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Solving the phonon Boltzmann equation with the variational method
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The thermal conductivity of 17 alkali halides with the NaCl structure has been calculated.
The deformation-dipole model has been used to calculate realistic phonon dispersion relations,
which are used to solve the Boltzmann equation with the variational method. Many different
trial functions and linear combinations have been used and the resultant approximate solutions
are discussed. Assuming different trial functions for different branches increases the calculated
thermal conductivity by 10—150% . The error estimates suggest that the true solution to the
Boltzmann equation would increase the calculated thermal conductivity by another 100% .

I. INTRODUCTION

The phonon Boltzmann equation was first derived by
Peierls. It can be written as

It drift(q, j) + &- tt(q, j) = o

where Nd 'ft(q, j) is the rate of change of the number
of phonons with wave vector g and branch index j due
to the temperature gradient V'T, and W„ tt(q, j) is the
rate of change due to scattering of the phonon against
boundaries, impurities, dislocations, electrons, or other
phonons. This paper discusses the Boltzmann equa

tion for alkali halide crystals at high temperatures. The
alkali halides are insulators and it is only the three-
phonon scattering processes that need to be considered
at high temperatures. It is convenient to write the de-
viation n(q, j) from the thermal equilibrium distribution
Np(q, j) as

n(q, j)—:N(q, j) —ItIp(q, j)
Kp(q, j)[Np(q, j) + 1]gq2

where k is the Boltzmann constant. The two terms in
Eq. (1) can now be written as

Itd haft(q, j) = &»' It p(q, j)P'p(q, j) + 1]v(q, j) ~»—hto(q, j)

~scatt(q~ j) = 7r

I.Th
q/ j / q//) II

I II

IC'".,'. I'(b(~(q j) —~(q', j') —~(q", j"))(&p+ 1)ItIp~p

xfg( —q, j')+ g(—q", j")—g(q, j)]
+»(~(q j) + ~(q', j') —~(q", j"))(IVp + 1)(~,+ 1)~,

"

(4)

where ~@II,/ „~2 stands for a lengthy expression involving

eigenvectors, frequencies, and a third-order derivative of
the potential energy C~qq. The exact expression is given
in Refs. 2 and 3.

There have been many attempts to solve the Boltz-
mann equation through approximate methods. Two

widely used approaches are the relaxation-time method
and the Callaway theory. The phonon dispersion rela-
tions have been approximated by a Debye model in most
cases but there are a few calculations that are based
on realistic dispersion relations.

Another well-known method is the variational method
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which will be used in this paper. One starts by assuming
some relationship between g and q, j. This means that
the exact solution g is replaced by a trial function f. Ac-
cording to the variational principle, the best solution to
the Boltzmann equation makes the thermal conductivity
a maximum.

The most popular choice of the trial function f has
been

where Ay is a constant to be determined. This choice of
trial function was expected to give a high value of the
thermal conductivity since the normal processes do not
contribute to the thermal resistivity in this case. This
is the basis for the famous Leibfried-Schlomann formula
which has later been modified in order to include optic
branches. Julian~ used realistic dispersion relations and
the above trial function in calculations of the thermal
conductivity of rare-gas crystals. Although Julian used
another formalism to solve the Boltzmann equation, his
final expression is equivalent to what is obtained with the
variational method.

In a series of previous papers, the thermal con-
ductivity of alkali halide crystals with the NaCl struc-
ture was calculated. The phonon dispersion relations
were calculated with a deformation-dipole model with
low-temperature values of the input parameters and the
variational method was used to obtain the thermal con-
ductivity. It was found that another choice of trial func-
tion,

f2 ——A2 V'T v (q, j),

where v is the group velocity of the phonon, gave val-

ues for the thermal conductivity that were 5—10 times
higher than the values obtained with fi at high tem-
peratures. With this trial function f2, the calculated
thermal-conductivity values were no more than 15—20'%%uo

lower than the experimental values, in most cases. The
trial function f2 has been found to be better than fi also
in the case of rare-gas crystals.

One might think that the good agreement between the-

ory and experiment would imply that fq is a very good
trial function but one must keep in mind that there are
great uncertainties in other parts of the calculations as
well. Following the discussion and the estimates that are
given in Ref. 2, terms in the phonon scattering operator
that are assumed to be unimportant have been neglected.
One of the greatest uncertainties is in the value assigned
for a third-order derivative of the potential energy. It
is quite possible that better trial functions would give
thermal-conductivity values that are much higher than
the experimental values. This in turn would imply that
other parts of the theory have to be improved since the
variational method always gives a lower limit to the ther-
mal conductivity of the model crystal.

This paper examines some other possible trial func-
tions and linear combinations of these. The new trial

functions are obtained by dividing f2 by some power of
the phonon frequency. The reason for this choice will be
explained below. Linear combinations of trial functions
have been used before, but they have been based
on the trial function fi and the complicated integrals
involved have been evaluated through crude approxima-
tions in which optic phonons have been neglected. It is
interesting to note that Benin found that phonons close
to the Brillouin-zone boundary should be closer to ther-
mal equilibrium than the phonons in the center of the
zone. This is automatically fulfilled when f2 is used as
the trial function.

In a previous paper, the relative importance of the
optic branches was discussed. Since there was only one
parameter to vary, their relative contribution was, in
some sense, determined as soon as the choice of trial
function was made. The theoretical calculations will now
be improved by assuming diA'erent trial functions for the
acoustic and optic branches, respectively, which makes it
possible to test the previous conclusions about the role
of optic phonons. A preliminary report of part of this
work was given in Ref. 16.

II. THEORY

A variational method will be used to solve the lin-
earized Boltzmann equation

0=Gg, (7)

where 0 is the drift term in Eq. (1) and Gg is equal to
—N„~it(q, j). It is convenient to define an inner product
by

The variational principle states that of all functions f
that satisfy

(f 0) =(f Gf) (9)

have been used, where the functions f; will be described
in the next section.

the exact solution to Eq. (7), f = g, is the function that
gives (f, e) or (f, Gf) its maximum value. This implies
that the exact solution to Eq. (7) makes the thermal con-
ductivity A a maximum, since A is proportional to (g, 0).

In the previous calculations, ~ a trial function was
used whose only constant [see Eq. (6)j was determined
already by the constraint in Eq. (9). In the present
calculations, linear combinations of trial functions,
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The problem of finding the maximum of (f, 9), sub-
ject to the constraint in Eq. (9), is easily solved by the
method of Lagrange multipliers. In this case it can be
shown that the Lagrange multiplier is equal to —1 and
the problem is reduced to solving a system of linear equa-

I

tions,

~; =) GiG;„
1

where

~, =(f, , ~) = ) ~T,
' f (q, j)&o(q, j)[&o(q j)+ l]v(q j).—bc'(q, j)

G i =(f Gfi)
I II) IC'" ' I'b(~(q, j) —~(q' j') —~(q" j"))I&o(q j)+ l]&o(q' j )&o(q" j")

x [f*(—q, j) —f (q', j') —f'(q", j")][fi(—q, j) —fi(q', j') —ft(q", j")]

It is clear that G, ~ is symmetric in q", j" and q', j' and
it is therefore possible to restrict the sums to ~q"

~
) ~q'~

and multiply the result by 2. More information on how

to evaluate integrals like 0; and G;~ is given in Refs. 2

and 3.

fo (qj) = (l4)V& v(q j) .f 4
q, j

(optic branches),

for I, = 0, 1, 2, 3, 4, or 5, where ~ is the phonon fre-
quency. "Acoustic trial functions" are defined in the
same way:

f~o(q, j) = &

Vr v(q, j)
n( .

)
(acoustic branches)

(»)
0 if j=4, 5, or6

(optic branches)

for n = 0. In the case of the "acoustic trial funtions, " n
cannot be allowed to be larger than 0 since the 0; and G;~
integrals would not converge. In a preliminary report,
an acoustic trial function with n = 1 was also used, but
due to normal processes, such a choice would make the

III. TRIAL FUNCTIONS
The acoustic-phonon branches tend to zero frequency

as ~q~ goes to zero while the optic branches have a large
frequency for all values of q. It is therefore plausible
that the phonon distribution will be very different fol.

these two groups of phonons. In this paper, linear com-
binations of trial functions will be used, where each in-
dividual trial function is describing either optic phonons
or acoustic phonons.

A set of "optic trial functions" is defined by

I'0 if j=l, 2, or3
(acoustic branches)

integral (f, Gf) diverge. This divergence does not show
up in the numerical calculations since the integrals are
approximated as a sum over q vectors distributed on a
regular mesh.

The factor V'T v(q, j) is included in all trial functions
since this will always give a positive relaxation time when
there is only one trial function. It can be shown that the
relaxation time 7 (q, j) in this case is given by

—T
~(q, j) =

VT (
.)) (

.)&-f-(q, j)
TC—„V'T v(q, j)

V'T.v(q, j)bc'(q, j ) cu" (q, j)
where the constant C„ is negative. If VT q instead of
V'T v(q, j) had been included in the definition of the
trial function it would have resulted in negative relax-
ation times for those phonons where q and v(q, j) point
in opposite directions.

When linear combinations of the trial functions are
used, it is possible that the solution corresponds to neg-
ative relaxation times for some phonons, since the solu-
tion is a sum over the trial functions with their associated
constants C„. Some of these constants are positive while
others are negative. The results that will be presented
in the next section do show that the solutions in some
cases correspond to negative relaxation times for a small
number of phonons. A phonon with a negative relaxation
time would make a negative contribution to the thermal
conductivity, i.e., it would efFectively carry heat in the
wrong direction.

The trial functions are chosen so that they are identical
except for the frequency dependence. There have been
several suggestions for the frequency dependence of the
relaxation time ~ oc [~(q, j)] ",with n ranging from 0
to 4. ' Often n is assumed to be equal to 1 due to
umklapp processes. The value n=4 has been used only
for high-frequency longitudinal-acoustic phonons.
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IV. RESULT OF CALCULATIONS

Results will be given only for T = 300 E4. A discussion
of the temperature dependence is found in a preliminary
report. The calculated thermal conductivity at 300 K
is given in Table I for difFerent trial functions. Values
that were obtained with the trial functions ft and f2 in
previous calculations have also been included. The val-
ues listed in columns 3 and 4 of Table I differ in three
cases (LiBr, LiI, and RbI) from those reported in Ref. 2.
The values reported previously for RbI are not correct.
Next-nearest-neighbor short-range interactions between
negative ions have been included in this work in the cal-
culation of the dispersion relations for LiBr and LiI. This
gives a better fit of the infrared dispersion frequency and
changes the dispersion relation for the optic branches
considerably. The calculated thermal conductivity also
changes significantly.

A. Two trial functions

The first discussion will be on linear combinations of
one "acoustic trial function" and one "optic trial func-
tion. " The object is to see how important it is to as-

sume diAerent trial functions for the acoustic and optic
branches and also to determine the frequency dependence
for the optic phonons that corresponds to the best solu-

tion to the Boltzmann equation.

The thermal conductivity A was calculat, ed for all 17
alkali halide crystals with m equal to 0 or 1 in Eq. (14)
and it was found that at high temperatures rn = 1 is bet-
ter than rn = 0 in 15 of the crystals. It is only for LiBr
and LiI that m = 0 is better. In Table I the results for
m =- 1 are given. When compared to the results obtained
with the previous best trial function, fq, the thermal con-
ductivity increases by 2—14% for crystals where the ratio
of the ion masses is less than 3. The increase in the ther-
mal conductivity is considerably larger for crystals with a
mass ratio larger than 3. The extreme case is CsF where
A increases by 150%.

It has been estimated that the relaxation time for
high-frequency phonons should be proportional to ~
which corresponds to m=1. Optic trial functions with
m ranging all the way from m=0 to 5 were used in six
crystals. It was found in these cases that the highest A

values were found for rn= 2 and 3, except in NaI where it
was found for m=5. The thermal conductivity does not
seem to be very sensitive to the choice of the optic trial
function.

One of the reasons for assuming different trial func-
tions for the acoustic and optic branches, respectively,
was to let the relative importance of acoustic versus op-
tic branches be determined by the variational principle.
The optic phonons carry approximately 30% of the heat
in NaF, KCl, and RbBr where the two different ions have
almost the same masses. They carry a smaller portion

TABLE I. The thermal conductivity A; at 300 K of 17 alkali halides calculated with diferent linear combinations of trial
functions f; that are given in Eqs. (5), (6), (15), and (14). The experimental thermal conductivity A,„~t has been corrected

to constant volume, corresponding to the volume at T=O K. Czzz is a third-order derivative of the potential energy. Units:

(W m K ), Crrr (10 Pa).

Crystal

LlF
LiCl
LiBr
LiI

—1.194
—0.766
—0.486
—0.252

2.78
0.385
0.261
0.349

14.2
2.48
1.57
2.08

16.2
5.17
3.15
3.39

~ AO, O1,02

16.2
5.19
3.25
3.75

&expt

16.1

2.20

Ref.

Ref. 21

Ref. 22

NaF
NaCl
NaBr
NaI

—1.220
—0.718
—0.650
—0.559

4.80
1.06
0.252
0.129

20.9
6.34
2.51
1.42

22.7
6.63
3.04
2.56

25.5
7.00
3.08
2.65

18.5
7.20
2.86
1 ~ 91

Ref. 23
Ref. 24
Ref. 25
Ref. 24

KF
KCl
KBr
KI

—1.013
—0.614
—0.593
—0.404

1.17
0.795
0.233
0.105

5.79
6.45
2.60
1.38

6.47
7.22
2.64
1.55

6.96
7.59
2.66
1.56

7.81
7.20
3.43
2.79

Ref. 26
Ref. 27
Ref. 27
Ref. 27

RbF
RbCl
RbBr
RbI

—0.871
—0.721
—0.582
—0.495

0.144
0.286
0.285
Q. 160

1.26
2.59
3.87
2.17

2.12
2.65
4.35
2.21

2.13
2.70

2.23

2.87
2.89
3.91
2.35

Ref. 22
Ref. 27
Ref. 27
Ref. 27

CsF —Q.938 0.0709 0.812 2.06 2.06
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of the heat in the other crystals with the extreme case
being CsF where only 2% of the heat is carried by the
optic branches. A complete table can be found in Ref. 16.
The previous results, in which a high relative amount of
heat was thought to be carried by the optic phonons in
the Li salts, have shown a dramatic decrease when sepa-
rate acoustic and optic trial functions are used. Making
linear combinations of trial functions in each group of
phonons does not further change the relative amount of
heat carried by optic phonons. In RbF and CsF nearly
all of the heat is carried by acoustic phonons. It is inter-
esting to note that the five crystals that have the mass
ratio R closest to unity are the only crystals where the
relative optic-phonon contribution increases when better
trial functions are used.

In relaxation-time calculations, optic phonons were
found to carry 35% of the heat in NaCI (Ref. 6) and
KCl, which should be compared to the present results,
23% and 33%, respectively. The agreement for KCl is
surprisingly good.

B. Three trial functions

A linear combination was made of one acoustic and two
optic trial functions with m equal to 0 and 1 in Eq. (14).
The result of the calculations at 300 K is given in the
sixth column in Table I. Increasing the number of trial
functions from 2 to 3 results in an increase of the thermal
conductivity by 2—12%. Making linear combinations of
more than two trial functions does not make any greater
change in the thermal conductivity. This does not nec-
essarily mean that the values in Table I are very close to
the true thermal conductivity of the model crystals since
it is possible that there are other factors besides the fre-
quency dependence that are important to include in the
trial functions. For instance, it is possible that additional
factors of the group velocity should be included.

Since there is a linear combination of two trial func-
tions for the optic branches, it is not obvious that the
solution will correspond to positive relaxation times. It
is found that most optic phonons do have a positive relax-
ation time even when a linear combination of trial func-
tions is used, but at low temperatures it is found that
phonons above a certain frequency have a negative re-
laxation time. These phonons will not acct the thermal
conductivity since the temperature is so low that hardly
any of these phonons are excited. As the temperature is
raised, this limiting frequency st, arts to increase and is

usually higher than the largest phonon frequency at high

temperatures.
In NaF, NaCl, NaI, and KF, a few phonons are found

in the uppermost branch that have a negative relaxation
time even at high temperatures. Also in this case these
phonons will not subtract significantly from the thermal
conductivity since they occupy only a small region in

q space near the I' point. Phonons with negative relax-
ation times are also found in LiBr and LiI, but there they
are confined to the lowest optic-phonon branch. These

phonons are not important for the thermal conductivity
since they have low group velocities.

A negative relaxation time for a phonon mode means
that the number of phonons in this mode would not relax
towards the equilibrium value when the driving force is
switched oA'. Even though such a situation seems to be
unphysical, there are cases where such things could hap-
pen. In the present case it is possible that the selection
rules for the three-phonon processes would force some
phonons away from equilibrium in an initial stage. After
a while the relaxation time must become positive so that
the whole system could relax to equilibrium. However,
the number of phonons with negative relaxation times is
expected to be small.

C. Qther trial functions

It is possible to further divide the phonons into
smaller groups. The acoustic phonons have been di-
vided into three groups: low-frequency acoustic, high-
frequency transverse acoustic, and high-frequency longi-
tudinal acoustic. Trial functions defined in analogy with
Eq. (14) have been tried for each of these groups. With
this division it is possible to test trial functions with n
greater than 0 for the high-frequency acoustic phonons
without problem of convergence for the integrals.

The high-frequency longitudinal-acoustic phonons
were especially interesting to study since it has been
found both in theory and experiment on other
crystals that 7 oc u at low temperatures for some of
these phonons. This would correspond to n=4 in the trial
function.

The study was limited to LiI, NaCl, KI, and EYbF.
The best trial function for the high-frequency longitudi-
nal branch were found to have a frequency dependence,
n=0 or 1. This does not necessarily contradict the pre-
vious findings that the relaxation time should be pro-
portional to u for high-frequency longitudinal-acoustic
phonons. That theory and experiment dealt with longitu-
dinal phonons that were in the linear part of the disper-
sion relation while the present group of high-frequency
acoustic phonons also includes phonons near the zone
boundary where there is large dispersion. It was only for
RbF that n=2 was found to be the best trial function for
a small temperature region around 40 K.

In a similar way, the optic phonons were divided into
transverse and longitudinal. It was found that it was
better to use a linear combination of foq and fop than to
divide the optic phonons into transverse and longitudinal
and use only one trial function for each group.

The last set of trial functions that will be discussed
consists of one trial function for each branch. The acous-
tic branches were assigned a trial function of type f~p
while the optic trial functions were of type foq The.
frequency dependency for the three optic trial functions
were selected with the result of Sec. IV A in mind. This
set of six trial functions, fq„, was applied to four crystals



43 SOLVING THE PHONON BOLTZMANN EQUATION WITH THE. . . 9243

TABLE II. The thermal conductivity A; at 300 K of four alkali halides calculated with diferent
linear combinations of trial functions f; that are given in Eqs. (5), (6), (15), and (14). o is an

estimate of the error in the solution of the Boltzmann equation. Vnits: A (W m K ).

Crystal

NaCl 1.06
1.00

6.34
0.832

fAo, oi
6.63
0.809

fwo, oz, o2

7.00
0.773

7.67
0.733

Kcl 0.795
1.00

6.45
0.948

7.22
0.891

7.59
0.839

8.06
0.806

0.160
1.00

2.17
0.770

2.21
0.752

2.23
0.750

2.32
0.728

Csp 0.0709
1.00

0.812
0.905

2.06
0.733

2.06
0.736

2.27
0.740

and the result is given in column 7 in Table II. This trial
function gives 4—10%%uo higher values of A than what was
obtained with three trial functions.

V. CONTROL OF THE SOLUTION

It, is clear from Table I that the calculated thermal con-
ductivity increases by many percent when linear combi-
nations of trial functions are used. How much can it be
expected that the thermal conductivity would increase if
it would be possible to find better trial functions? It is
easily seen in Eq. (13) that G is a symmetric and positive
definite operator and a simple derivation shows that

Since A is proportional to (g, 0), it follows from Eq. (17)
that the error in A is second order in the error in f
However, this is of no help since the exact solution g
is not known. The error will instead be estimated by
the extent to which the Boltzmann equation, Eq. (1), is
fulfilled with the approximate solutions.

The computer code was changed so that it was possible
to evaluate Eq. (4) and compare to Eq. (3). The sym-
metry between rI' and q" that is present in Eq. (13) is
not present in Eq. (4) which makes a greater uncertainty
in the numbers that are obtained from the program. The
integrals G;& are typically 20% greater than when calcu-
lated from Eq. (13).

In Figs. l(a)—1(d), Eq. (3) is compared with Eq. (4)

[ggol (b)

Cl

~C Q

lg)

CQ

I

CO

4 a
LQ

I

~ C)

~ a

0
LQ

I

0.0 0.2

'~

0.4 0.8

(c)

0.8

CO

Q

CQ

0.0 0.2

go]

0.4 0.8 0.8

FIG. 1. Comparison of the two terms in Eq. (1) for q vectors in the [110]direction for different phonon branches in NaC1.

( = g/(2s ja) is the dimensionless reduced-wave-vector coordinate. Solid curve is —Na„'n(q, j). The other curves are 1V,-„«(q,j)
calculated with different trial functions f The dashed line . is obtained from fq, the dotted line from f2, and the dot-dashed
line is obtained from fb„, (a) LA branch; (b) TOq branch; (c) TA2 branch; (d) TAr branch.
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for q vectors in the [110] direction for different phonon
branches in NaCl. For each wave vector q, the two lowest-
lying branches are named transverse acoustic (TA).
The next branches are, in order, longitu dinal acous-
tic (LA), tranverse optic (TO), and longitudinal optic
(LO). The two terms in Eq. (1) are compared for the
longitudinal-acoustic branch in Fig. 1(a). The solid line

Adrift(q, j) and the wiggling behavior at, high values
of ( is explained by the way the LA branch is defined.

Nd~ifg (q, j) is namely proportional to the group velocity,
which changes sign several times in the [110]direction (cf.
Fig. 2). The other lines are N,«|,-t, (q, j), where g is re-
placed with various approximate solutions f. The dashed
line is the solution obtained with the trial function fi and
it is easily seen that there are large diAerences between
the two terms in Eq. (1), especially at small q values. A
much bet ter agreement is obtained with the trial func-
tions f2 and fi,„, shown with dotted and dotted-dashed
lines, respectively. These two solutions have even the
correct wiggling behavior at large q vectors.

The result for the TOi branch is shown in Fig. 1(b)
from which it is clear that the trial function f~„works
best. An important fiaw with the trial function fi is also
obvious in this figure. N„ t, t, (q, j) is found to be positive
for all q vectors and does not follow the sign changes that
occurs for —Nd„;n (q, j) .

In Fig. 1(c) the result for the TA2 branch is shown.
None of the trial functions works well for the TA2 branch
and the situation gets really bad for the TAi branch [Fig.
1(d)]

The calculations show that the error is not the same in
difterent directions, which can be seen from a comparison
between Fig. 1(d) and Fig. 3. In the [110]direction [Fig.
1(d)], —Ng„;n(q, j) is larger than N, qt, (q, j), while the
opposite is true in the [111] direction (Fig. 3). Better
trial functions must be able to account for the directional
dependence.

The obvious way to get a total estimate of the error
in Eq. (1) would be to integrate the square of the sum
of the two terms in Eq. (1). However, it turns out that
with such an estimate, the error for the trial function fi
is smallest. This is explained by the fact that Nsc~t, , (q, j)
calculated from fi varies very smoothly with q, while it
varies more rapidly when it is calculated with the trial
functions that contain the group velocity. With the lat-
ter trial functions there are a few points with a large
discrepancy that contribute a large portion to the sum of
squares. To avoid this diFiculty we choose to integrate
over the absolute value of the two terms,

dqI&drin(q j)+ ~scatt(q j)I.

The result of this error estimate is given in Table II,
where the error has been scaled to the value 1 for the
trial function fi. The 0 values decreases when better
trial functions are used but not very rapidly. A varies
fairly linear with ~, and an extrapolation to o = 0 in-
dicates that the A values would increase with a factor
of 3—5 times. Hopefully the error would decrease more
rapidly towards zero but it is still quite possible that

10.0
00('

6.0—

4.0—

P..O—

I I I I

0.2 0.4 0.6 0.8 1.0
I I I I I

0.8 0.6 0.4 0.2 O.l 0.2 0.3 0.4 0.5
Redu. ced wave vector ( = q/(27t/n)

FIG. 2. Phonon dispersion relation for NaCl in certain high-symmetry directions calculated from a, deformation-dipole
model.
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~ O
O

O

0 ~ ~ ~

0 0 ~ ~ ~

~ ~
0 ~ ~ ~

~O4 ci
O

I

0.0 0.| 0.2 0.3 0.4 0.5

FIG. 3. Comparison of the two terms in Eq. (1) for q
vectors in the [111]direction for the TAq branch in NaC1.

q/(2n/a) is the dimensionless reduced-wave-vector co-
ordinate. Solid curve is Na„zt(q, j—). The other curves are

Ã„qq(q, j) calculated with difFerent trial functions f The.
dashed line is obtained from fq, the dotted line from f2, and
the dot-dashed line is obtained from fb,

the calculated values are by about a factor of 2 below
the true value for the model crystals. However, the cal-
culated thermal conductivities are in most cases within
+25% of the experimental values in Table I.

It will probably be very di%cult to invent better trial
functions and at the same time keep the number of vari-
ational constants at a reasonable level. Further progress
in finding the correct solution to the Boltzmann equa-
tion will probably be made by employing some iteration
method to find a numerical solution. The st, arting point
for the iteration could be the best trial function that has
been found in the present calculations. Such an approach
will require a lot of computer time.

ity of the model crystal could be a factor-of-2 (or more)
higher than the values that were presented in Tables I
and II. This implies that there are parts of the theory
that have to be modified. Three areas where more work
needs to be done will be suggested.

A great uncertainty in the calculations lies in the value
of C~~~ which appears squared in the final expression.
This third-order derivative of the potential energy of a
pair of nearest neighbors is calculated from a potential
consisting of a Coulomb part and a Born-Mayer part.
The parameters in the Born-Mayer potential are fitted
to the lattice constant and the elastic constants. The
value for Cqqq is very sensitive to the input values as well
as to what assumptions are made about next-nearest-
neighbor interactions. This could result in uncertainties
in the calculated thermal-conductivity values as high as
+50%.

In LiBr, LiI, NaI, RbF, and CsF, an appreciable
amount of next-nearest-neighbor interactions between
the larger ions is expected. This has not been included
in the calculations of the scattering matrix elements but
it has been included in the calculation of the dispersion
relations in LiBr and LiI.

It has been observed that there is a significant devia-
tion from the high temperature T dependence in KCl,
KI, RbBr, and RbI even after correction for thermal-
expansion eA'ects. The decrease in the thermal conduc-
tivity with temperature is faster than T in these crys-
tals, which indicates that there can be important contri-
butions from four-phonon scattering processes. Inclusion
of higher-order scattering processes could lower the cal-
culated A values.

VII. SUMMARY

VI. CONCLUSIONS

The thermal-conductivity values that are obtained
with the best trial functions are greater than the experi-
mental values in eight of the crystals studied. The largest
discrepancy is found for LiBr where the theoretical values
are 48% higher than the experimental values. Since the
variational principle states that the variational solution
always gives a lower limit to the true thermal conduc-
tivity of the model crystals this indicates that something
could be incomplete in the model.

Part of the diA'erence between theory and experiment
could be due to uncertainties in the experimental values.
This is partly due to the correction of the measured val-

ues to constant volume and in part due to the measured
values themselves. The maximum error is estimated to
10'%%uo which can acount for the differences in some crystals
but not in LiBr, NaF, NaI, KC1, and RbBr. The error es-
timates that were made in the preceding section indicate
that it is very possible that the true thermal conductiv-

In crystals with a high mass ratio, the calculated
thermal-conductivity values increases dramatically (by
50—150%%uo), when separate trial functions for the acous-
tic and optic branches are used. In crystals with a mass
ratio near 1, the corresponding increase in the thermal
conductivity values is approximately 10%. With sepa-
rate trial functions for the acoustic and optic branches it
is found that the optic phonons carry 2—34% of the heat.
Optic phonons carry approximately 34% of the heat in
NaF and KC1 while they carry almost no heat in RbF
and CsF.

The frequency dependence for the optic trial function
should be chosen so that it corresponds to 7 cx u
where k=2 or somewhat higher. This does not apply to
LiBr and LiI where k should be equal to 1.

The estimates of the error in the solution to the Boltz-
mann equation indicate that the true thermal conductiv-
ity of the model crystals is at least twice as high as the
values that have been obtained in this calculation. If that
estimate is correct, the theoretical thermal conductivity
would be much higher than the experimental values and
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certain parts of the theory would have to be modified.
Three possible causes to the error are the value of the
third-order derivative of the potential energy C~i~, the
neglect of next-nearest-neighbor interactions in crystals
with a high mass ratio, and the neglect of higher-order
scattering processes. More work needs to be done in these
areas.

The error estimates also show that it will be very dif-
ficult to find better trial functions. A correct solution to

the Boltzmann equation is probably best found by some
iterative method.
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