
numerator becomes negative. Therefore, since from Eq.
(8), a3 & 0, the transition is second order. The minimum
of F is given by

r ' 2

F(P, ) = NA[N ——N, (k)], d =—1 4ire ((k)
a e

V(R) = —, NmrooR + —, yR + (7) (is)

From Eqs. (15) and (5) it is clear that F(P, ) decreases
with increasing ((k) which, in turn, increases with k [see
Eqs. (2) and (3)]. Therefore, the most stable config-
uration [lowest F(P, )] occurs at the boundary of the first
Brillouin zone: k =n/a. The corresponding dipole mo-
ments along line I are P(l) =P( —1)'. Adjacent lines
then have oppositely directed moments, and the arrange-
ment of lines is antiferroelectric. For k & x/a, other less
stable antiferroelectric arrangements are generated with
longer wavelengths, A. =2m/k. A ferroelectric arrange-
ment occurs for k =0 when P(l) =P. This is the least-
stable arrangement since it leads to the smallest value of g
[largest F(P, )l. We note that the longitudinal mode that
arises in the mode analysis discussed above leads to an ar-
rangement of dipoles that is even less energetically favor-
able except for k =0 where it becomes degenerate with the
transverse branch. We therefore will not discuss this ar-
rangement here.

That the antiferroelectric arrangement is the most
stable can be seen from the form of the dipole-dipole in-
teraction. For two neighboring dipoles lying in the same
line, the minimum energy arrangement occurs when the
dipoles are parallel to each other. In contrast, for two ad-
jacent lines the minimum energy arrangement occurs
when the neighboring dipoles are antiparallel to each oth-
er. Thus, the minimum-energy arrangement of the system
of dipoles corresponds to antiferroelectric lines.

It is interesting to note that in the three-dimensional
case, the ferroelectric phase is more stable than the anti-
ferroelectric phase for the body-centered-cubic and face-
centered-cubic arrangements. ' ' The corresponding
"body-centered" square (bcs) and "face-centered" square
lattices in two-dimensions are identical and correspond to
a simple square (ss) lattice rotated by 45'. However, the
minimum energy phase for dipoles in the bcs lattice still
corresponds to the antiferroelectric lines. Furthermore,
this phase is less energetically favorable than that of the
original ss lattice. It is, however, possible that some other
2D geometrical arrangements of the dot system would

where R is the displacement of the quasielectron from the
center of the dot and y is a positive constant. It is then
straightforward to show that'

4
Ny

Q3
e2 mC02

(8)

For a plane-wave variation of the field, E(x) =Ee'"',
the solution of Eqs. (6) is obtained by writing P(l)
=Pe' '. Then, we obtain

P =g]E+g3E +3 (9)

where the linear and third-order susceptibilities g] and g3
are given by

Na
4z((k) [N, (k) —N] ' (ioa)

1 —(4ir/a )ar&(k)

Q3 N, (k)
[1 —(4x/a )a r g(k) ] ' Nc (k) —N

(10b)

Spontaneous polarization occurs for a given k when the
denominator in Eqs. (10) vanishes. Note that this condi-
tion is identical with that arising from Eqs. (1) and (4) for
co =0.

The stable phases associated with the transition into
this new state can be determined from a thermodynamic
analysis. ' The Landau free-energy density F can be ex-
panded in powers of P as

= —AP + —BP +. -- —CEP1 2 ] 4

where A, B, and C are constants. It has been assumed
that temperature T=O K. Minimizing F with respect to P
yields

(i2)CE =AP+BP +

F= —,
' gaP (l)+ —,

' gbP (l)+ QE(la)P(l)—
I 1 I
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favor the ferroelectric phase over the antiferroelectric
phase.

The above analysis is strictly valid only for a system of
point dipoles. However, it is reasonable to expect that the
resulting conclusions are also approximately correct even
for systems where the dot sizes are comparable to the in-
terdot distances, provided that the electronic charge densi-
ties in neighboring dots remain well separated. In current
systems of semiconductor quantum dots the interdot spac-
ings are generally a few thousand angstroms. This leads
to a corresponding critical electron number, N„ far
exceeding the capacity of an individual dot, and therefore,
no spontaneous polarization occurs. For example, taking
the parameters from Ref. 4 (InSb dots, a=2500 A,
coo=7.5 meV, a=17.9, m =0.014mp), the most stable
(antiferroelectric) arrangement, for which

&(trltt) =U(0)+2+ v(l)( —1)'=0.406,
I 1

occurs for N, =400 [see Eq. (5)]. This is much larger
than the actual electron numbers, N =2-20 in the experi-
ment. However, if an equivalent system with a =1500 A
could be constructed, the corresponding critical electron
number would be a much more reasonable N, = 84 (pro-
vided that coo=7.5 meV). Such an arrangement may be
within the range of what is currently technologically

achievable. ' Reducing a further, if feasible, will require
even smaller N„since the scaling is N, —a . For exam-
ple, for a = 1000 A, the critical electron number would be
N, =25, almost the actual electron number used in the
experiment.

In mesa-etched dots the resonance frequency increases
with N. This is in contrast to the gated-dot systems,
where mo remains independent of N. Thus the latter may
be the best candidates to observe the phase-transition phe-
nomena. One should also explore more complex geometri-
cal arrangements such as hexagonal lattices, interpen-
etrating lattices of dots of diA'erent sizes, etc. . . .

In conclusion, we have investigated the conditions under
which spontaneous polarization will occur in a 2D square
array of dots modeled as point dipoles. We have shown
that if dots are brought sufficiently close and contain
enough electrons, such spontaneous polarization should
occur, provided that the resonance frequency of a dot does
not increase significantly with the number of electrons in
the dot. The phase transition is of second order, and, in
the absence of external electric fields, the antiferroelectric
phase is the most stable. We would like to encourage ex-
perimental eA'ort to verify existence of this phenomenon.
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