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Six-dimensional structure model for the icosahedral quasicrystal A16CuLi3
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The structure of icosahedral quasicrystals can be described either by a quasiperiodic density func-
tion in three-dimensional {physical) space, or by a periodic density function in six-dimensional (6D)
space. The real structure is obtained as a particular 3D section of the 6D density function. The 6D
description involves 6D bodies, which on intersection by 3D space give rise to atoms in physical
space. In this paper we derive all possible perpendicular-space shapes belonging to the 6D atoms,
which arise for 6D structures describing any decoration of the 3D Penrose tiling. These results are
applied to icosahedral A16CuLi„ for which a 6D structure model is proposed. Refinement of this
model on single-crystal x-ray-diffraction data shows the structure to be close to that of a decorated
Penrose tiling. Unlike A173Mn»Si6, it is found that a perpendicular-space shape is necessary which

has a lower internal symmetry than given by the icosahedral point group.

I. INTRODUCTION

Quasicrystals are characterized by their diffraction pat-
tern having a so-called noncrystallographic point-group
symmetry. Since the discovery in 1984 of icosahedral
Al-Mn by Shechtman et a/. ,

' many compounds with
these characteristics (all of them alloys) have been syn-
thesized. Among these are compounds with an octago-
nal, a decagonal, a dodecagonal, and an icosahedral sym-
metry of the diffraction pattern.

A direct consequence of a diffraction pattern with a
noncrystallographic symmetry is that the structure of
these compounds cannot have translational symmetry in
all three independent directions. For the icosahedral case
the translational symmetry is completely lost. This led to
two different approaches for describing the structure.

In the first approach one tries to describe the structure
by specifying the atomic positions in three-dimensional
(3D) space. This is mostly done by replacing the lattice,
as is used for ordinary crystals, by the 3D Penrose tiling.
The two basic building blocks comprising the Penrose til-
ing are filled with atoms, thus leading to a so-called
decorated Penrose model for the structure. The funda-
mental measure is the length of the edge of the building
blocks, which is approximately 5 A, dependent on the
chemical composition. For A16cuLi3 this approach
proved to be successful, leading to the structure model
given in Fig. 1. ' For Al-Mn and A173Mn2, Si6 no one has
succeeded in designing a decorated Penrose model which
adequately describes the observed diffraction intensities.

The second approach uses the fact that the electronic
or atomic density function can be obtained as a 3D sec-
tion of a higher-dimensional density function. This latter
function is periodic; thus only the density function in one
unit cell of the 6D lattice needs to be specified. For
icosahedral A173Mnz, Si6 a good description of the

diffraction data was obtained for a structural model con-
sisting of "6D atoms" on the origin and on the body
center of the 6D unit cell. The 6D atoms were found to
be the convolution of an ordinary atomic electron density
in physical space and spherical shells in perpendicular

FIG. 1. Prolate and oblate rhombohedron comprising the 3D
Penrose tiling. Decorating sites indicated are those correspond-
ing to the structure model for A16CuLi3 after Refs. 4 and 5. The
occupation of the vertices is 0.69A1+0.22Cu+0. 09Li, of the
midedge positions, 0.75A1+0.10Cu+0. 15Li, and of the long-
body diagonal of the PR, 0.17A1+0.83Li.
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space. ' Using powder neutron-diffraction data of a
series of isomerphous substituted samples, direct experi-
mental evidence for the perpendicular-space shape of
these atoms was obtained. "

The fundamental problem with the 3D approach to the
structure is that it is a priori unknown whether a 3D Pen-
rose tiling or some other quasilattice should be selected,
or whether the structure can be described by some quasi-
lattice at all. ' Even if the 3D Penrose tiling gives a good
approximation to the structure, subsequently better ap-
proximations are given by decorations of inAated Penrose
tilings. The original tiles are replaced by new ones, with
their diameters a factor r larger, where r=—(1+&5)/2 is
the golden ratio. Very soon inflation leads to a number of
atomic position parameters, which is too large to be
determined by any experiment.

Clearly, these problems with the 3D approach are
resolved by the higher-dimensional approach. For
icosahedral quasicrystals the diffraction pattern can be
considered as the projection from a 6D hypercubic re-
ciprocal lattice. ' ' Then the electron density is the 3D
section of a periodic density function in 6D space. Con-
sequently, its value in one unit cell of the 6D hypercubic
lattice completely determines this function. However,
there is still an infinite number of parameters to be deter-
mined: The shape of the 6D atoms is unknown. This
means that one has the choice to use perpendicular-space
shapes for the 6D atoms which correspond to any kind of
3D quasilattice or to no quasilattice at all.

The choice of spherical shells as perpendicular-space
shapes is a good approximation for the AI73Mn2, Si6 quasi-
crystal. " In an alternative approach, based on argu-
ments of dense packing, it was proposed that these spher-
ical shapes should be replaced by certain polyhedron sur-
faces. ' Diffraction data were not sufficient to discrim-
inate between these two models. Alternatively, one can
choose the atomic surfaces to correspond to a decoration
of one particular quasilattice. For the 3D Penrose tiling,
describing icosahedral quasicrystals, a partial approach
has been made by Ishihara and Shingu' and by
Yamamoto and Hiraga. For the dodecagonal quasicrys-
tals such perpendicular-space surfaces were derived by
Csahler.

In this paper we will derive all atomic surfaces corre-
sponding to any decoration of the 3D Penrose tiling. The
various special positions of the 6D icosahedral space
group, belonging to the different decorating positions of
the 3D Penrose ti1ing, are classified, and the correspond-
ing perpendicular-space shapes are derived. Using the
6D space-group symmetry, it is shown which decorations
in 3D space are compatible with the icosahedral symme-
try.

In the second part of the paper, we present single-
crystal x-ray-diffraction results for icosahedral A16CuLi3.
Using the perpendicular-space shapes of the 6D atoms, a
6D structure mode1 for A16CuLi3 is proposed which cor-
responds to the decorated Penrose tiling model. ' Struc-
ture refinements show that for A16CuLi3 the
perpendicular-space shapes derived for the decorated
Penrose tiling give a better description of the x-ray data
than a model with spheres as perpendicular-space shapes.

II. FUNDAMENTAL
PERPENDICULAR-SPACE SHAPES

There are several ways to generate the vertices of a 3D
Penrose tiling. Two of these are particularly interesting,
since they start from a lattice in 6D space. In the cut and
projection technique, all 6D lattice points within a
volume, infinitely extended along physical space and
bounded in perpendicular space, are projected onto phys-
ical space. The shape of the perpendicular-space section
of this volume determines the precise distribution of
points in physical space. The vertices of the Penrose til-
ing are obtained for that shape, being the triacontahed-
ron (TR) as obtained by projection of the 6D unit cell
onto perpendicular space.

In the second approach, the points in physical space
are obtained as the physical-space section of some func-
tion on 6D space. To obtain the vertices of the Penrose
tiling, entities of the shape of the former mentioned TR
in perpendicular space and of zero measure in physical
space are positioned on each node of the 6D lattice.

Up to this point, both methods are equivalent. Howev-
er, the section approach allows for the interpretation that
it provides a 6D periodic density function describing the
structure of a quasicrystal. The entities of zero measure
in physical space can be considered as the 6D equivalent
of point atoms in physical space. These bodies are here-
after denoted as perpendicular-space shapes. Real atoms
are obtained when the 6D atoms are defined as the convo-
lution of a perpendicular-space shape and an ordinary
electron density in physical space. (Note that the convo-
lution of a perpendicular-space shape and a point is that
shape itself. )

Decorated Penrose tilings, or any quasiperiodic struc-
ture, can be obtained by a filling of the 6D unit cell with
these 6D atoms. Such a structure model was determined
for icosahedral A173Mn2, Si6, in which use was made of
spherical shells as perpendicular-space shapes. In this
section we will derive the five different perpendicular-
space shapes which wi11 produce different decorations of
the 3D Penrose tiling, according to the procedure given
by Ishihara and Shingu. '

From the above discussion it follows that the first fun-
damental perpendicular-space shape is the triacontahed-
ron (TR). Placed on all vertices of the 6D lattice, it gen-
erates the vertices of the Penrose tiling, i.e., the most sim-
ple decoration.

To obtain the (point) atoms on the midpositions of all
edges, it is realized that such an atom should be present
exactly when both vertices are part of the Penrose tiling.
That is, for the origin and point on e~~ to be part of the
Penrose tiling, physical space should intersect with both
the TR centered on the origin and the TR centered on e, .
(e; =er~+ei, i =1,2, . . . , 6, as defined by Elser ' is used. )

In projection onto perpendicular space, this means that
when physical space intersects both the TR and one
translated over e~, it should also intersect with the
midedge atom. The intersection of these two TR thus
defines the perpendicular-space shape for the 6D atoms,
giving rise to the midedge decorating position in the Pen-
rose tiling. Since the TR has ten edges equal to ej, this
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intersection is easily recognized as the rhombic icosahed-
ron (RI) with e~ as unique axis, a polyhedron of half the
volume of the TR. The position in 6D space is given by
r =

—,'e, or, equivalently, ( —,', 0,0,0,0,0). To generate
atoms at the midpoints of all edges, equivalent, but
differently oriented RI should be placed at the points ob-
tained as permutations of ( —,', 0,0,0, 0,0). Note that these
permutations are the same points as obtained by applica-
tion of the 6D icosahedral space-group symmetry. The
resulting structure thus has the required symmetry.

Analogously, decorating positions at the midpoints of
the faces of the Penrose rhombs are obtained from
perpendicular-space shapes defined as the intersection of
three TR. For example, for the face spanned by the ori-
gin and e~~ and e~~, the intersection of a TR centered on
the origin with one translated over e~ and one translated
over e~ should be taken. The resulting shape is a rhombic
dodecahedron (RD), a polyhedron of one-fifth of the
volume of the TR. The perpendicular-space shape for an
atom in the middle of the prolate rhombohedron is again
a prolate rhombohedron (PR), and for an atom in the

middle of the oblate rhombohedron it is an oblate rhom-
bohedron (OR).

These five perpendicular-space shapes are given in
Table I, together with their volume, position, multiplici-

ty, and site symmetry in the 6D unit cell. They are called
fundamental shapes, because together they comprise all
possibilities for an atom being present in the Penrose til-

ing, whenever a particular vertex, edge, face, or cell is

part of that tiling.

III. GENERAL
PERPENDICULAR-SPACE SHAPES

The five fundamental perpendicular-space shapes as
defined in Sec. II are sufhcient to design a 6D structure
model for a decorated 3D Penrose tiling with special
decorating positions only, i.e., vertex, midedge, midface,
and midcell positions. To describe general decorating po-
sitions, e.g. , an atom somewhere in the PR, other shapes
will occur. These additional bodies will be derived in this
section.

TABLE I. Perpendicular-space shapes and special positions of the 6D atoms. Shown are the
decorating position in the 3D Penrose tiling; the perpendicular-space shape of the corresponding atom
in 6D; the special position with respect to the 6D unit cell; site-symmetry group; multiplicity (mult. );
and the relative volume of the perpendicular-space shape (U~). The special positions incorporate
shifts along the vectors r(S1)=(0.5,a„o;l,o.„al,nl ), r(52) =(al, o.S,al, —ai, —al, n, ), r(53)
=(al, a1,0 S,ai, —o.'1, —o,'1), and r(54)=(al, —ai, a1,0.5, e1, —o.i), with +1=1/(2&5), along the vec-
tors r(21) =(a2, a3, a3, 0,0,a3) and r(22) =(o,'2, —o.'3, 0,a2, e2, 0), with +2=1/{3—~) and a3=o,'2/~; and
along the vectors r(31)=(e4, o4, o4, a&, —o.5, c5) and r(32) =(a6, —a6, —a&, —o6, n&, a&), with
a~=1/[1+[(r—1)/(7+1)] ], a~=a4[(r —1)/(r+1)], and a6=a4[(r —1)/(r+1)]; r=(1 +05) 2/.

The values of the structural parameters x,y, z range from —0.5 to 0.5

Decorating
position

Perpendicular-space
shape 6D position

Site
symmetry mult.

Vertex
Midedge
Midface
Mid-PR
Mid-OR
Edge

Face-diagonal

Face

PR-diagonal

OR-diagonal

PR-mirror

OR-mirror

PR

OR

TR
RI
RD
PR
OR
—,'RI

—'RD

—'RD

—,'PR

-'-OR

—'PR

6 OR

—,
' PR

OR

(0,0,0,0,0,0)
(0.5,0,0,0,0,0)

(0.5,0.5,0,0,0,0)
(0.5,0.5,0.5,0,0,0)

(o.s, —o.S,o, —o.S,o,o, )

(0.5,0,0,0,0,0)
+xr(51)

(0.5,0.5,0,0,0,0)
+xr(21)

(0.5,0.5,0,0,0,0)
+x r{21)+yr(22)
(0.5,0.5,0.5,0,0,0)

+xr(31)
(o.s, —o.S,o, —o.S,o,o)

+xr(32)
(0,5,0.5,0.5,0,0,0)

+xr(53)+yr(21)
(0.5„—O. 5,0,—0.5,0,0)

+x r(54) +y r(22)
(0.5,0.5,0.5,0,0,0)

+xr( S1)+yr(52)+zr(53)
(0.5, —0.5,0,—0.5,0,0)

+x r(51)—yr(52) —zr(54)

53m
5m

mmm

3m
3m
5m

mm2

3m

3m

1

6

15

10
10
12

1
1

2
1

5

1/( 10%)
1/(10& )

1

30 1

10

60 1

20

20 1/(20&)

20 1/(20r )

60 1/{60&)

60 1/(60r')

120 1/( 120')

120 1/( 120&2)



932 SANDER van SMAALEN, JAN L. de BOER, AND YONG SHEN 43

As an example, consider the decoration with an atom
on the midpoint of an edge of the Penrose tiling, parallel
to e~~. The corresponding 6D structure has a RI at the
position ( —,, 0,0, 0,0,0) in the 6D unit cell. A shift of the
6D atom parallel to physical space does not change the
condition relating the presence of this 3D atom with the
presence of the vertices of the Penrose tiling. Its position
in 3D space changes with that shift vector. Define
the vector r» in 6D space by r5i=e~~=(0. 5,a„a„a„1

ai, ai), with a& =(r I )/—(w+ I). Then a shift of the orig-
inal 6D atom over xr» will produce atoms in 3D space at
the position (0.5+x )e~~ whenever this edge is part of the
Penrose tiling. However, the 6D icosahedral space-group
symmetry generates an equivalent atom shifted over
—xr5, from the edge midpoint. Thus the decoration gen-
erated will have atoms at both positions
(0.5+x,0,0, 0,0,0).

Instead of a RI at both positions ( —,'e, +xr„), one can
divide the RI in two halves, such that these halves are
each other's image under the inversion operator at 0.5e, .
If one-half is placed at ( —,'ei+xr&&) and the other at
( —,'e, —xr~, ), the icosahedral space-group symmetry is
preserved. Furthermore, if the two new perpendicular-
space shapes are chosen to add up to the RI in their com-
mon projection onto perpendicular space, the result is a
decorated 3D Penrose tiling where for each edge precise-
ly one of the positions (0.5+x )e~~ is occupied.

We thus find a new perpendicular-space shape as a half
RI, with a corresponding position in 6D space
of (0.5(1+x),xa„xo.„xa„xa„xa,), for —0.5~x

0.5. The only requirement is that the face dividing the
original RI has a symmetry according to the site symme-
try of the original position 5m. This does not determine
the —,'RI completely, but it does ensure that the RI will be
divided into equal parts.

Generally, the procedure for obtaining the
perpendicular-space shapes for general decorating posi-
tions is as follows. Consider one of the fundamental
perpendicular-space shapes and its position in the 6D
unit cell. The 6D position corresponding to a more gen-
eral decorating position in the Penrose tiling is obtained
by application of a shift vector parallel to physical space.
The new position in 6D space will be of lower symmetry;
consequently, the 6D space group will generate a number
of X equivalent positions, which replace the original spe-
cial position. The new perpendicular-space shape is ob-
tained from the original one through a set of cutting
faces, with the only requirement being that this set has a
symmetry according to the site-symmetry group of the
original special position. The result is a new
perpendicular-space shape of 1/X the volume of the fun-
damental shape and with internal symmetry according to
the site symmetry of the new position. As a consequence,
X of these new shapes adds up to give exactly the original
perpendicular-space shape, thus producing a decorated
Penrose tiling where in each edge, face, or cell only one of
the X equivalent positions is occupied. Apparently, the
icosahedral symmetry does not require the decoration to
preserve the internal 3m symmetry of the rhombohedra.

In Table I a complete list is given of all possibilities for

the decorating position. Note that there is still freedom
in the choice of the boundary face (cutting face) defining,
for example, the —,'RI or the —,'PR.

IV. ATOMS IN 6D SPACE

A 6D atom can be defined as the convolution of the
step function 0 on a perpendicular-space shape and an or-
dinary atomic electronic density in physical space:

1 for r within the

g(r) = ~ perpendicular-space shape,

0 otherwise,

This definition produces one atom in 3D space for each
6D atom which is intersected by physical space. Thus it
is the proper generalization to higher-dimensional space
of the concept of an atom. Other, equivalent atoms will
be present in the 6D unit cell when the 6D space-group
symmetry is taken into account. The positions of this
complete set of atoms constitute one orbit of the 6D
space group (modulo the lattice translations). The num-
ber of positions in the unit cell multiplied by the order of
the site-symmetry group is equal to the order of the fac-
tor group of the space group with its translation sub-
group.

These notions lead to a different interpretation of the
physical-space component of the perpendicular-space
shapes. A true physical-space component of the
perpendicular-space shapes is obtained if the latter are
changed such that they obtain a component along physi-
cal space proportional to, for example, the length of the
perpendicular-space vector. Let u~~ be any fixed vector in
physical space. Then the step function for a
perpendicular-space shape with such a physical-space
component becomes

1 for r=ri+~ri~u~~, and ri within the

8(r) ' perpendicular-space shape,

0 otherwise

(3)

On the other hand, a physical-space component which
is independent of the perpendicular-space position within
a finite part of the perpendicular-space shape only defines
a new 6D atom. Shifting the upper part of the
perpendicular-space shape by u~~ and the lower part by—

u~~ corresponds to the situation sketched in the previ-
ous sections, but does not constitute a true
perpendicular-space component. A new perpendi-
cular-space shape is obtained from half the volume of the
original one, and it is placed at a special position in the
6D unit cell with twice the multiplicity of the original
one.

The perpendicular-space shapes, together with their

and p(r) is a 3D atomic density for r in physical space
and is zero otherwise, with the density for the 6D atom
given by

p6D(r) = f 8(r ')p(r —r ')dr ' .
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special positions in the 6D unit cell (Table I), make it pos-
sible to describe any decoration of the 3D Penrose tiling.
For the vertex, midedge, midface, and midrhomb posi-
tions, the position in the 6D unit cell is a special position
of the 6D icosahedral space group which is completely
fixed. This implies that these decorating positions are
special positions determined by the icosahedral symme-
try. The corresponding perpendicular-space shapes are
completely determined by the requirement of obtaining a
decorated Penrose tiling as 3D structure. On the other
hand, the only requirement for the structure model seems
to be the icosahedral symmetry of the corresponding 6D
electron density. Then perpendicular-space shapes are
possible which differ from the ones defined in Table I, but
which still have to have internal symmetry according to
the site symmetry of the special position they belong to.
The effect for the structure in 3D space will be that some
original decorating site will be empty, while at other posi-
tions additional atoms will occur. Without special care
this will lead almost certainly to unreasonable short in-
teratomic distances or to a structure with holes.

For the general decorating positions, it is found that
the icosahedral symmetry requires that only one of the
positions of one orbit in the 6D unit cell lead to an atom
in 3D space. For example, symmetry requires only one of
the two positions (0.5+x) on the long-body diagonal of
the PR to be occupied. In particular, this implies that
proper decorations of the Penrose tiling can be obtained,
which destroy the internal symmetry of the constituting
PR and OR, but which preserve the icosahedral symme-
try.

The precise distribution defining which of the two (X)
positions is occupied in which cell of the 3D Penrose til-
ing is given by the perpendicular-space shape. Because
the latter is not completely determined, different distribu-
tions are possible, which are all proper decorations of the
Penrose tiling.

V. PATTERSON FUNCTION ANALYSIS
FOR A16CuLi3

+o, O
0

Penrose model consists of peaks at the positions of the
vertices and decorating positions of eight interpenetrat-
ing Penrose tilings. For A173Mn2, Si6 this calculation
showed peaks at the vertices of eight Penrose tilings, but
also gave peaks which cannot be interpreted as due to a
decoration of the Penrose tiling. ' For A16CuLi3 all
peaks of the Patterson function (Fig. 2) could be inter-
preted as due to the decoration given in Fig. 1.

The integer indexing of the diffraction peaks makes it
possible to assign the measured intensities to the corre-
sponding reciprocal lattice points in higher-dimensional
space. Calculation of the higher-dimensional Patterson
function [Eq. (4)j then gives the autocorrelation function
of the electron density in higher-dimensional space.
For quasicrystals this was first done by Gratias, Cahn,
and Mozer for A173Mn2]Si6. ' Their results showed two
peaks, one at the origin and one at the body center of the
6D unit cell. The shape was that of an ordinary Patter-
son function peak in the physical-space section and that
of the autocorrelation function of a sphere in perpendicu-
lar space, which had about the size of the TR as defined
in Table I. The body-center position is not one of the po-
sitions in the 6D unit cell which occur for decorations of
the 3D Penrose tiling. Therefore, the 6D approach
shows directly that the 3D Penrose tiling gives an invalid
description of the structure of icosahedral A173Mn2, Si6.

For A16CuLi3 the sections of the 6D Patterson function
given in Figs. 3 and 4 show the 6D Patterson function to
have peaks at the origin, at ( —,', 0,0, 0,0,0), at
( —,', —,', 0, 0, 0,0), and their symmetry equivalents. ' '

These peaks can be interpreted as being due to atoms at
the lattice points and on the midpoints of the edges of the
6D unit cell. Comparison with Table I shows that these

P(r) = Q I(S, )exp( —2~i S, r), (4)

The Patterson function is defined as the Fourier trans-
form of the diffraction intensities as obtained in a
diffraction experiment:

OQ Oo

Q (Oo'

QOo o CO@

Qo Qo-

Qo Qo

~o o
C~3 Do

where the summation is over all reAections i with scatter-
ing wave vector S;. It is the maximum amount of the in-
formation which can be obtained from an ordinary
diffraction experiment without further assumptions, and
it is therefore of particular interest.

The Patterson function can be regarded as the auto-
correlation function of the electron density of a crystal:

QO

0o

0 E F 6

Oo

0
0

QoA r Ae,
B Di stance ($) 21.75

P(r) = fp(r ')p(r+r ')dr ' .

It thus gives information about the interatomic distances
as well as about the direction of the interatomic vectors.

The calculation according to Eq. (4) can be done in
physical space. This results in an aperiodic function
P(r), which for a structure according to a decorated 3D

FIG. 2. Section of the 3D Patterson function for icosahedral
A16CuLi3, obtained by Fourier transformation of the measured
x-ray-diffraction intensities (after Ref. 26). The two coordinate
axes are twofold symmetry axes. The peaks 0, A, 8, and G are
obtained for atoms on the vertices of a Penrose tiling. The
peaks C, F., and F can be explained by assuming both the ver-
tices and midedge positions to be decorated by atoms.
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VI. STRUCTURE REFINEMENT

The decorated Penrose tiling model for the structure
can now be translated into a 6D structure model. For
atoms on the vertices, midpoints of the edges and on the
long-body diagonal of the PR, the 6D structure model
given in Table II is obtained. Note that the disorderly
occupation of the 3D decorating positions translates
directly into a disorderly occupation of the atomic sites in
the 6D unit cell. A refinement on this model could be
made by allowing for shell-like perpendicular-space
shapes, adding up to form the complete perpendicular-
space shape as defined in Table I. Although such shell-

TABLE II. 6D structure model for icosahedral A16CuLi3.
Atoms are found on three special positions in the 6D unit cell.
The values for the occupation probability (P„) are those ob-
tained with the 6D refinement program. r(31) is defined in
Table I. The value for x was found as 0.1234 after refinement.
The value for the temperature factor B"for p=Al was found as
0.133.

6D atom Position

(Al, TR)
(CU,TR)
(Li,TR)
(A1,RI)
(Cu, RI)
(L',RI)
(Al, PR)
(Cu, PR)
(Li,PR)

0.72
0.19
0.09
0.75
0.11
0.14
0.15
0.01
0.84

(0,0,0,0,0,0)
{0,0,0,0,0,0)
(0,0,0,0,0,0)

(0.5,0,0,0,0,0)
(0.5,0,0,0,0,0)
(0.5,0,0,0,0,0)

(0.5,0.5,0.5,0,0,0) —x r( 31 )

(0.5,0.5,0.5,0,0,0) —x r( 31 )

(0.5,0.5,0.5,0,0,0) —x r( 31 )

comes from the product of the density of the atom at the
origin and the atom at the midedge position. For the 6D
structure corresponding to a 3D Penrose tiling, the latter
atom is a RI, with a diameter along the fivefold axis of
rle~l =1.618le~l and a diameter along the twofold axes of
&(2r+ I ) /( 2r —I ) l ez l

=2. 753
l e~ l. For the TR the corre-

sponding diameters are 3.236lejl and 2.753le~l, respec-
tively. Thus the eccentricity is found to be 0.588 for the
RI and 1.175 for the ratio of the corresponding axes of
the TR. For the boundary of the Patterson peak, one
finds a maximum and minimum diameter of 4. 854le~l
along the fivefold axis and 5. 506le~l along the twofold
axes. This gives an expected eccentricity for the Patter-
son peak of 0.88, much closer to unity than the eccentri-
city of the RI. Furthermore, it can be shown that equal
intensity contours of higher intensity, i.e., smaller diame-
ter, are even closer to unity. The observed eccentricity at
a diameter of about 4le~l is 0.94 (Fig. 5), in accordance
with the RI shape of the atoms at ( —,', 0,0,0,0,0).

The conclusion is that the 6D Patterson function
shows peaks at the positions corresponding the decorated
Penrose tiling model. The perpendicular-space shape of
the Patterson peaks is in accordance with the decorated
Penrose model, although the differences between Patter-
son peaks for spherical atoms and Penrose-tiling-like
atoms are very small. Xexp[2mis (Rr"+r)]

Xexp( —
—,'8"ls~~l ), (7)

where the summation is over all independent atoms p in
the 6D unit cell and over all symmetry operators (R r) of
the 6D space group modulo the translation group. For
the icosahedral group describing the symmetry of
A16CuLi3, the translation part ~ is zero for all operators.
The factor involving B"describes the effect of atomic vi-
brations. In the present approach the effect of phasons is
left out. Note that for perpendicular-space shapes of
spherical or icosahedral symmetry, the atomic form fac-
tor f1~(S~R ) is independent of R. For perpendicular-
space shapes of lower symmetry, the atomic form factor
does depend on the symmetry operator, i.e., on the orien-
tation of this atom.

The advantage of the expression Eq. (7) is that it is not
only valid for structure models corresponding to the
decorated 3D Penrose tiling, but that it allows for a vari-
ation of the perpendicular-space shape of these atoms.
Alternative expressions for the structure factor for
decorated Penrose tilings only have also been forrnulat-
ed 21,31,32

For spherical perpendicular-space shapes, the
perpendicular-space atomic scattering factor is easily cal-
culated. ' For the general perpendicular-space shapes,
the Fourier integral can be worked out using the rhom-
bohedral dissection of these bodies. ' ' These expres-
sions were implemented in a computer program which
calculates the structure factor according to Eq. (7).

Refinements were performed using the 37 independent
rejections obtained in single-crystal x-ray diffraction as
described earlier. ' Only one B parameter was refined,
with, for each atom, B"' taken to be proportional to the
inverse mass. An equally good fit was obtained as for the

like atoms were necessary to describe the structure of
A173Mn2, Si6, '" such an ordering is not necessary to ob-
tain a good fit to the diffraction data of A16CuLi3. Disor-
dered occupation was also found in contrast-variation
neutron-diffraction experiments.

One advantage of the description of the structure in
6D space is that a closed, analytical expression is ob-
tained for the structure factor. For 6D atoms defined as
the convolution of a perpendicular-space shape and the
density of an ordinary atom in physical space, atomic
scattering factors are obtained as the product of an ordi-
nary atomic scattering factor and the Fourier transform
of the perpendicular-space shape. The former, f

~~ (ls~~l),
is only a function of the physical-space component of the
scattering vector, whereas the latter is a function of the
perpendicular-space component of S:

f~(s~)= J8"(r)e "' 'dr . (6)

For nonzero values of 0"(r) confined to r=rj entirely in
perpendicular space, the dot product S-r is equal to
S.r~=S~ r~, i.e., is dependent on S~ only.

The complete expression for the structure factor is *'

r(s) = & & ~ii lsiil )f&(S,R )

p (&I&)
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direct Fourier transform of the decorated 3D Penrose til-
ing, with about the same values for the occupation proba-
bilities. The final fit gave a weighted R factor,
a~2=(g~( IFo I I+, I ) /+to ~Fo ~

)', of 0.05, using

weights w equal to the square root of the inverse of the
standard deviation (R 2=0.07, using unit weights). The
resulting values of the parameters are given in Table II.

To test the validity of the Penrose-tiling model, the
perpendicular-space shapes as given in Table II were re-
placed by spheres. First, only the TR was replaced by a
sphere of equal volume. No significant effect on the other
atomic parameters or on the R factor was found, thus
showing both the TR and a sphere to give a good descrip-
tion of the diffraction data. Replacing the RI by an equal
volume sphere resulted in a much worse fit, with
wR 2=0. 10 (R,=O. 11). This proves that the RI,
defining a 6D structure describing a decorated Penrose
tiling, gives a better description than a sphere. It can be
concluded that the structure of A16CuLi3, unlike that of
A173Mn2&Si6, is indeed described by a decorated Penrose
tiling in good approximation.

Peaks in the Patterson function corresponding to the
atoms at ( —,', —,', —,', 0,0,0) are not observed. This can be ex-
plained by the fact that lithium is a weak scatterer for x
rays and therefore does not contribute much to either the
Patterson or structure factors. This also implies that the
position as well as the occupation factors for lithium are
determined with less accuracy than the other atoms.
Another possibility for the Li position was proposed to be
at the body center of the 6D unit cell. %e did not find
peaks in the Patterson function for this position either. It
is interesting to note that the body-center position in the
6D unit cell generates atoms which are sometimes on the
long-body diagonal of the PR, at about the same position
as obtained previously (Table II).

New diffraction experiments were performed on a new
single crystal of a volume of about 10 times the previous
one. For the 37 reflections with 1)2o(I) as measured
on the first crystal, the intensities obtained with the
second crystal are the same, albeit with smaller standard
deviations. In addition, 60 new rejections with I )2o(I)
were obtained, which were all weak compared to the
former set of 37 reAections. Refinements on the larger set
of refiections showed that the model given in Table II
cannot explain these new, weak reAections. Further
refinements of the model, e.g. , the use of a split PR atom,
are the subject of future research.

VII. INFLATION

One property of the 3D Penrose tiling is that the tiles
can be replaced by congruent tiles with edges w times as
large, such that the new quasilattice points are a subset of
the old ones. The choice for A16CuLi3 of an edge of 5.039
0
A is the minimum one to give reasonable atomic dis-
tances for a decorated Penrose tiling as a structure mod-
el.

Increasing the direct quasilattice vectors e~~ by a factor
of ~, but maintaining a 6D hypercubic lattice and the re-
lation e; =e~~+e~, means that the length of the basis vec-

D A

-05F C 4 X 0.5

FIG. 7. Section of the 6D Patterson function obtained by
Fourier transformation of the measured x-ray-diffraction data,
based on ~e~~ ~

=0.09922/r' A =2.342X10 A . By follow-
ing A ~8~ . ~F, and matching equal letters, one sees that
there is a single peak, centered on the origin and extending over
about four unit cells in either direction. Note that the 6D lat-
tice constant now is ~ times the lattice constant in Figs. 3—6.

tors of the 6D direct lattice is increased by v. also. The
relation between the old and new 6D basis vectors is

VIII. CONCLUSIONS

In this paper we have derived the set of perpendicular-
space shapes of the 6D atoms, which are necessary to
define a 6D structure model for all possible decorations of
a 3D Penrose tiling (Table I). The vertex positions are
generated by a triacontahedron (TR) as perpendicular-
space shape, that is, by a body with the full icosahedral

E, =2e, +e2+e3+e4+e5+e6,

and similar for the other basis vectors.
A decorated Penrose tiling can be described by a 6D

structure model involving atoms which are congruent to
the ones derived in Secs. II and III, but now with edges
equal to the new, enlarged perpendicular space part ~e~~

of the 6D lattice constant. Positioning such a TR on the
nodes of the 6D lattice then leads to a vertex decoration
of the inAated Penrose tiling, i.e., to a 3D structure which
is (r ) less dense. To recover the original structure, 6D
atoms are needed which have a perpendicular-space
shape with a ~ larger diameter. In Fig. 7 one section of
the experimental Patterson function of A16CuLi3 is given
for a ~ inAated indexing of the diffraction pattern.
Indeed, it follows that the size of the origin peak is now
approximately 5~e~~, instead of ~ez~ itself as for the origi-
nal indexing (Fig. 2).

A complication for the structure of A16CuLi3 is that
applying the inflation once changes the positions of the
atoms at the midedge positions in the 6D unit cell to the
midpositions of the 5D hyperplanes (0, —,', —,', —,', —,', —,

' ).
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point group as internal symmetry. For other decorating
sites other perpendicular-space shapes are derived, which
have a lower internal symmetry. Consequently, these bo-
dies are found at special positions in the 6D unit cell of
site symmetry lower than icosahedral.

The 6D description shows that in physical space only
one of the set of symmetry-equivalent positions need be
decorated, while preserving the 6D icosahedral space-
group symmetry. In physical space this means that the
internal, 3m, symmetry of the PR and OR need not be
present in the decorated tiling. Furthermore,
perpendicular-space shapes are found which can continu-
ously be varied within certain boundary conditions. The
implication for the structure in physical space is that the
choice of which one of the symmetry-equivalent positions
is occupied in each rhombohedron can be made in many
different ways. Each distribution derives from a 6D
structure with icosahedral symmetry and gives rise to an
icosahedral diffraction pattern.

For the icosahedral quasicrystal A16CuLi3, a 6D struc-
ture model is proposed. Structure refinements show it to
match the intensities of a single-crystal x-ray-diffraction
experiment very well ~ In particular, it is found that the
model with a rhombic icosahedron (RI) as the
perpendicular-space shape gives a better fit than the mod-
el with a sphere as the perpendicular-space shape. This
shows that the structure of A16Culi3 is indeed close to
that of a decorated Penrose tiling. It is explained that the
differences between a RI and a sphere as the
perpendicular-space shape have only a marginal effect on
the shape of the peaks in the 6D Patterson function.
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