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Spontaneous generation of plasmons by bal&istic electrons

K. Kempa, P. Bakshi, J. Cen, and H. Xie
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02167-3811

(Received 26 November 1990)

A beam of ballistic electrons moving with a velocity of about twice the Fermi velocity (-10'
cm/s) with respect to a stationary electron gas is shown to lead to a spontaneous generation of
plasmons.

Recent advances in semiconductor technology have led
to systems where ballistic propagation of electrons has
been achieved over distances up to 100 pm in very-high-
mobility (-9X 10 cm /V s), modulation-doped hetero-
junctions, at relatively high areal electron densities
( —2X10" cm ).' In such systems, electrons propagate
over a large distance without incurring a single scattering
event, and phenomena analogous to the traditional
geometrical optics, such as refraction, focusing, etc. , can
occur. ' In this paper we investigate the possibility of a
spontaneous generation of plasmons in such systems.
This effect, which might occur at sufficiently high drift
velocities of electrons (of the order of the Fermi velocity),
would destroy the ballistic motion, by opening an
effective electron-plasmon scattering channel. This
phenomenon, in turn, should be experimentally detect-
able in the type of experiments of Ref. 1.

Generation of plasma waves by a current, through
current-driven plasma instabilities, is well known in gase-
ous plasmas. ' It has been shown that analogous plasma
instabilities can exist in solid-state systems. The drift
velocities of carriers needed for this phenomenon to
occur in these systems are usually very high, of the order
of the Fermi velocity vF. Although the high-mobility
(modulation-doped) semiconductor heterostructures can
provide sufficiently large velocities of carriers (at high
carrier concentrations), the effectiveness of the
current —plasma-wave energy transfer is limited due to an
intrinsic absorption associated with the carrier-phonon or
carrier-impurity scatterings. On the other hand, these
scatterings do not occur, of course, in the ballistic mode
of operation, and therefore the current-driven plasma in-
stabilities might occur in such systems more readily.

To study current-driven plasma instabilities in a ballis-
tic system, we consider a stream of ballistic electrons,
modeled by a two-dimensional (2D) electron-gas layer
with the susceptibility y (nb, q, co) moving against a uni-

form 2D background of stationary electrons, with suscep-
tibility y"(n„,q, )c.onb, n„, q, and co are, respectively,
electron densities, and the wave vector and frequency of
the electromagnetic radiation. In the nonretarded
(c~ ~ ) and long-wavelength (q~O) limits, the dielec-
tric function of the system is simply given by

e(q, co) = I +4sry "(nb, q, co)+4rrg" (n „,q, co),

where the stationary susceptibility is given in the

random-phase approximation by

e dp f (p+q) —f (p)
(2~) (2p q+q )sri /2m —A'co

(2)

e(q, co) = I+4~y"(nb, q, co —qud„)+4~y"(n„, q, co) . (3)

For T =0, the susceptibility of the stationary plasma is
given by the well-known Stern formula

2e nkFx"=
2CFKq kF

1 2~ q
4 q. +k.

'2
1 2'+4q, q

kF
(4)

where n is the surface density of electrons, ~ the dielectric
constant, and kF, v„, and E.F are, respectively, the Fermi
wave vector, velocity, and energy. The plasma-mode
structure of the system is given by the usual condition

e(q, co) =0 . (5)

In the driftless case (ud, =O), Eqs. (3)—(5) lead to the
well-known 2D-plasmon-mode dispersion relation

co =2~ne q/m~ with n =nb+ n„.
Although this is the only solution of Eq. (5), in this case
the real part of e(q, co) vanishes also in the vicinity of the
line co=qvF, i.e., at the edge of the single-particle contin-
uum where the susceptibility [Eq. (4)] experiences rapid
variation and changes sign. The imaginary part of e(q, co)

at this "spurious mode' is positive, rejecting the absorp-
tion associated with the single-particle excitations.

p is the electron wave vector, and I is the effective mass
of the electron, and f (p) is the electron distribution func-
tion. We note that, in the long-wavelength limit (q~0),
e( q, co ) does not depend on the separation between the
two layers.

In the scattering-free environment, the electron distri-
bution functions of the stationary and uniformly moving
electrons [f"(p) and f (p), respectively] are related by

f (p) =f'"(p —m vd, /irt), where vd, is the drift velocity of
the electrons. This, in turn, leads to a Doppler shift
in the susceptibility, y (nb, q, co) =y"(nb, q, co —

qud, ).
Therefore Eq. (1) becomes
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If, however, Ud, is nonzero, the electron distribution
function of the moving electrons shifts correspondingly,
leading to a population inversion and subsequent down-
ward single-particle transitions. These transitions for a
sufficiently large drift velocity (threshold drift velocity)
produce an energy Aow which can overcome the usual ab-
sorption due to upward single-particle transitions. Then,
Eq. (5) has another solution for which Re(co)=qvz and
Im(co) )0. This can be analytically illustrated by consid-
ering the case of nb =n„. Then it is straightforward to
show that both the real and the imaginary parts of the
dielectric function [Eq. (5)j vanish if

co=qvF fiq —/2m +Pi q /2m vF+O(q )
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and

ud, =2co/q =2uz fiq/—m +Pi q /m uF+O(q ) .

In this case, Eq. (7) is the dispersion relation of a poten-
tially unstable, plasma mode. For small q this mode is an
acoustic one with its phase velocity almost equal to the
Fermi velocity. At the threshold drift, co given by Eq. (7)
is real and the amplitude of the mode neither increases
nor decreases in time, i.e., the mode is at the onset of in-
stability. For drift velocities larger than the threshold ve-
locities given by Eq. (8), the mode frequency becomes
complex with Im(co) )0, and the mode amplitude grows
in time.

The instability domain can be studied by numerically
solving Eq. (5). A typical, complex dispersion for an un-
stable mode (real and imaginary parts of frequency versus
q), for a fixed Vd„ is shown in Fig. 1. Here ud, =2.5u~,
n „=nb =2 X 10" cm, and other material parameters
are chosen to be those for GaAs: m =0.0665m„~=13.1.
While the real part of the mode varies linearly with q
(with the slope equal to ud, /2), the imaginary part (gain)
has a maximum approximately in the middle of the insta-
bility domain. The strength of this maximum is a mea-
sure of the eKciency of the energy transfer between elec-
trons and plasmons. We have also examined various
cases with unequal densities. The highest gains occur for

nest

Plb.

In the instability domain, electrons are scattered
(through plasmon generation) and can no longer be con-
sidered ballistic, i.e., their mean free path I. rapidly de-
creases. In fact, one can estimate this decrease by first
noting that the eA'ective scattering frequency

FIG. l. Complex solution of the dispersion relation [Eq. (3)j,
in the instability domain. Parameters are v d„=2. 5vF,
n„=n& =2X10" cm, m =0.0665m„~=13.1. The real part
of the frequency is shown as a thin line, while the imaginary
part of the frequency is represented by a bold line.

v, & &
=maxIIm(co)/2nI. Then from Fig. 1 we find

U ] pf 10" s ', which corresponds to the mobility
2. 7 X 10 cm /V s, and L =4 pm.

The mean free path in the case of Ref. 1 is 64 pm, and
the motion between electrodes (separated by =25 pm) is
ballistic. If an additional layer of stationary electrons is
provided in the arrangement of Ref. 1, plasmon genera-
tion through the above-mentioned instability mechanism
would become feasible. Once the plasmon generation be-
gins, the mean free path shrinks dramatically (to =4 p,m)
and ballistic propagation would not be detectable in this
configuration, providing a test of this phenomenon.

This basic phenomenon of spontaneous generation of
plasmons by ballistic, relative motion of carriers could
also be realized in other physical systems in which the
threshold condition can be met. This process, when it
occurs, can be detected in other ways as well, e.g. ,
through a conversion of the plasma-wave energy to elec-
tromagnetic radiation by placing a grating (or other
coupler) to quench the excess momentum. We note that
such an arrangement has potential device applications as
a radiation source.

This work was supported by the U.S. Army Research
Office.

J. Spector, H. L. Storrner, K. W. Baldwin, L. N. Pfeifer, and K.
W. West, Appl. Phys. Lett. 56, 1290 (1990).

2A. B. Mikhailovskii, Theory of Plasma Instabilities (Consultant
Bureau, New York, 1974), Vol. 1.

3N. Krall and A. Trivelpiece, Principles of Plasma Physics
(McGraw-Hill, New York, 1973).

4J. Cen, K. Kempa, and P. Bakshi, Phys. Rev. B 38, 10051
(1988).

5P. Bakshi, J. Cen, and K. Kempa, J. Appl. Phys. 64, 2243
{1988).

sK. Kempa, P. Bakshi, and J. Cen, in Proceedings of the Confer

ence on Aduanced Processing of Semiconductor Deuices, II,
Newport Beach, California, 1988, edited by H. Craighead and
J. Narayan, SPIE Conference Proceedings No. 945 {Interna-
tional Society of Optical Engineering, Bellingham, WA,
1988), pp. 62 —67.

7K. Kempa, J. Cen, and P. Bakshi, Phys. Rev. B 39, 2852 (1989).
J. Pozhela, Plasma and Current Instabilities in Semiconductors

(Pergamon, New York, 1981).
K. Kernpa, Appl. Phys. Lett. 50, 1185 {1987).
OF. Stern, Phys. Rev. Lett. 18 546 (1967).


