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Electronic excitation energies at the high-symmetry points I, X, and I. are obtained for zinc-
blende-structure BN, BP, and BAs in the 68'approximation using a model dielectric function. A
model for the static screening matrix makes use of the ab initio ground-state charge density and ei-
ther experimental values or empirical estimates for e„, the electronic contribution to the macro-
scopic dielectric constant. %'ave functions from an ab initio local-density-approximation calcula-
tion with norm-conserving pseudopotentials are employed along with the self-consistent quasiparti-
cle spectrum to obtain the energy-dependent one-particle Green function G. The minimum band

gaps are found to be 6.3, 1.9, and 1.6 eV for BN, BP, and BAs, respectively, in close agreement with

existing measurements of 6.1 and 2.0 eV for BN and BP, respectively. The BN direct band gap is
predicted to be 11.4 eV versus the experimental value of 14.5 eV, and the BP direct band gap is pre-
dicted to be 4.4 eV versus 5.0 eV from experiment.

INTRODUCTION

There are currently little experimental data available
on the electronic structure of the zinc-blende-structure
materials BN, BP, and BAs. This situation exists
despites the general interest in cubic BN and BP because
of their extreme hardness and high thermal conductivity.
To date, there have been no results from angle-resolved
photoemission experiments available on these materials.
However, some soft-x-ray-spectroscopy data is available,
yielding band gaps and occupied-band widths. ' There
are also some optical studies that have been performed on
BN, BP,' '" and BAs. ' There is less experimental in-
formation about BAs, since it is difficult to synthesize. '

The optical studies have been limited mostly to the fre-
quency dependence of the reAectivity or absorptivity; the
studies on BP include the determination of the electro-
luminescence and photoelectric response. ' No firm
identification of the optical features can be made on the
basis of existing experiments alone; and attempts to iden-
tify structure in the reAectivity by analogy to SiC or by
analogy to available theoretical results can provide only
limited insight into the excitation spectra.

Unfortunately, the existing theoretical data cannot be
relied upon to provide accurate estimates of excitation
energies, since most band-structure calculations per-
formed to date rely on the Xn method, ' ' the local-
density approximation (LDA) to the density-functional
theory, ' or the Hartree-Fock approximation. These
theoretical methods can yield errors of up to several eV
in band gaps or other excitation energies when compared
to reliable experimental results. The Hartree-Fock ap-
proach neglects correlation entirely, and density-
functional theory, upon which LDA is based, systemati-
cally underestimates band gaps. ' The most recent
ab initio LDA calculations yield a minimum band gap
for BN ranging from 4.2 to 5.0 eV; the Hartree-Fock

method yields a minimum band gap of 11.3 eV. Earlier
empirical calculations ' are limited by the paucity of
experimental data.

Recent advances have made it feasible to perform
ab initio calculations with enough quantitative accuracy
to provide predictive information on the excitation ener-
gies of these compounds. These calculations employ the
GR'approximation to properly include the effects of ex-
change and correlation on the quasipartic1e energies. The
GR' approach has resulted in calculated band gaps with
0.1 eV accuracy when a random-phase-
approximation (RPA) dielectric matrix is used, or with
0.1 —0.3 eV accuracy with use of an appropriate model
dielectric matrix. (The dielectric model requires a
value for e as an input parameter; the experimental
value is used to avoid computing the dielectric constant
explicitly. For this reason, and because the experimental
lattice constants are used, the calculations are considered
to be only partially ab initio. )

This paper examines the electronic excitation energies
for high-symmetry points I, X, and L for the three boron
compounds BN, BP, and BAs. The energies of the first 8
bands are calculated in the local-density and GR'approx-
imations. The effects of the relativistic spin-orbit interac-
tion are included for BP and BAs. The results are com-
pared to the existing experimental data, and the full
theoretical data are tabulated for reference. The calculat-
ed minimum band gaps are in good agreement with exist-
ing experimental values based mainly on the onset of op-
tical absorption. There are still significant discrepancies
with the experimental data that are based on interpreting
other features in the reAectivity.

THEORETICAL METHOD

The GR' approximation starts with the exact formal
expression for the one-particle excitation energies of an
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where T is the kinetic-energy operator, Vc is the Hartree
potential, V,„, the ionic potential, and the self-energy
operator X includes the effects of exchange and correla-
tion. When taken in the 68'approximation, X depends
only on the energy-dependent one-particle Green's func-
tion 6 and the dynamically screened Coulomb interac-
tion 8'.

X(r, r', E)=i e ' 6 (r, r', E E')—dE';gE
2m

X IV(r, r';E) . (2)

Vertex corrections are not included in this approxima-
tion.

In the approach taken here, the additional quasiparti-
cle approximation is made for the one-particle Green's
function 6; the quasiparticles are considered to have
infinite lifetimes. It is also assumed that the LDA eigen-
functions adequately describe the quasiparticle wave
functions. Thus the Green's function becomes

ink)&nkvd

with
~
n k ) the LDA eigenfunctions, E'" "' the self-

consistent quasiparticle energies, and g a negative
infinitesimal for energies above the Fermi energy and a
positive infinitesimal below. The use of the LDA wave
functions as surrogates for the true quasiparticle wave
functions simplifies the computation of excitation ener-
gies; specifically,

Eg=E~„"+&nk~r(Eqg)~nk& —&nk~ V "~nk& . (4)

That is, the contribution of the LDA exchange and corre-
lation to the energy of the LDA eigenstate is simply re-
placed by the expectation of the energy-dependent self-
energy operator. These approximations have been shown
to be highly reliable in the past, ' and the quantitative
success obtained here suggests that they are reasonable
for the present class of materials as well.

The screened Coulomb interaction in Eq. (2) is given by

IV(ri, r2', co)= I dr3E (1] 13,co)v(r3, rz),

with U the bare Coulomb interaction. This quantity is
also approximated, since a complete evaluation is imprac-
tical. Typically, the static dielectric response matrix is
obtained by either a model or a linear-response perturba-
tion calculation in the random-phase approximation
(RPA), and the static matrix is then extended to finite fre-
quency with a generalized plasmon-pole approximation.
An effective plasmon mode is fitted with two frequency
moinents to obey the Kramers-Kronig and f-sum rules.
The static screening and ground-state charge density are
the only information needed. This basic method has been
successfully applied to a number of diamond-structure

interacting system of electrons in a crystal potential.
These energies can be obtained as

Eqi'Vqi'(r) = [1'+V,„,(r)+ Vc(r)]+q~(r)

+I dr'X(r, r', E i')Wi'(r'),

(C, Si, and Ge) and zinc-blende-structure material AIAs,
AIP, ALSb, GaAs, GaP, GaSb, InAs, InP, and
Insb 36-38

There are essentially two different plasmon-pole
schemes that have been used in 68 calculations. The
original plasmon-pole method due to Hybertsen and
Louie and Zhang et al. assigns one plasmon mode per
element in the matrix. This is referred to as the general-
ized plasmon-pole method (GPP). It yields N plasmon
modes for an XXX dielectric matrix. Another is the
dielectric band-structure (DBS) approach of von der Lin-
den and Horsch, which is the method used in this paper
(and in Ref. 38). In this approach the dielectric matrix is

put in Hermitian form and diagonalized; ' each eigen-
function is assigned one plasmon mode; thus a 1VXN
dielectric matrix will have X plasmon modes. The two
methods yield equivalent results for the self-energy for
the semiconductors considered.

A suitable static dielectric matrix is needed as a start-
ing point for either plasmon-pole approach. In this paper
the static screening is obtained by using a model based on
the ground-state charge density and the macroscopic
dielectric constant, The long-range screening is fitted to
the input e, and the local fields are included through the
variation in the electron density. The value for e is
taken as 4.5 for BN from the Landolt-Bornstein tables
10.8 for BP from the experimental value of eo, the
optical-phonon frequencies, and the LST relations and
10.4 for BAs derived from the empirical relation due to
Philips and van Vechten:

(fico )
e =1+

Eh+ C

with Mp the bulk plasmon frequency of 20-1 ev, Eh the
heteropolar gap of 6.55 eV, and C the hornopolar gap of
0.38 eV. This est~mate for BAs should be accurate.
The Phillips —van Vechten relation and the empirical pa-
rameters are reliable for BN and BP, yielding values for
e of 5.0 and 9.5, respectively. In practice, the final
quasiparticle energies are insensitive to the precise value
of e used.

ACCURACY OF THE MODEL

The accuracy of the quasiparticle energies derived
from the model dielectric matrix depends on the material
being studied. As a result, it is important to examine ear-
lier 68'calculations to provide an estimate of the antici-
pated accuracy for BN, BP, and BAs when using the
DBS formalism and a model dielectric function. Tables I
and II show the LDA and 68 results as well as the avail-
able experimental data for diamond and Si. The percen-
tage errors between the calculated minimum band gaps
and the experimental values are essentially the same for
diamond and silicon. For example, the calculated band
gaps of silicon using the model dielectric matrix agree
well with experiment and with the RPA results, but the
diamond direct band gaps differ from experiment by 0.3
for I,5,,-1,~, and up to 0.5 eV for X~„-Xi,. (We note
that the minimum band gap of diamond is actually better
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TABLE I. Diamond excitation energies (in eV) at high-
symmetry points from LDA and two GR' calculations and ex-
periment. The GR calculations are identified by the method
used to obtain the static response and the plasmon-pole approxi-
mation used to obtain frequency-dependence. The model-DBS
results are from a dielectric band-structure plasmon-pole for-
malism with a model dielectric matrix (Ref. 38). The RPA GPP
results are from the generalized plasmon-pole method with a
calculated RPA dielectric matrix (Ref. 33). The experimental
data are from Ref. 13 unless otherwise noted.

LDA model-DBS RPA-GPP Expt.

I vs

r, , r;,
I ~Its
r, , r;.
L3 ~L;
L3 ~L3
X4~X)

L ~Its

3.9
5.5

21.7
13.1
11.5
11.2
10.8
15.8
13.6
15.2

5.5
7.6

24.4
15.3
13.6
13.9
13.1

18.2
15.2
18.2

5.6
7.5

23.0
14.8

12.9
17.3
14.4
17.9

5.48
7.3

24.2,21+1'
15.3+0.5'
12.5, 16.3
12.0
12.5, 12.6
15.2+0.3'
12.8+0.3'
20+1.5'

'Reference 45.

estimated with the model screening than with the RPA;
this is also true for the GPP-model calculation. )

It is important to note the strong directional k depen-
dence of the quasiparticle corrections to the LDA ener-
gies that occur in diamond, a wide-band-gap material
with strong local-field effects. This can be seen by com-
paring the LDA and quasiparticle gaps I &5, -X&, versus
I t5„Lt, (Table -I). The I &&, -X&, LDA gap is increased

LDA model-DBS RPA-GPP Expt.

I as

r,, r;,
Izs~Iz
r; r,,
X4 —+I 2s

I as~&

L ~Its
I vs

I vs

I vs~L
L3 ~L;
L3 ~L3

0.55
2.57
3.38

11.92
2.86
0.69
9.57
6.96
1.20
1.53
3.37
2.73
4.57

1.16
3.36
4.21

12.45
3.07
1.29

10.08
7.37
1.29
2.26
4.19
3.55
5.49

1.29
3.35
4.08

12.04
2.99
1.44
9.79
7.18
1.27
2.27
4.24
3.54
5.51

1.17
3 4'
4.19

12.5+0.6
29 b3 3+0 2c

1.3
9.3+0.4
6.7+0.2
1.2+0.2, 1.5'

2.1, 2.4+0. 15
4.15+0.1g

3 45'
5 50'

'Reference 46.
Reference 47.

'Reference 48.
Estimated from indirect gap and longitudinal mass (Ref. 33).

'Reference 49.
'Reference 50.
Reference 51.

TABLE II. Silicon excitation energies (in eV). The LDA and
QP-model results are from Ref. 38, the RPA results are from
the GR'calculation of Ref. 33, and the experiment is from Ref.
13, unless otherwise noted.

by 1.5 eV; the I &5, -I, &, LDA gap increases by 2.3 eV.
Additionally, the quasiparticle correction can depend
strongly on the symmetry of the states at a single k point.
The effect is most prominent for the first two conduction
bands of diamond at L (see Table I). Here, the order of
the two quasiparticle bands is reversed from the LDA.
The LDA results put the twofold-degenerate I 3, states
below the nondegenerate I.&, state, while the G8'correc-
tion [Eq. (4)] yields a relative shift of 0.6 eV between the
two states that reverses their order. The G8' results are
in disagreement with the interpretation of the experimen-
tal; however, this interpretation is not always straightfor-
ward. The lower two X conduction bands in BAs also
change position; the LDA puts the X&, state marginally
above the X3„but the G8'results put X&, some 0.07 eV
lower. In this case the relative shift of 0.07 eV is well
within the error bars. It is important to note that the
shift is too small, anyway, to affect the character of the
conduction-band minimum along h.

Note that the self-consistent quasiparticle spectrum is
required in the Green s function 6 (E) in Eq. (3). In prin-
ciple, the spectrum E„'k""' that is used in G(E) should be
obtained by iteratively solving Eq. (1) for each k point
and band n. In practice, E„'k "' is obtained from the con-
duction and valence bands from an isotropic adjustment
of the LDA spectrum linearly fitted to the calculated G8'
spectrum from the previous iteration:

E'" "'=(1+A )E +8
U U V

E'"&"'=(I+~ )E'DA+a .C C C C

The fit for 2 and B is made to the direct band gaps at I
and I. for diamond and the band gaps at I and X for BN,
BP, and BAs. This is a more sophisticated approach to
self-consistency than a scissors operator, and it requires
self-consistent quasiparticle energies at only two (high-
symmetry) k points instead of at all points in the Bril-
louin zone.

However, the directional k dependence of the fitted en-
ergy surface E„'k""' differs slightly from the final, self-
consistent spectrum from Eq. (1) even for bands close to
the band gap. For example, the input spectrum differs
from the final, self-consistent one by 0.6 eV for diamond
at X„and by 0.7 eV for BN at L„(the fits for Si, BP,
and BAs are much closer). The GW results for diamond
are still reliable; so this approximation should be accept-
able for BN, as well.

The higher-energy excitations are intrinsically less reli-
able in all of the materials studied, regardless of the form
of the static dielectric function, (i.e., perturbative or mod-
el). The assumption of infinite lifetimes for the quasipar-
ticles is invalid for excitation energies much greater than
the gap. The interpretation of experiment in terms of
specific single-particle excitations may also be less reliable
for high energies (note the discrepancy for the I to Lex---
citations in Table I).

Based on these trends, the uncertainty in the GR' re-
sults can be estimated to be 0.2 eV for the low-lying exci-
tations in BN and 0.1 eV for BP and BAs. This is so be-
cause BN is the III-V analog of diamond, a wide-band-
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gap material, while BP and BAs are both more similar to
silicon.

RESULTS AND CONCLUSIONS

TABLE III. BN excitation energies from LDA and GW
methods compared to existing experimental data.

LDA GW Expt.

res~ ris
Lower-valence-
band width
r; x;
Upper-valence-
band width
Li~r
Total valence-
band width
r;~r;s

4.3
8.6

5.9

10.6

20.1

6.3 6.0+0.5, '6.4+0.5,"6.1+0.2'
11.4 14.5

6.3 5.2'

12.1 15.4+0.5, '13.5'

23.1 & 22.0'

'X-ray emission (Ref. 1}.
Transmittance (Ref. 8).

'ReAectance-transmittance (Ref. 9).
Reflectance (Ref. 6).

'X-ray emission (Ref. 2).

The results for the LDA and GR'calculations for BN,
BP, and BAs are listed in Tables III—V along with the ex-
isting experimental data. The scalar-relativistic LDA en-
ergies are obtained with a plane-wave basis using essen-
tially the same norm™conserving pseudopotentials as
those in Ref. 20. The experimental lattice constants are
used, ' and the plane-wave bases are cut off at 55 Ry for
BN, slightly less than 20 Ry for BP, and 22 Ry for BAs.
The basis sizes are approximately 550, 250, and 320 plane
waves for the three corn. pounds, respectively; this leads to
LDA eigenvalues that are typically converged to within
0.05 eV. The symmetry identifications for the states in
BN and BP are taken from Ref. 20, since the underlying
LDA calculations performed here are virtually identical.

The calculated spin-orbit splittings are less than 0.05
eV for BP, and so they are not considered here; the re-
sults in Table IV are the scalar-relativistic values. The
effect is slightly larger in BAs; therefore the results
presented in Table V are fully relativistic. The spin-orbit
splittings are calculated for BAs following the method of
Ref. 43. The scalar-relativistic LDA spectrum is used in
defining the unperturbed Hamiltonian, and the spin-orbit
interaction is treated as a perturbation among the first 50
bands. The results of the spin-orbit perturbation are
largely independent of whether the LDA or GR' spec-
trum is used. The symmetries of the BAs states are for
the double group of the zinc-blende-structure space
group Td (F43m; the underlying scalar-relativistic sym-
metries are again from Ref. 20). Most of the symmetry
identifications for the double group are straightforward,
since most of the scalar-relativistic bands correspond to
one-dimensional representations. The spin-orbit splitting
of the X5 and I.3 states is analyzed in the Appendix.

The band-gap corrections for BN show the same direc-

TABLE IV. BP excitation energies compared to experiment.

LDA GW Expt.

r;s~6';„
Total valence-
band width
r", r»
r s ris
X ~X'
I.'~L'

1.2

15.5
3.4
5.4
5.4

1.9

16.8
44
6.5
6.5

2.O2+O. O5, '2. 1+O.2 "2.O

16.5+0.5
5.0'
6.9'
8.0'

'Reflectivity, electroluminescence (Ref. 11).
X-ray emission (Ref. 4).

'Reference 10.

TABLE V. BAs excitation energies compared to experiment.

Eg
rls~ ~min

res~ res
ri~ris

LDA

1.1
3.3

15.5

1.6
4.2

16.7

Expt.

0.67'
1.46'

16b

'Tentative identifications (Ref. 12).
"X-ray emission; estimated from Fig. 4, Ref. 5.

tional dependence that was seen for diamond, although
the behavior is less pronounced. The I &5, -X&, gap in-
creases by 2.0 eV versus an increase of 2.3 eV for the
I &5, -1.&, gap and an increase of 2.8 eV for the I &~, -I »,
gap (Table III). There is a similar small deviation from a
scissors-operator opening of the I,X,L gaps in BP and
BAs. The state dependence of the band-gap correction is
only a few tenths of an eV, as in the case of silicon.

The calculated minimum band gap for BN is found to
be 6.3 with an uncertainty of +0.2 eV. The minimum
band gaps are found to be 1.9+0. 1 eV and 1.6+0..1 eV
for BP and BAs, respectively. These results are in good
accord with existing experimental data of 6. 1+0.2 eV for
BN (Ref. 11) and 2.02+0.05 eV (Ref. 9) for BP. The only
available experimental data for BAs are probably not reli-
able; they yield a value of 0.67 eV for the minimum band
gap.

The calculated minimum band gaps for BN and BAs
have been estimated from the energy of the conduction
band at X and the difference between that point and the
conduction-band minima along 5 (at approximately 0.SX
for both BP and BAs). The difference in the LDA ener-
gies between X, and 6, '" is scaled by the parameter
1+ A, [see Eq. (7)], which is 1.2 for BP and BAs. Rough-
ly speaking, the LDA conduction band is rigidly shifted
upwards and then broadened by 20% in obtaining the
68' band gap. The actual, self-consistent, 68'
conduction-band minimum was not calculated. This in-
terpolation should be accurate to better than 0.1 eV,
since the total difference in energy between X, and 6, '" is
at most a few tenths of an electron volt. A similar caveat
applies to the lower-valence-band width of BN, which is
from I to K. The 68'energy for the state at E is inter-
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TABLE VI. Scalar-relativistic BN energies at high-symmetry points in the LDA and GB'approxi-
mations (in eV). The energy of the valence-band maximum is set to zero in both calculations. Symme-
try labels are from Ref. 20.

LDA LDA LDA

pc
1

I is
I ls
I ls
I ls
I is
I s
PU

10.3
8.6
8.6
8.6
0.0
0.0
0.0

—20.1

12.6
11.4
11.4
11.4
0.0
0.0
0.0

—23.1

X's
X'

s
X'

3

X'
1

Xs
Xs
X'

3

X'
1

17.7
17.7
9.1

4.3
—4.9
—4.9
—8.8

—14.3

21.9
21.9
11.3
6.3

—5.5
—5.5

—10.2
—16.9

L)
L'

3

L3
Ll

L3
L)
I U

15.0
10.5
10.5
10.1

—1.9
—1.9

—10.6
—15.7

18.5
13.4
13.4
12.4

—2.2
—2.2

—12.1
—18.5

polated from the value at X and the LDA difference be-
tween X and K by scaling with 1+ A "=1.13.

The GW direct band gaps are obtained for all three ma-
terials by explicit calculation at I, X, and L. They differ
from the experimental estimates by significant amounts,
most probably because the experimental values are esti-
mates from analyzing structure in the frequency-
dependent reQectivity without detailed theoretical calcu-
lations. The GW direct band gaps for BN are 11.4, 11.8,
and 14.6 eV at I, X, and L, respectively; these are in-
creased from the LDA values by some 2.4—2.8 eV. The
G W direct band gap differs substantially from the experi-
mental direct band gap of 14.5 eV at I extracted from
reflectivity measurements. The direct band gaps for BP
are 4.4, 6.5, and 6.5 eV at I, X, and L, respectively, they
are all approximately 1.0 eV larger than the LDA values.
The experimental direct band gaps for BP are estimated
to be 5.0 eV at I, 6.9 eV at X, and 8.0 eV at L —all es-
timated from reQectivity data. ' These are inferred by
analogy to SiC. The BP direct band gaps are both 6.5 eV
at X and L in the GW calculation. This implies that the
distinct feature assigned to the direct transition at L is
probably due to some other process. However, there are
no obvious candidate transitions at the three high-
symmetry points; a possible identification would require a
complete G W joint density-of-states calculation.

The energies of the lowest eight bands are presented
for all three boron compounds in Tables VI —VIII. The
self-energy and V expectations of Eq. (4) are comput-
ed using the LDA eigenfunctions, as was already men-
tioned. The operators for the exchange and correlation
contributions to the self-energy are calculated up to

plane-wave cutoffs of 31, 20, and 20 Ry for BN, BP, and
BAs, respectively. (The LDA potential is evaluated up to
a cutoff of twice the maximum magnitude of plane-wave
components for the wave functions. Thus, there is
effectively no truncation of the LDA potential. ) The
Green's function of Eq. (3) is truncated at 150 bands for
BN and 120 bands for BP and BAs when computing the
correlation contribution to X.

It is evident from these results that the minimum band
gaps of BN and BP have been reliably estimated from the
experimental optical absorption. However, the direct
band gaps and other excitation energies must be estirnat-
ed from structure in the optical response versus frequen-
cy. The accuracy of the resulting experimental quota-
tions depends on the correct identification of features in,
e.g. , the reAectivity with particular transitions between
band states. As a result, the GW results may be more re-
liable estimates than the experimental direct band gaps.
Furthermore, there are no experimental excitation ener-
gies other than the minimum band gaps, a few direct
band gaps, and some occupied-band widths. The addi-
tional results contained in Tables VI —VIII are thus the
best currently available data known to us on the electron-
ic excitation spectra of these boron compounds.
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TABLE VII. Scalar-relativistic BP energies at high-symmetry points (in eV).

LDA LDA LDA

pc
I is
Ils
I s
I s
I s

I Is
PU

1

7.2
3.4
3.4
3.4
0.0
0.0
0.0

—15~ 5

8.4
4.4
4.4
44
0.0
0.0
0.0

—16.8

X's
X'

s
X'

3
X'

1

Xs
Xs
X3
X"

1

11.0
11.0
1.6
1.3

—4.1
—4.1
—8.6

—10.5

13.8
13.8
2.4
2.0

—4.5
—4.5
—9.5

—11.5

L c
1

L c
3

L c
3

L c
1

L3
L U

3

L v
1

L)

10.0
4.7
4.7
3.7

—1.7
—1.7
—9.1

—12.0

11.2
5.8
5.8
4.6

—1.9
—1.9
—9.9

—13.2
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TABLE VIII. Fully relativistic BAs energies at high-symmetry points (in eV). The scalar-relativistic symmetries are listed first,
followed by the double-group notation. Note the crossing of the lowest LDA conduction band, X3, with the nearby X& state.

LDA LDA LDA

rc rc
rise r8
rise r8

s~I
rs r8
r;, r,
r;, r,
r; r,

4.5
3.3
3.3
3.1

0.00
0.00

—0.22
—15.5

5.5
4.2
4.2
4.0
0.00
0.00

—0.22
—16.7

xs x
Xs ~X7

X3~X7
Xs~X
Xs ~X7

11.4
11.2
1.38
1.36

—4.1
—4.2
—8.6

—11.3

13.1
12.9

1.86
1.93

—4.5
—46
—9.5

—12.2

Lc Lc1~ 6

L3~L4,Ls
L3~L6
Lc Lc

l 6

L3~L4,Ls
L;~L6
L; ~L6
L;~L

8.8
4.8
4.7
2.6

—1.8
—1.9
—8.8

—12.6

9.8
5.7
5.6
3.3

—2.0
—2.1
—9.7

—13.6
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APPENDIX: FULLY RELATIVISTIC
ZINC-BLENDE SYMMETRIES

The symmetry identifications for the scalar-relativistic
states in BN, BP, and BAs have already been made in
Ref. 20 for a LDA calculation. The spin-orbit correction
was not considered in this reference, since it is relatively
unimportant, except for BAs, and there are no experi-
mental data on the BAs splittings. Here, the spin-orbit
splitting in BAs is included, since it is found to be
significant compared with the expected accuracy of the
G8' model.

Some additional analysis is required to obtain the fully
relativistic symmetries of the BAs states given the scalar-
relativistic identifications. The basic group theory of the
zinc-blende-structure states at I, X, and L is found in
Ref. 44. All of the fully relativistic bands are at least
twofold degenerate at these high-symmetry points, and
so, the double-group representation follows uniquely
from the single group for all scalar-relativistic states that
are twofold degenerate. The identification is nontrivial if
there is a spin-orbit splitting of a scalar-relativistic degen-
eracy. In that case the different split states need to be
distinguished.

Only the I », X~, and L3 scalar-relativistic states are
split upon the inclusion of spin-orbit interactions. The
I » sixfold complex splits into the twofold-degenerate I 7

and fourfold-degenerate I 8, and the identification is trivi-
al.

The second case to be considered is for the L3
fourfold-degenerate states which split upon inclusion of
the spin. The L3 states split into L4, Ls (which are de-
generate with each other), and the two-fold-degenerate
L6. The two states are distinguished by examining k
along the [111]direction near L. A6 is twofold degen-
erate, and A4 and A~ are nondegenerate. Thus, the con-
tinuation of the bands along A determines the sym-
metries. The LDA eigenvalues were obtained from a
point at 0.999 from I to I, and the degeneracies there
unambiguously identify the symmetries of the states at L.

The final state to consider, X&, is also fourfold degen-
erate. It splits into X6 and X7 representations which are
distinguished by their behavior under an operation
I X C4II,

"with the C4 on an axis parallel to the X direc-
tion. If the representative X point is taken for k along
the z direction, the states are

+6 Yl 1 ~ Yt, —ll (A 1)

X7=Yt&l; Yi iJ, . (A2)

Y, +, are the standard Y& angular momentum functions,
and spin is quantized parallel to k. This definition of X6
and X7 fixes the sense of the rotation around the z axis,
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