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transition energies in quantum wells
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Electron interactions with interface phonon modes and strictly confined bulk phonon modes are
considered to calculate the resonant magnetopolaronic 1s-2p+ transition energy of a hydrogenic
impurity in the quantum well of a double heterostructure. An interaction gap is predicted be-
tween the bulk LO and TO frequencies, in contrast to the Frohlich-type interaction. These re-
sults are in good agreement with recent experimental data.

The interface and confined bulk phonon modes in het-
erostructures and superlattices have been discussed
theoretically' and observed experimentally in the past.
Only recently, optical-phonon modes supported by a semi-
conductor double heterostructure (DHS) have been solved
independently in the long-wavelength limit by two
groups. ' It is found that there exist two types of phonon
modes, confined bulk modes and interface modes. The
confined inodes can be either longitudinal optical (LO) or
transverse optical (TO) with frequencies cot. and coT iden-
tical to those of the bulk excitations, while the interface
(IN) modes can have frequencies between coL and coT.
Eigenvectors and dispersion relations for all these modes
can be found in Refs. 3 and 4. The Hamiltonian operator
describing the electron-optical-phonon interaction has
also been derived to study the polaron mobility and mag-
netophonon resonance spectra, and the polaronic states in
a DHS. The importance of interface modes is clearly
demonstrated in these calculations.

The resonant magnetopolaron effect on the 1s-2p+
transition energy is found to be well below coL, in far-
infrared photoconductivity measurements carried out for
a donor impurity doped at the center of GaAs quantum
wells in a GaAs/Al„Gal -„As multiple-quantum-well
(MQW) structure, in contrast to the bulk case which has
been quantitatively accounted for. As the electron does
not couple to TO phonons, the data have been regarded as
a significant deviation from reasonable expectations based
on the Frohlich model of interaction with the bulk GaAs
zone-center LO phonons, both in magnitude and field
dependence. The experiment has been improved and ex-
tended recently in a series of measurements. The data
appear to deviate smoothly from the calculated transition
energy in the absence of electron-phonon interactions, and
the deviation is generally smaller than what is reported in
Ref. 6. In addition, two gaps are observed and many more
points are measured above the first gap in qualitative
agreement with our theoretical results.
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We report, in this Rapid Communication, a calculation
of the 1s-2p+ transition energy as a function of the ap-
plied magnetic field for a magnetopolaron bound to a hy-
drogenic impurity in a double heterostructure, i.e., a sin-
gle quantum well with finite barriers. The electron-
phonon interaction Hamiltonian derived in Refs. 4 and 5
is treated as a perturbation on the hydrogen-like atom
confined in a quantum well under strong magnetic fields.
Since the unperturbed system cannot be solved exactly, a
variational calculation has been performed with properly
chosen trial wave functions. The calculation is actually
quite complicated and we can only present the results
along with a brief outline of the procedures. Detailed ac-
count of this work will be published elsewhere.

Consider a donor impurity at the center of the GaAs
quantum well of width d in a GaAs/Al Gai, As DHS
system. A magnetic field is applied along the growth
direction. For convenience, we introduce the two-
dimensional vectors «and p such that k=(x, q) and
r = (p,z) for the phonon momentum and electron position,
respectively. The electron momentum is denoted by
k, =(k ki, ). In the absence of electron-phonon interac-
tions, the Hamiltonian of the impurity is given by
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The interaction Hamiltonian H, ph is taken directly
from Ref. 5. It consists of two terms: the electron interac-
tion with confined LO modes, and the interaction with in-

terface modes. As has been shown in Ref. 5, contributions
of lattice vibrations outside the well to the polaron effect
are significant only when the well width d is extremely
small. For d) 100 A, they are completely negligible.
Therefore we have

He-ph =H, La+He-$N ~ (2a)
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B,, (Ic) [a, ,g(x)+a,tj( —x)l B,—(x') . . [a.,j(x)+a.,)(—x)] (2c)

where H, Lg represents the electron interaction with
confined bulk LO phonon modes in the quantum well
where q =mr/d is quantized, and H, ~N represents the
electron interaction with interface phonon modes in the
well. We have introduced in Eqs. (2) the creation and an-
nihilation operators at(x) and a (x) for the confined
modes and a,tj,~. (x) and a,i,~(x) for the symmetric and
antisymmetric interface phonon modes, respectively.
They obey the commutation relations

[a.(x),aj(a-')] =6.p6(x —x'),

[a.t(a.),aJ(x')] = [a.(x),ap(x')] =0.

The normalization constants are given by
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where A stands for the interface area, e, and eo, denote
the optic and static dielectric constants of material v

(v= 1 for the well and v=2 for the barrier), and e,(co) is
defined by

1

&v(~) &ov

1

e„(ro)—e, '

with the dielectric function of material v given by

e,(co) =e,(c012„—ro')/(coT, —ro') .

y=f(z)G(p, z, y),
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G(p, z, y) =p~ ~exp(imp —yp'/4 —y&'z'/4), (9)

where we have defined k, = (2m, E ~/6 ) ' and k,'

We now proceed to calculate the transition energy by
perturbation theory. For the unperturbed system, we take
the hydrogenic impurity in the well with a magnetic field

applied normal to the interfaces. Thus Ho =H, and H ph

is treated as a perturbation. It is noted, however, that
even the unperturbed problem is not exactly solvable.
Thus we employ the variational method to determine the
unperturbed energy levels. The trial wave function is tak-
en to be

=[2m, (VO E~—)/A ]'i with the first electron subband
energy E ~, the parameter y = A co, /2R~ with the cyclotron
frequency ro, =eB/m, c, and the eA'ective Rydberg
R~ =m, e /2h for the impurity. The quantum number m
specifies the impurity levels such that m =1, 0, —1 for the
2p+, 1s, 2p —levels, respectively. The variational param-
eter g is determined by minimizing the energy of the level
in question. All the other levels, for particular samples
used in these measurements, can be neglected. Hence
the Hilbert space in our perturbation calculation is trun-
cated to only the three states, is, 2p+, and 2p —.

The energy levels are calculated by means of Wigner-
Brillouin perturbation theory to second order. The result
1S
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where E; (B) stands for the corresponding unperturbed
energy. As the matrix element is generally small com-
pared to the transition energy, the perturbation energy in
(10) becomes appreciable only when the electronic
energy-level diA'erence in the denominator matches the
phonon energy A co(x). This implies immediately that the
electron-phonon coupling has negligible influence on the
1s energy level. Hence it is su Scient to calculate
hE =e2~, —E], for the transition energy. Furthermore,
we note that significant contribution from the second term
in (10) is expected around hE =Ezp E~, +AcoL —for
the three-level resonance, as well as around dE = A. coL for
the two-level resonance.

As can be seen from Eqs. (2), the calculation of energy
levels involves the evaluation of four matrix elements

Mi(y) =(2p+ 0 IH -Loll& 1 ),

M2(y) =(2p+, 0~ IH, tNI ls, li),

M3(y) =(2p+, o IH, -L012p —,lm)

M4(y) =(2p+ ojlH, -rNI2p, l, ),

where the states Inl, N ) are specified by the atomic level
nl and the number N of phonons of mode m. The explicit
expressions for these matrix elements have been worked
out in Ref. 9. Here we just present the results as functions
of the applied field in Fig. 1. It is observed that in both
the two-level and three-level resonance cases, the interface
phonon modes generally result in larger matrix elements,
and that M4 is the largest and is generally 3-4 times
larger than the others. This is understandable, since the
Bohr radius of the impurity is of the same order as the
well width, and since the p-state wave functions extend
out much farther in the xy plane than the s-state wave
function.
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FIG. 1. Absolute values of the matrix elements of the
electron-phonon interactions calculated as functions of the ap-
plied magnetic field in the GaAs well of a GaAs/Ga~ —„Al„As
double heterostructure.

The energy of the 2p+ level is then given by

0 1L ~ ~ I ~ a ~ ~ ~ ~6 ~ ~ ~ I ~ ~ I
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FIG. 2. 1s-2p+ transition energy as a function of the applied
field B. The solid line represents results from the present theory
including nonparabolic band mass, and the dash-dotted line does
not. The dashed line is the transition energy in the absence of
electron-phonon interactions. It is calculated from Greene-
Bajaj wave functions with the nonparabolicity correction.

e2p, (y) =E2p, (y)+T(y), (12a)
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The evaluation of (12) is still very dificult. We adopt a
numerical iteration procedure to compute the transition
energy. Let X(y) =s2p, E~, and r(y) =E—

2p E[z.
Then Eq. (12) can be rewritten as

X(y) =r(y)+ T(y,a) . (13)
The function I (y) represents the transition energy in the
absence of the electron-phonon interactions and is already
known from the variational calculations. Therefore, we
start the iteration with A'=I (y) in T for a fixed B which
determines the parameter y. A new X value is obtained
from (13) and employed to compute a new T. The pro-
cedure goes on until self-consistency is achieved. The
iteration procedure repeats when 8 changes and eventual-
ly the transition energy is found as a function of 8.

Results of our numerical computation are presented in

Fig. 2 in which the 1s-2p+ transition energy is plotted as
a function of 8. The parameters used in the numerical
work are d =125 A, m, =0.067mo, an =98.7 A, R~ =5.83
meV, and Vo =230 meV. The solid line includes the effect
of the nonparabolic band mass' and the dash-dotted line
does not. The dashed line represents the transition energy
from unperturbed energy levels. It is computed from
Greene-Bajaj wave functions" with the nonparabolicity
effect included. The horizontal lines are drawn only to in-

I

dicate the gap positions. It is remarkable that the theoret-
ical curve breaks into three branches separated by two
gaps, in good qualitative agreement with experimental
data. A comparison of the theory with experiments can be
found in Ref. 8. The pinning effect, or the unperturbed
energy-level repulsion, is apparently a result of the strong
resonance interaction when the denominator of the
second-order perturbation energy vanishes. As the elec-
tron does not interact with TO phonons, the appearance of
the gaps can only be attributed to the coupling of the elec-
tron with interface phonons which oscillate at frequencies
between the bulk coT and roL.

Further studies, both theoretical arid experimental, are
necessary for a complete understanding of the problem.
The determination of the transition frequency from exper-
imental data is difficult, as the observed intensity distribu-
tion in the resonance region deviates greatly from the
Lorentz shape. Theoretical study of the influence of
electron-phonon interactions on the transition probability
is needed for detailed comparison with the experimental
line shapes and observed rapid decrease in intensity in this
energy region. Furthermore, as we have noted previously,
the trial function (9) has only one adjustable parameter.
More accurate functions must be constructed, for more
accurate results.
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In conclusion, we assert that it is the interaction of the
electron with interface phonon modes that changes the po-
laronic properties in the reduced geometry. These modes
should always be included in the interpretation of such ex-
periments. Since the coupling constant of the bulk
Frohlich type cannot be clearly defined for the interface
modes, polaronic phenomena observed in the reduced

dimensionality should not be analyzed by varying the cou-
pling strength in terms of the bulk Frohlich interaction.
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