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Effect of dielectric screening on the donor binding energy in silicon and germanium
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The linear Thomas-Fermi dielectric screening and its various improvements are used to calculate
the donor binding energy in silicon and germanium. The results are compared with experimental
values.

The binding energies as calculated from the effective-
mass theory of shallow impurities are known to agree
well with experiment in the case of impurity excited
states. However, for the impurity ground states, there is
a serious disagreement between theory and experi-
ment. ' In the calculation of the ground states of shal-
low impurities in semiconductors, the accurate inclusion
of the dielectric screening is essential. In the present pa-
per we investigate the effect of the Thomas-Fermi (TF)
dielectric screening as proposed by Resta, and its various
improvements, on the ground-state binding energy of im-
purities in silicon and germanium.

Resta has developed a TF theory of dielectric screen-
ing in semiconductors. He has used atomic units: e =1,
6=1, m, =1, and unless specified otherwise, we shall do
the same in the present paper. In Resta's theory, the dis-
placed charge density in a semiconductor has a finite ra-
dius R, and the equations to be solved for the self-
consistent screened potential V(r) are

V V(r)=
(27~2/3ir) I

E~~~2 [E~+V(R ) V(—r) ]3/2]

r &R (1)
(2)0, I oR

where EF is the valence Fermi energy.
Equation (1) was linearized to

V V(r) =q [ V(r) V(R )], — (3)

where q =(4kF /ir)', with kF =2EF.
For r ~ R, Eq. (2) is readily solved to give

V(r) = Z/e(0)r, — (4)

where e(0) is the static dielectric constant.
Inside the screening radius R, Resta obtains the follow-

ing expression for the potential from Eq. (3):

sinh(qR)/qR =e(0) .

The spatial dielectric function F(r) is defined by

(6)

V(r)= —Z/re(r) . (7)

Thus from (4) and (5), using (6), Resta gets

e(0)qR /[sinhq(R —r )+qr ], r & R
e(0), r~R .

(8a)
(8b)

TABLE I. The parameters q and R of Eq. (8). The values
with asterisks were obtained in this paper, see text.

Silicon Germanium

q R Source

The values of q and R for silicon and germanium, as
obtained in Ref. 4 and corrected in Ref. 5, are shown in
Table I against "Linear TF." For the effective mass, we
quote here some of the values which have been used by
different workers. (a) Silicon: m * /m, =0.306 (Csa-
vinszky }, 0.31 (Breitenecker, Sexi, and Thirring ), 0.293
(Miiller ), 0.292 (Morita and Nara ), 0.298 19 (Ning and
Sah' ), 0.31 (Jaros"), 0.2987 (Resca and Resta' ). We
adopt here m */m, =0.30. (b) Germanium:I*/m, =0.173 (Csavinszky ), 0.18 (Breitenecker, Sexi,
and Thirring ), 0.17 (Jaros"). We adopt here
m */I, =0.17 for germanium. Following Resta and
several other papers in this field, e(0) was taken to be
11.94 for silicon and 16.0 for germanium, though these
are not the best values. The ground-state binding energy
was calculated from the potential (7) by numerical in-
tegration of the Schrodinger equation using Numerov's
method and a logarithmic mesh and the results are shown
in Table II.

Cornolti and Resta have obtained the numerical solu-
tion of the nonlinear TF equation (1) and have given

Z sinh[q(R —r)] ZVr =—
r sinh(qR ) e(0}R

The screening radius R is found by imposing continui-
ty of electric field at r =R. Thus

Linear TF 1.10 4.28
Nonlinear TF 1.12* 4.06
Linear TFD 1.35 3.50
Nonlinear TFD 1.344 3.34

1.12
1.135*
1.36
1 ~ 354*

4.54
4.33
3.74
3.60

Refs. 4 and 5

Ref. 5
Ref. 16
Ref. 16
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TABLE II. Ground-state binding energy for a donor impuri-

ty in silicon and germanium.

Method

Hydrogenic
Linear TF
Nonlinear TF
Linear TFD
Nonlinear TFD
Experimental (Refs. 17—19)

Silicon
{meV)

28.6
128
69
62
43
45.5 (p)
53.7 (As)
42.7 (Sb)

Germanium
(meV)

9.0
50
22
19
13
12.9 (P)
14.17 (As)
10.32 (Sb)

figures showing e(r) as a function of r for diamond, Si,
and Ge for Z =+1,+4. In the calculation of the binding
energy, it is convenient if the potential is available in an
analytical form. The shapes of e(r) curves for the linear
TF and nonlinear TF cases are very similar. It was found
that for the nonlinear TF case, the curves given by Cor-
nolti and Resta can also be represented by Eq. (8a) pro-
vided q and R are suitably chosen. R was given the same
value as obtained by Cornolti and Resta and q was ob-
tained empirically. This procedure, however, leads to a
discontinuity in the electric field at r =R. For the pur-
pose of obtaining the binding energy, this is, however, not
important. The values of q thus obtained are shown in
Table I against "Nonlinear TF" and the corresponding
binding energies are shown in Table II. Csavinszky and
Brownstein' and Chao' have obtained approximate
solutions of the nonlinear TF equation of Resta.

The TF theory for free atoms and ions was improved
by Dirac by the inclusion of exchange. The improved
version is known as the Thomas-Fermi-Dirac (TFD)
theory. Csavinszky' and Scarfone' have extended the
linear TF theory for impurities in semiconductors to in-
clude exchange. The solution of the resulting equation
gives F(r) of the same analytical form as Eq. (8), but the
expression for q is different from the linear TF case. We
may also note here that the expressions for q as given by
Csavinszky' and Scarfone' are different and lead to very

different numerical q values. In the present paper we
shall use Scarfone's values, which are given in Table I,
and the corresponding calculated binding energies are
recorded in Table II.

Scarfone' has also solved the nonlinear TFD screening
equation for impurities by numerical methods for dia-
mond, silicon, and germanium. He presents his results in
the form of e(r) versus r curves for Z=+ 1, +2, +3, and
+4. Here also it was found that for Z=1, the given
curves can be represented by Eq. (8a) by empirically
chosen values of q, and R having the same value as calcu-
lated by Scarfone. These values of q and R are shown in
Table I and the corresponding binding energies in Table
II. The experimental values' ' of ground-state binding
energies for P, As, and Sb are also shown in Table II.

We next consider the results. The linear TF binding-
energy values are seen to be very large as compared to
the experimental ones. The range of validity of the
linearized theory has been investigated by Csavinszky.
He finds that for Z=1 the linearized TF equation is not
valid for a space region of about —,

' of the screening ra-
dius. Our results clearly indicate that the linear TF ap-
proximation is highly inadequate.

The results from the "nonlinear TF" and "linear TFD"
dielectric screening are not too different. It would appear
that nonlinearity effects and exchange are about equally
important.

Our results clearly show that the ground-state binding
energy is very sensitive to the form of the dielectric
screening. The best results are obtained from the non-
linear TFD dielectric screening. Both for silicon and ger-
manium the calculated binding energy is quite close to
the experimental values. The results appear to indicate
that the infIuence of the chemical identity of the donor is
small for P and Sb in the case of silicon, and that of P and
As in the case of germanium.

This work was done in part under contract with the
Department of National Defence, Government of Cana-
da.
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