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Electronic structure of small clusters of Li and a Li-Mg compound
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Local-density-functional (LDA) theory is employed to study the electronic structure of Li9 and
Li» with body-centered-cubic geometry and Li6Mg with simple-cubic geometry. The size of the
basis set is found to be very important for a determination of the cluster properties. In a special
subspace of basis functions, the cluster of Li» can reproduce many properties of bulk lithium. The
equilibrium lattice constant of Li6Mg calculated is in excellent agreement with values obtained with
other calculations, while results on the binding energy and ionization potential are somewhat
different. For these a detailed discussion is made.

I. INTRODUCTION

In recent years local-density functional (LDA) theory
has enjoyed much success in the study of electronic struc-
ture of clusters. ' Clusters are often used as models in
describing crystal and point defects. ' Based on previ-
ous work, ' we present in this paper the electronic
structure of Li9 and Li» with body-centered-cubic
geometry and Li6Mg with simple-cubic geometry in the
framework of local-density-functional theory. The pri-
mary aim of this paper is to study the relationship be-
tween finite-sized clusters and bulk metal. Usually, the
choice of cluster size depends on the questions one wishes
to address. If the cluster is just large enough to yield the
bulk value of a property one wants to study, then, for
that particular property, studying the cluster is
equivalent to studying a bulk specimen. However, given
a certain size of cluster, one can obtain different results,
even for the same property. For example, the lattice con-
stant of a cluster is found to be very different. In fact, it
is often discovered that the calculated properties of mole-
cules and clusters are sometimes strongly dependent on
the particular basis set used in the calculations. The
question we now pose is that when we use the cluster as a
model to describe properties of a solid, does there exist a
special basis set in which a cluster can exhibit many bulk
properties? To answer this question, we use different
basis sets in this work to study the electronic properties
of the clusters Li9 and Li». We hope to shed some light
on how well a cluster can represent a solid. For the study
of an impurity in solid, we are interested in the behavior
of Li6Mg in the framework of LDA. We will present the
results of Li6Mg together with those of Li9 and Li» in the
following sections.

II. METHOD

The method employed in these calculations has been
described in detail in Refs. 1 —4 and 10. Only the basis
sets are given below. For the clusters of Li, the basis sets
of 4s and 8s are those of the 2G- and 4G from Mezey and
Kari, " containing four s-like functions and eight s-like

functions, respectively. The 8slp, 8s2p, and 8s3p basis
sets are based on the 4G, on which one, two, and three p-
like functions with parameters of 0.145, 2.5, and 0.07 are
added by the present author. The 9s4p basis set is that of
Huzinaga, ' containing nine s-like functions and four p-
like functions. When one d-like function with a parame-
ter of 1.008 is added to it by the present author, the
9s4pld basis set is obtained. In the calculations for
Li6Mg, the basis set for Li atoms is the 9s4p described as
above, and the basis set for the Mg atom is 12s 6p ld, con-
taining 12 s-like functions, six p-like functions, and one
d-like function. The 12s6p are from Veillard. ' The ex-
ponent of the d-like function is from Collins et al. '

III. RESULTS AND DISCUSSION

Our results are presented in this section, where they
are compared with other calculations and experiment.

A. Li9 and Li»

The total energies of Li9 and Li» are calculated at
several lattice spacings in the neighborhood of the
minimum. After a least-squares fit to the total energies,
we estimate the equilibrium lattice constants. The equi-
librium lattice constant of Li9 in all basis sets except the
4s one is smaller than the bulk value of 6.597 a.u. and de-
creases as the size of the basis set increases, ranging from
6.888 to 5.661 a.u. Li» has the same trends but the value
is larger than that of Li9 in the same basis set. Thus we
are given the possibility of choosing the basis set in the
calculations so as to get the equilibrium lattice constant
of a cluster as close to the bulk value as we want to. For-
tunately, in such a basis set the cluster can reproduce
many other properties of bulk better than in other basis
sets. The best basis set is 8slp in our calculations. The
equilibrium lattice constant of Li» is 6.4878 a.u. Certain-
ly, a better basis set exists as discussed above. In Table I,
we list the equilibrium lattice constant, conduction-band
width, cohesive energy, energy gap, bulk modulus, and
ionization potential of Li9 and Li» in the basis set of 8s lp
as well as some experimental values for comparison.
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TABLE I. Properties of ground state of Li9 and Li» is the basis set of 8s lp. The equilibrium lattice
constant (denoted by ao) is given in bohrs. E, is the cohesive energy, given in Ry. E, Eg, and IP are
conduction-band width, energy gap, and ionization potential, respectively, in eV. B is the bulk modulus
in 10' dyn/cm .

Cluster

Li9
Li 1 5

Expt.

ao

6.276
6.4878
6.597'

2.886
2.739
3.22'

E,

0.0675
0.0893
1.22'

Eg

43.15
43.32

IP

4.643
7.0
8.9

».5b

'Reference 15 and references therein.
Reference 7 and references therein.

The conduction-band width has the same trends as
those of the equilibrium lattice constant. The value of Li9
for this quantity ranges from 3.74 to 2.56 eV calculated at
the bulk lattice constant, covering the experimental value
of 3.22 eV (Ref. 7 and references therein) and the results
of 3.47 eV from band calculation. ' In the basis set of
Ss 1p, the conduction-band width from Li» at the equilib-
rium lattice constant is 2.74 eV, about 0.05 eV larger
than that obtained at the bulk lattice constant. This im-
plies that we can choose a better basis set to obtain the
conduction-band width as close to the bulk value as pos-
sible without making other corrections in the theory.

The cohesive energy increases with increasing cluster
size. But it increases for Li9 and decreases for Li» as the
size of the basis set increases. In the basis set of Ss lp, the
cohesive energy of Li» is 0.089 Ry per atom. Rao et al.
pointed out that it can refer to the surface effect. Follow-
ing their procedure, we estimate the surface energy per
atom of Li» is about 0.033 Ry. When we add this correc-
tion to the cohesive energy of Li», our result is in very
good agreement with experiment. If we use the total en-
ergy of a free Li atom from a non-spin-polarized calcula-
tion, in which the input charge density for spin-up and
spin-down electrons is the same, the cohesive energy of
Li» in the present work is 0.108 Ry, which is 89% of the
experimental value.

The bulk modulus B is defined as

a'z
vo

v 'o

where vo is the equilibrium volume per unit cell, which is
connected to the equilibrium lattice constant a o by
vo= —,'ao. The trends of changes of the bulk modulus B
are the same as those of the cohesive energy. In the basis
set of Ss 1p, the value of B obtained from Li» is 8.9 X 10'
dyn/cm which is in good agreement with the experimen-
tal value of 11.5 X 10' dyn/cm (Ref. 5 and references
therein). Rao et al. obtained a value of 12.6 X 10'
dyn/cm for B using a 15-atom cluster similar to ours.
We should note that the band calculation for B is
13.8 X 10' dyn/cm (Ref. 15) and the free-electron value
for B is 23.9 X 10 dyn/cm2. 5

The integrated density of states of Li» calculated at
the bulk lattice constant of lithium in the basis set of Ss 1p
is in very good agreement with that of a band calculation,
while that of Li9 is totally in disagreement. The energy

gap is about 43 eV, which is not sensitive to the size of
the cluster and of the basis set.

In our calculations, we find that the difference of the 1s
orbital energies between different atoms in Li9 is greater
than 0.1 Ry in all basis sets except the 4s one, while in

Li» this value is about an order smaller. The smallest
difference is obtained from Li» in the basis set of Ss 1p.
This perhaps can give us some information about how
well a cluster model can describe the bulk since in solids
the 1s energy levels of atoms become a very narrow ener-

gy band.
We would like to point out that one must be careful in

the choice of the initial input charge density in the self-
consistent calculations using local-density-functional
theory. In our calculations, the total energies of Li9 and
Li» in a spin-polarized calculation, in which the input
configuration of the Li atom is (ls ) (2s )', is about 0.004
Ry lower than that in a non-spin-polarized calculation.
There is also an unpaired electron in the cluster. If one
used the spin-polarized calculation, one would obtain
spurious magnetic moment. This conclusion agrees with
that of Redfern et al. In the case of Li6Mg which we
shall describe below, the final results are independent of
the initial description of the atoms just like that in the
study of SF6 by Tang and Callaway. '

S. Li,Mg

Recently, Rao and Jena made an elaborate study of
the electronic structure and geometry of heteroatomic
clusters using the unrestricted Hartree-Fock (UHF)
method augmented by configuration interaction. After
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FIG. 1. Atomization energy of Li6Mg obtained by diA'erent

procedures.
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optimization for the geometry of the clusters, they found
that the importance of Jahn-Teller distortion in a strong-
ly bonded compound is significantly reduced. The
geometry of Li6Mg is simply a simple cubic. Lee, Calla-
way, and co-workers' ' successfully studied the elec-
tronic properties of the impurities in solid from the mod-
el of the cluster in the framework of local spin density
functional theory (LSDA). As is well known, a point de-
fect in a solid perturbs the host electron distribution and
the arrangement of the host atoms in the vicinity of the
defect. But these perturbations are usually small and are

confined to a local environment. In the rest of this paper,
we will present our results for Li6Mg in the framework of
LSDA.

Besides the fact that the method employed in our cal-
culations for Li6Mg is different from that of Rao and
Jena, the basis sets are also different. The equilibrium lat-

0
tice constant of Li6Mg in the present work is 2.477 A,

0
which is in excellent agreement with that of 2.48 A ob-
tained by Rao and Jena. As usual, the total energy of—486. 64941 Ry from LSDA calculation is higher than
that of —487.059 38 Ry obtained from UHF calculation.
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FICx. 2. Schematic occupied energy level diagram for atoms of Li and Mg and for clusters of Li6 and Li6Mg. The diA'erence be-

tween levels in energy is not the real scale of the corresponding atoms and the corresponding clusters.
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The atomization energy which is defined by Rao and Jena
as the (positive) energy needed to split the cluster to its
constituent atoms in the present calculation is 5.44 eV.
This value is smaller than that of 11.707 eV obtained by
Rao and Jena. To test our result, we recalculated the to-
tal energy of Li6 which was obtained by removing the Mg
atom from the cluster of Li6Mg at the equilibrium lattice
constant of Li6Mg. The result is —88.674 626 Ry. Thus
the energy needed to split the cluster to a Mg atom and
Li6 is only 0.20 eV and the energy needed to split the
cluster of Li6 to six isolated Li atoms is 5.24 eV. This
procedure is diagrammatically shown in Fig. 1. Here we
see that the same result for the atomization energy is ob-
tained. Hence we believe our calculations are reliable in
the framework of LSDA. We do not know exactly the
reason for the discrepancy in these two calculations. But
the basis set may have some effects. Rao and Jena did
not use the d-like functions in their calculations. They
did not have the d-like charge on the Mg atom, while
there is 0.012 of an electron residing at the Mg atom in
our calculation. Collins et al. ' proved that the d-like
functions are very important for correctly describing the
properties consisting of the elements in the third period
in the Periodic Table.

We are now to see the processes in the formation of
Li6Mg from the isolated atoms. We plot in Fig. 2
schematically the energy levels of atoms of Li and Mg
and of clusters of Li6 and Li6Mg at the equilibrium lattice
constant. From this figure, we see that in forming Li6,
the two separated 1s levels of free Li atoms become one
level in Li6 which two paired electrons occupy. The
llighest level 2t

&
only has one electron on it. After the

Mg atom which contains 12 electrons is placed at the
center of the cluster, the highest level is fully occupied by
electrons. Therefore the Li6Mg should be a relative
stable cluster considering that there is no partially occu-
pied state which causes the so-called pseudo-Jahn-Teller
effect. From the Mulliken population analysis of Li6Mg,
we know that the Mg atom gives out 1.13 electrons,

which are shared by the six Li atoms surrounding it.
This result agrees well with that of Rao and Jena. Here,
the behavior of the central atom is totally different from
that in Li7. ' In Li7, the central atom has extra electrons
on it and most of the unpaired electron is residing on it,
while in Li6Mg, the central atom gives out its charge to
its neighbors and has no net charge on it since there is no
unpaired electron in this cluster.

The ionization potentials of Li9, Li», and Li6Mg,
which is 5.32 eV calculated in the present work, are sys-
tematically larger than those found by the other calcula-
tions. This may relate to the difhculty of LSDA in pre-
dicting accurate values for the ionization potentials. '

IV. CONCLUSIONS

We have performed self-consistent calculations for
Li9, Li&5, and Li6Mg in the framework of local-density-
functional theory. The main conclusions are that the
basis set is of essential importance to clusters when clus-
ters are used as a model to describe the properties of
bulk. Fortunately, a well-chosen basis set exists in which
the cluster has many properties of the bulk. This leads us
to consider the cluster as a portion of a solid and in a spe-
cial subspace of basis functions the cluster can represent
the solid. Of course, in doing so, the size of the cluster
should be large enough. But the question of what the cri-
teria are and how we search the subspace of basis func-
tions is still open. In forming Li6Mg, the central atom
gives out its charge to its neighbors to form a stable clus-
ter.
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