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Line-shape model for the modulated reflectance of multiple quantum wells
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In this paper we describe a model for the reflectance and modulated reAectance line shapes of
quantum-well (QW) systems. In particular, we concentrate on electroreflectance (ER) of multiple
quantum wells (MQW's). The work is an extension of our previous line-shape model for single
quantum wells (SQW s), which is summarized briefly. In both cases we show that optical interfer-
ence of light rejected from the well(s) and from the front surface of the sample has a dramatic effect
upon the line shape. A simple analytical formula is derived for both the SQW and MQW cases that
relates the ER to the QW dielectric function. Line shapes are calculated for a single exciton with
different numbers of wells in the stack, which are then compared with an exact analysis using a
transfer-matrix method. For SQW's the line shape is a mixture of the modulated real and imaginary
parts of the QW dielectric function, which depends on the depth of the well in the sample. There-
fore, in a MQW, each of the wells has a diff'erent contribution to the ER and the line shape is not
just a scaled-up version of that for a SQW, as it is for absorption spectroscopies. As the stack thick-
ness increases, the line shape becomes increasingly complicated, essentially due to the variation of
the light penetration depth across the exciton profile. Our explicit analysis allows a clear under-
standing of the inhuence of each sample parameter on the line shape. It is shown that the center of
the line shape is determined by the front of the MQW, while extra features appear in the wings as
the number of wells increases, which originate from light rejected by the back of the stack. Finally,
we discuss how our predictions compare with our recent measurements on GaAs/Alo 3Gao 7As
MQW samples. This comparison demonstrates the importance of including interference effects,
while also highlighting the limitations of the model ~

I. INTRODUCTION

In modulated reAectance measurements, a periodic
perturbation is applied to a sample and the reAectivity
spectrum is measured at the frequency of the perturba-
tion. In electrorefiectance (ER), the electric field is
modulated by applying a periodic bias, ' while in
photorefiectance (PR) the internal surface electric field of
the sample is modulated using a mechanically chopped
laser beam. For a general review of modulation spec-
troscopy of bulk semiconductors, see Ref. 3.

Recently ER and PR spectroscopies have been popular
methods for measuring quantum-well (QW) structures,
and many of the recent studies are listed in Ref. 4. These
take advantage of the enhanced sensitivity of this
differential technique, to measure the transition energies
of the systems under different conditions. However, iden-
tifying the transition energies is not as straightforward as
for absorption spectroscopies, such as transmission, pho-
tocurrent, or photoluminescence excitation, where the
peak can be measured. The line shape can be different for
each transition and can also vary with an applied pertur-
bation. This difficulty is essentially the result of the line
shape depending on which parameters are modulated by
the field, and is also a consequence of the fact that the
reAectivity is determined by both the real and imaginary
parts of the dielectric function. In previous publications
we have derived a simple analytical line-shape formula

for single quantum wells (SQW's), ' which allows the
transition energy as well as the linewidth and the transi-
tion strength to be extracted. In this paper we derive a
similar formula for multiple-quantum-well (MQW) struc-
tures.

In bulk semiconductors, there is a single reAecting in-
terface at the front of the sample. The ER can be ex-
pressed in terms of the modulated real (b.e„) and imagi-
nary ( b,e; ) parts of the dielectric function by
differentiation of Fresnel's relation for the reAectivity of
this interface. It can be shown that at the fundamental
band edge, the coefficient of Ae,. is zero, and so the ER is
determined solely by the real part. These arguments
have been used to suggest that the PR of MQW systems
can also be described by the real part alone, but we think
this is mistaken, for reasons discussed below, and incon-
sistent with our ER measurements on both SQW's (Refs.
5 and 6) and MQW's. '

In QW systems the situation is entirely different from
bulk. The sample necessarily contains a number of inter-
faces and the rejections from these will interfere. The
reAectivity will consist of a large background due to the
front surface of the sample, with much smaller features
arising from the QW's. The QW layers are bounded by
layers of similar refractive index and so have a much
smaller reAectivity than the semiconductor-air interface
at the front of the sample. The electric field modulates
only the QW features, and so only these appear in the ER
spectrum at the energy of the QW transitions. However,
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the ray rejected from the front surface still has a great
effect upon the line shape, through optical interference
with the rays refiected from the QW's.

Our analysis of QW systems assumes each layer to
have a homogeneous and isotropic refractive index.
Hence the sample can be analyzed by considering its vari-
ous interfaces to have reflectivities given by Fresnel's re-
lation. We also assume the light to be coherent.

The reflectivity of layered systems can be modeled us-
ing an optical-transfer-matrix method. This was used by
Klipstein and Apsley to calculate ER spectra for a SQW
structure and thereby demonstrate the sensitivity of the
line shape to the thickness of material between the well
and the front surface of the sample. More recently,
Terzis et al. ' have also used the transfer-matrix method
to calculate refiectance spectra of MQW's. However, the
optical-transfer-matrix method is a numerical technique,
which consequently provides little insight into the impor-
tance of each parameter. A clearer understanding of the
problem can be gained by considering only the most im-
portant interfaces in the structures. The reflection at the
semiconductor-air interface is much stronger than any
other in the sample, and consequently only the ray
rejected from the front surface need be considered along
with those from the QW's. By adopting such an ap-
proach, we have been able to derive explicit line-shape
formulas for both the SQW and MQW cases. We have
verified the validity of these expressions by comparison
with the more accurate optical-transfer-matrix calcula-
tions.

For a SQW structure, only refiections from the front
surface and the QW are important, and we have shown
that this yields a simple analytical formula (see Sec. II B
or Refs. 5, 6, and 11). This formula predicts the ER line
shape to be a linear sum of Ae„and Ae;, the mixture be-

ing determined by the phase delay between the ray
rejected from the front surface and the first ray from the
QW. Indeed, similar effects have been seen in bulk semi-
conductors, where a nonuniformity of the field can result
in reAection originating over a range of depths inside the
sample, which mixes the contribution of Ae, and Ae;. ' '
However, the effect in bulk is much less dramatic than
that seen in QW structures.

We have verified this formula experimentally by mak-
ing measurements as a function of angle of incidence and
sample temperature, which change the optical phase de-
lay as discussed in Sec. II B. Consequently, it was possi-
ble to produce dramatic changes in the line shape, which
agreed with the evolution predicted by the line-shape for-
mula. In a subsequent paper, we made least-squares fits
of the formula to spectra taken at different angles of in-
cidence and sample temperature. This demonstrated that
spectra can be accurately modeled and we were able to
deduce the shape of the exciton profile at low and room
temperature. Since then, we have performed similar ex-
periments on a number of other SQW samples, having
different layer thicknesses and optical linewidths and in
every case observed the expected line-shape evolution. "
More recently, there have been several other studies
confirming the importance of optical interference on
refiectivity spectra of QW structures, including calculat-

ed PR of SQW's experimental refiectivity of
GaAs/Al GaI As SQW's PR measurements on
GaAs/Al„Ga, As MQW's and refiectance measure-
ments on GaAs/Al GaI „As MQW's. '

Now we seek to extend this analysis to MQW systems,
where the wells are identical and equally spaced. The
barriers are assumed to be sufficiently thick to ensure that
the electronic structure of each well can be considered
the same as that of an isolated well. In such a structure,
each of the wells will contribute a different line shape to
the overall reAectivity, due to the different optical phase
delay compared to the ray rejected from the front sur-
face. We show that this, together with the effect of ab-
sorption in the stack, can lead to complicated line shapes,
since the light penetration depth changes while scanning
across the exciton profile. For moderately thick stacks,
extra features appear in the wings of the line shape,
which could be mistaken for extra transitions, but which
in fact just derive from optical interference effects.
Again, we have adopted an analytical approach that al-
lows us to determine the essential elements determining
the line shape. We find that the total MQW line shape
can be approximated by a linear sum of two SQW line
shapes, one deriving from the front and the other from
the back of the stack. The term from the front dominates
the center of the line shape, while the wings are deter-
mined by the term from the back. Hence the line shape
will be most sensitive to the depths of the front and back
of the MQW stack and the amount of absorption in the
stack. We have verified our explicit analysis by making
more exact calculations using the optical-transfer-matrix
method.

In Sec. II we briefiy outline our model for the SQW ER
line shape, before extending this to MQW's, to derive an
appropriate line-shape formula. In Sec. III the calculated
line shape is plotted for an increasing number of wells in
the stack. The nature of the line shape is discussed along
with the effect of the various parameters. Finally, we
summarize in Sec. IV the important features of our model
and make comparisons with experimental spectra.

The calculation uses parameters similar to those mea-
sured for the E1H1 exciton of one of the
GaAs/Al„Ga& As MQW's studied in Ref. 1. The well

0

width was taken as 88 A, while the barriers were taken to
be 60 A. The linewidth of this sample was found to be
larger than for a SQW grown under identical conditions,
due to a systematic variation of the well width and elec-
tric field across the MQW stack. ' Since the present
analysis assumes the wells in the MQW stack to be identi-
cal, the linewidth is taken to be that of the SQW of 3
meV [full width at half maximum (FWHM)]. The exci-
ton profile is assumed to be Gaussian, which gives a good
fit to the ER spectrum of the SQW sample at low temper-
ature. " The integrated absorption strength of the exci-
ton was taken as that measured for the MQW studied in

Ref. 1, of 240 cm 'eV, which yields a peak absorption of
76000 cm '. The exciton energy was taken to be 1.55
eV. The field is assumed to be modulated between ex-
treme values of 17 and 24 kV/cm, corresponding to a
peak-to-peak modulation of 0.5 V around an offset of 0 V,
in our MQW sample of Ref. 1.
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II. OPTICAL INTERFERENCE
IN QUANTUM-WELL SYSTEMS

The analysis proceeds by considering in turn different
pairs of interfaces in the structure, so it is convenient to
start with the amplitude reAectivity of an etalon formed
by two interfaces of reAectivity r, and r2,

r =(r, +r2e'g)/(I+r, rze's),

g =2k„,Ln coso,

where g is the phase delay for light making a round trip
between the interfaces, which are separated by a medium
of refractive index n and thickness L. The angle between
the direction of light propagation in this medium and the
interface normal is 0, and k„„is the k vector of the light
in vacuum.

A. ReAectivity of an isolated well

R sQw Rf +2( 1 —Rf )Re[rf rQwexp( ig„,„)] (5)

where g,„„is the phase delay for a round trip across the
overlayer between the top surface and the well. The front
surface amplitude and intensity reAectivity are written as
rf (which is negative) and Rf, respectively.

The modulated intensity reflectivity can be found by
substitution of Eq. (4) into Eq. (5),

(r&w) is taken as that derived in Sec. II A. The ray
re(lected from the QW interferes with the strong
reflection from the front surface of the sample. It is a
very good approximation to ignore all the other inter-
faces in the structure, as the reflections from these are
much weaker. Hence the SQW sample can be analyzed
as an etalon formed between the quantum well and the
front surface. It was pointed out in Sec. IIA that the
QW reAectivity is very small, and consequently only the
first ray rejected from the well need be considered, yield-
ing

Considering just an isolated QW, an etalon is formed
between the two interfaces with the barrier material. If
n Qw and n& are the QW and barrier refractive index, re-
spectively, then Fresnel's relation yields

ri =r2 =(n&—w ni, )/—(norw+nb ) .

b R s&w = 2 Re[id e exp(ig) ],
where

3 = (1 —Rf )rf sin( —,'g&w ) /ni,

(6)

Assuming that the refractive index of the QW is not
much larger than that of the barrier material, by substitu-
tion into Eq. (1),

and

gover+ 2gQW (8)

rgw =i(egw ei, )s'n( ~ggw)exp('2ggw)/ ni (4)

B. Electroreflectauce of SQW structure

To calculate the overall re(lectivity of a SQW sample,
the combined reflectance of both of the QW interfaces

where e&w (eb) is the well (barrier) dielectric function
and gQw is the phase delay for the round trip across the

W.
Equation (4) is valid only if ~(n&w

—
nb )/n& ~

((1, or
equivalently that ri ~

((1. This approximation allows
the well re(lectivity (r&w ) to be written as a linear func-
tion of the QW dielectric function (e&w) and so provides
a clearer insight into the form of the line shape. The
peak absorption strength was measured to be about
76 000 cm ' for a 88-A GaAs/Alo 3Gao &As MQW, '

which yields a value of Im[n&w] =0.5, and ~r, ~

=0.07, at
the exciton peak. Therefore, it is a reasonable assump-
tion to ignore the second-order terms in r„even at the
energy where r, is largest. Further validation for this ap-
proximation is demonstrated in Ref. 11 by the close
agreement of a plot of the QW reAectivity calculated us-
ing Eq. (4) and that produced by an exact relation.

Notice that the overall QW reflectivity will be smaller
than that of its interfaces, because the reAection from the
front interface almost exactly cancels with that from the
back, assuming the well to be thin. [If g&w is small in
Eq. (4), then r&w=i —,'g&wr, .] The well rellectivity can
also be derived by regarding the QW as an infinitely thin,
polarizable medium and applying Maxwell's boundary
conditions.

he ( = b,e„+i b, e, ) is the change in the QW dielectric
function produced by the perturbation. The phase factor
g, which we called the "line-shape phase" in Refs. 5 and
6, is the round-trip phase delay for propagation between
the front surface and the midpoint of the QW. Equations
(6)—(8) were found to be in close agreement with an exact
calculation, which uses an optical-transfer-matrix method
and includes all the interfaces inside the sample. " (For a
more detailed discussion of this derivation, see Refs. 5, 6,
and 11. References 6 and 11 include a comparison with
the similar "third-derivative functional form" formula, '

which is only appropriate for bulk semiconductors, but
which has been applied by a number of workers to QW
structures. )

For ER, the modulating electric field can change the
energy (E,„), the linewidth (I „), or the square of the
overlap integral ( V,„) of a transition, so that in gen-
eral"

+(ae/a v,„)sv,„.
If I', and I'2 are the extreme fields, such that I'2 &I'i,
then the sign of the ER is defined here by
bR =R (Fz)—R (F, ), and hence b, e=e(Fz) —e(F, ), so
that AE„and EV„will be negative and Al „will be
positive for the lowest subband transitions. For the
E1H1 and E1L1 exciton, the dominant effect of an elec-
tric field is to shift the transition to lower energy —the
quantum confined Stark effect. ' The ratio of the energy-
and overlap-modulated line shapes, the first and third
terms in Eq. (9), is given by"
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beF V,„(F,)+V,„(F2) E,„(F2) E—,„(F,)

b.EV r,„v,„(Fg )
—V,„(Fi )

(10)

For an 88-A GaAs/Alo 3Gao 7As QW, with 1,„=3 meV
(FWHM) and electric fields of Fi

= 17 kV/cm and
F2=24 kV/cm, (Aez/hei, )=16. This ratio was deter-
mined using an exact envelope-function calculation,
which is discussed in detail in Ref. 11. In fact, it is gen-
erally true that the energy-modulated term (b,ez ) is
larger than the overlap-modulated term (hei, ) for typical
well widths, modulating fields, and linewidths. "
Meanwhile, the linewidth-modulated term is also dom-
inated by the energy-modulated line shape, since the in-
crease in linewidth with field is usually much smaller
than the Stark shift. "

It is therefore a good approximation to consider only
changes in the exciton energy to determine the modulat-
ed dielectric function. Using small-bias modulations en-
sures that the modulating Stark shift (EE,„=0.5 meV,
for the above well width and extreme fields) is small com-
pared with the linewidth, and so the energy-modulated
line shape is approximately given by the first differential
of the QW dielectric function with respect to the photon
energy (E), b e= —(BE/BE)b E,„(using —B/BE =B/
BE,„). Hence, from Eq. (6), the ER line shape for an ex-
citon is just a linear sum of Re(Be/BE) and Im(Be/BE),
depending on the value of the line-shape phase (g). These
two functions have the simple shapes shown in Fig. 2 of
Ref. 6, with either a negative peak or zero crossing at the
exciton energy, respectively. Changing the line-shape
phase will "rotate" the line shape between Re(Be/BE)
and Im(Be/BE) and their inverses. Equations (6)—(8) are
still valid for transitions above the QW band edge, but
then the modulation of the dielectric function may not be
dominated by the Stark shift, as discussed in Ref. 11. In
this paper we wish to emphasize the mixing of Ae, and

be; in the ER spectra of SQW's and MQW's caused by
optical interference effects, and so the actual mechanism
producing Ae„and Ae; is not important. Note that b e„
and Ae; will always have opposite symmetry, since they
are related by the Kramers-Kronig transform.

We have verified Eq. (6) experimentally, by varying the
line-shape phase and observing the ER due to the E1H1
and E1L1 excitons cycle between line shapes resembling
Re(Be/BE) and Im(Be/BE). A line-shape rotation was
also observed for the E2H2 feature. The line-shape phase
was varied in two ways, firstly by changing the angle of
incidence, which affects the angle in the overlayer, and
secondly by varying the temperature, which changes the
transition energy. In both cases we observed a close
agreement with the behavior predicted by Eqs. (6)—(8) for
the overlayer thickness of the sample. In a later publica-
tion, we used least-squares fitting of Eq. (6) to spectra
taken at different angles of incidence and temperature, to
show that spectra can be very accurately modeled. We
were able to deduce the shape of the exciton-broadening
profile at different temperatures. Since then we have per-
formed similar experiments on a number of other SQW
samples, with different well and overlayer thicknesses,
and in every case have observed evolution in accordance

with Eq. (6)." We have also varied the line-shape phase
by changing the offset electric field, hence producing a
Stark shift of the exciton energy, and again observed a
line-shape evolution in good agreement with our model. "

C. Electroreflectauce of MQW structures

Now we extend our analysis of interference effects to
cover the case of a number of regularly spaced wells in
the sample. The analysis again considers only the rays
refiected from the QW interfaces along with that from
the front surface, as shown schematically in Fig. 1, as the
other sample interfaces can be justifiably ignored. We
again regard the reflectance of the two interfaces of any
one QW to be given by a single expression rQw, derived
in Sec. II A. Summing the rejected rays and again ignor-
ing the small double (and higher-order) refiections from
the QW's yields the overall amplitude refiectivity of the
structure to be given by

N

rMQw ' r/+ ( 1 —
R& )exp(ig, „,„) g &Qwexp( inig~, „)

m=0

where g „is the phase delay for the round trip between
adjacent wells and the stack contains a total of N+1
wells. Optical absorption in the stack is also included in
Eq. (11) through the imaginary part of g „[i.e.,
Im(nQw) j.

The summation is trivial if the refiectivity (and hence
dielectric function) is the same for each of the wells. In
this case, solving for the intensity reAectivity yields

FIG. 1. Schematic of the most important reAected rays from
a MQW sample.
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RMQw Rf +2( 1 —Rf ) I I I I I I I I I I I I I I I I

XRe rfvQwexp(ig„„)

1 —exp[i (N + 1)gp,„]
X

1 —exp(ig&„)
(12)

Equation (12) is similar to the result derived for a SQW
[Eq. (5)], with an extra factor in the second term. Notice
that this extra factor is similar to the amplitude distribu-
tion produced in the image plane of a diffraction grat-
ing. ' The analogy is not surprising, as the diffraction
pattern of a grating is the Fourier transform of the slit
pattern in the object plane, while the ER is the transform
of the distribution with depth of the quantum wells [see
Eq. (11)]. Substituting for the well retlectivity from Eq.
(6) yields

sin[ —,
' (N + 1 )g „]

ARMQw = A Re i . , b,@exp(ig)
sin( —,'g„„)

(13)

where

gover +T gper + I+QW (14)

111. MgW ER I.INESHAPE

Figure 2 plots the calculated ER line shape of a single
exciton for MQW's with between 1 and 200 wells in the
stack. The line shape is calculated using Eq. (12), taking
a well width of 88 A and barriers of 60 A. The exciton
energy was taken as 1.55 eV, with an integrated absorp-
tion strength of 240 cm ' eV, and the broadening profile
was assumed to be Gaussian of 3 meV (FWHM). These
parameters are those relevant to the E1H1 excitons of the
samples studied in Ref. 1, as discussed in Sec. I. The
modulated QW dielectric function was generated by a
Stark shift of 0.5 meV, and the much less significant
changes in the linewidth and overlap integral, as dis-
cussed in Sec. IIA, were ignored. The overlayer thick-
ness was taken as zero in these calculations, as its effect
just rotates the entire line shape, in a similar manner as
for SQW's, while in this paper we wish to concentrate on
effects due to the MQW alone.

The dashed lines in Fig. 2 plot another calculation of

and A is again given by Eq. (7). Notice that the phase
factor (g) in Eq. (14) is the line-shape phase determined
at the midpoint of the MQW stack. Again, the two phase
terms gQw and g „derive from small thicknesses inside
the structure and so have only a slow variation with ener-
gy, which will not greatly affect the line shape.
Meanwhile, the same cannot be said for the phase term
( —,'i'„,„),which derives from half of the total stack thick-
ness. This term results in calculated MQW ER looking
very different from that of a SQW, as is demonstrated in
S c. III, even if the same value is taken for the phase (g)
in Eqs. (13) and (6).

CC4
n 8C)

4
O

O

—8—

0) 1.540 1.545 1.550 1.555 1.560
UJ

Photon Energy (eV)

FIG. 2. ER line shape of a single exciton for different num-
bers of wells in the stack (indicated by each curve), calculated
using either the explicit analysis detailed in text (solid lines) or
an optical-transfer-matrix method (dashed lines). The sample

0
~

0
thicknesses are as follows: wells, 88 A; barriers, 60 A; over-

0

layer, 0 A. The exciton is assumed to have a gaussian profile
with the following parameters: energy, 1.55 eV; linewidth, 3
meV (FWHM); integrated absorption strength, 240 cm ' eV.

the ER line shape, which takes the same parameters, but
this time uses the optical-transfer-matrix method.
The optical-transfer-matrix method is a numerical tech-
nique that takes account of all the rejected rays and so is
more exact than the explicit analysis (solid lines) detailed
earlier. It can be seen that the curves calculated using
the exact and explicit analyses are almost indistinguish-
able and so justify our neglect of the second-order terms
in rQw. The explicit analysis has the considerable advan-
tage of allowing a clearer understanding of the role of
each sample parameter, as discussed below.

Figure 2 demonstrates that the ER signal does not
strengthen significantly as the number of wells increases,
as is the case for most other spectroscopies, such as pho-
toluminescence excitation, photocurrent, absorption, or
electrotransmission. This is explained by the reAectivity
of each of the wells having a different shape, due to the
variation of their depth (and hence their line-shape
phase). The ER signal, therefore, does not increase in
size when the total stack thickness is increased above an
eighth of the wavelength of light in the material, which is
typically about 300 A for the GaAs QW band gap. Add-
ing more wells changes the phase of the overall
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reAectivity, but does not increase its strength.
In Fig. 2 the curve for the case of one well in the stack

(i.e., N =0) is equivalent to that for a SQW with zero
overlayer thickness, which is proportional to Im(Be/BE)
[see Eq. (6)]. Notice also that the line-shape formula for
MQW's [Eqs. (13)—(14)] reduces to that for a SQW [Eqs.
(6)—(8)] for N =0, as would be expected. As the number
of wells increases, the MQW line shapes in Fig. 2 become
increasingly more complicated than those for a SQW,
with extra features appearing in the wings of the line
shape. Essentially, this is because the absorption depth
changes as a function of energy across the exciton profile,
thereby affecting the line-shape phase. For the absorp-
tion peak height used in these calculations, the penetra-
tion depth is only =0.25 pm at the central energy of the
exciton, which is much less than the stack thicknesses
typically employed in MQW samples. If the stack was
nonabsorbing (a hypothetical situation), the MQW line
shape would be similar to that of a SQW, with the line-
shape phase of the midpoint of the stack [see Eqs. (13)
and (14)].

The ER in the central region of the line shape, where
the absorption is large, will originate from the front of
the stack, while in the wings of the line shape the absorp-
tion coeKcient falls toward zero and so the line-shape
phase will be that for the middle of the stack. Concen-
trating firstly on the central region of the line shape, as
the number of the wells is increased the line-shape phase
changes very rapidly and the line shape rotates, until the
stack thickness starts to exceed the light penetration
depth, after which there is only a gradual change in the
line shape. The exact shape around the center of the ex-
citon feature is sensitive to the overlayer thickness and
the penetration depth.

The origin of the structure in the wings of the line
shape in Fig. 2 can be deduced by rewriting Eq. (13) as
the sum of two terms:

terfere destructively with one another, leaving only con-
tributions from the edges of the stack.

The two terms in Eq. (15) are plotted separately in Fig.
3. The contribution from the front of the stack (dashed
line) does not change as the number of wells increases
and this term dominates the center of the ER profile.
Clearly, the second term in Eq. (15) (solid line), from the
back of the stack, is responsible for the features in the
wings of the line shape in Fig. 2. With an increasing
number of wells, the line-shape phase of the second term
varies very rapidly, as the depth of the back of the stack
increases. Note that adding just 300 A to the stack thick-
ness will rotate the features in the wings from a contribu-
tion resembling Re(Be/BE) to one like Im(Be/BE), or
vice versa. Notice also that the contribution of the back
falls to zero at the center of the line shape, as it is limited
by absorption in the stack.

IV. SUMMARY OF MQW MODEL AND COMPARISON
WITH EXPERIMENTAL SPECTRA

A model has been proposed for the ER line shape of a
MQW, where the contributions of the individual wells are
summed. Unlike spectroscopies that depend solely on the
imaginary part of the QW dielectric function, the contri-
butions from each well have different line shapes, due to

ARM&w=B Re[ A@exp(ig, „,„+i,'g&w i ,'—g „—)—
—b,e exp [ ig,„„+i(N + —,

' )g„,„

+'2gqw]I

where

(15)

50

B = —
( —,

' 3)/sin( —,'g „) . (16)

Notice that the first term in Eq. (15) has a line-shape
phase corresponding to a depth close to the front of the
MQW stack, while the second term has a phase close to
the deepest part of the stack. This then is equivalent to
regarding the MQW stack as a thick homogeneous layer
of material, which extends from the depths of half a
period shallower than the middle of the first QW to half a
period deeper than the middle of the final QW. ?t is
therefore the positions of the front and back of the stack
that have the most inhuence on the line shape. The finite
thicknesses of the well and barrier introduce a correction
term [the sinusoidal term in Eq. (16)], but this has a slow
energy dependence, which does not greatly affect the line
shape. This can be thought of as due to the rejected rays
from adjacent wells in the body of the stack tending to in-
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FIG. 3. ER line shapes, calculated with the same parameters
as in Fig. 2, decomposed into the first (dashed line) and second
(solid line) term of Eq. (15). (The first term does not vary with
the number of wells. ) These contributions correspond to ER
from near the front and back of the MQW stack (see text).
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their different mix of Ae„and Ae, , depending upon the
depth of the QW inside the sample. Consequently, the
MQW ER line shape is more complicated in shape than
that of a SQW, and is a little stronger.

The complicated line shape derives from the line-shape
phase varying across the exciton profile as the optical
penetration depth changes. At energies where the ab-
sorption is small, or for narrow MQW stacks, the line-
shape phase is that for the midpoint of the stack. Usually
though, absorption in the MQW stack is strong near the
center of the exciton peaks and light will only penetrate a
fraction of the stack.

The summation can be easily performed when the
dielectric function of each QW is identical and this yields
a simple line-shape formula. Inspection of this formula
shows it to be comprised of two terms: one due to the
front of the MQW stack and the other due to the back.
The contribution of the back is limited by the absorption
in the stack and so is only significant in the wings of the
line shape. The total line shape therefore shows a large
central feature, due to the ER from the front, which is
Aanked by two smaller features due to the back of the
stack. The phases of these three features depend upon
the overlayer and stack thicknesses and the absorption
coe6.cient.

The calculations presented here are for a single
Gaussian-broadened 1s bound exciton. Including the ex-
cited excitonic states and the band-band continuum will

introduce extra absorption in the MQW stack, which will

result in a weakening of the subsidiary features in Fig. 2
on the higher-energy side of the line shape. We have
chosen to use the simplest possible representation of the
QW dielectric function here, in order to highlight the
effects due to optical interference alone. Line shapes
qualitatively similar to those in Fig. 2 are produced by
using a Lorentzian-broadened exciton profile, although
the subsidiary features are then somewhat weaker. This
is because the absorption coefficient changes less rapidly
in the wings of the line shape for a Lorentzian-, rather
than for a Gaussian-, broadened profile.

Finally, we discuss how our calculated line shapes
agree with those measured experimentally. In previous
papers ' '" we have verified the ER of SQW samples to
be in excellent agreement with our model, by varying g in

Eq. (6) and observing the line shape rotate between b, F.„
and Ae;. We therefore expect our analysis of the optical
interference effects to yield a similar agreement for MQW
samples. Despite this, we are unaware of a modulated
reflectance spectrum in the literature which shows clear
evidence for the subsidiary features predicted in Fig. 2 for

thick MQW stacks.
The lack of experimental evidence for these subsidiary

features may be due to slight imperfections in the mea-
sured MQW stacks, as a systematic variation in the exci-
ton transition energy across the stack of just a few meV
(comparable to the width of the features) will greatly
suppress their strength. This change in the exciton tran-
sition energy across the stack could derive from a varia-
tion in the well width or the electric field due to the back-
ground ionized-impurity charge. We have made mea-
surements on two GaAs/Alo 3Gao 7As MQW's (Ref. 1)
which show a systematic variation in the transition ener-

gy across the stack due to (a) the linear increase in elec-
tric field produced by the unintentional background dop-
ing of the stack and (b) relatively abrupt monolayer in-
creases in the well width at certain depths in the stack.

For such an imperfect MQW stack, each well cannot
be assumed to have an identical dielectric function and
the summation in Eq. (11) can no longer be performed
easily, making Eq. (12) invalid. Analytical analysis is
then more difficult, although a numerical solution using
an optical-transfer-matrix approach ' is certainly possi-
ble. Imperfections of the stack will have a large effect
upon the subsidiary features, as the contribution from the
back will be attenuated differently by the absorption in
the stack. The model discussed in this paper is inap-
propriate for exact line-shape fitting of the experimental
spectra we have measured. ' However, the ideas discussed
here are still valid. Features appear in the MQW ER re-
ported in Ref. 1 due to the front and back of the stack,
and their line shapes depend upon their depth in the sam-
ple and the absorption in the stack. The model presented
here allowed a good qualitative explanation of the ER
line shapes measured in our experimental study and their
dependence on the angle of incidence and the applied
bias, as discussed in Ref. 1. We expect a better quantita-
tive agreement for MQW samples with better uniformity
across the stack and indeed this would be an excellent
test of sample quality. The subsidiary features apparent
in Fig. 2 would be most pronounced in thick stacks,
where the exciton lines are sharp and have a large peak
absorption coefficient.
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