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Continuum theories of optical phonons and polaritons in superlattices: A brief critique
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The controversy concerning the confinement of optical modes in superlattices concerns the use of
electromagnetic (EM) or hydrodynamic (HD) boundary conditions and the roles of dispersion and
retardation in continuum theories, and how continuum theories relate to microscopic models. In
this paper we describe EM and HD continuum models and discuss recent attempts to reconcile the
EM model with microscopic theory. We conclude that the lack of retardation and dispersion in the
EM model results in a confusion between LO modes and polaritons. In particular, we question the
attribution of a LO-type Frohlich scalar potential to Fuchs-Kliewer interface polaritons.

I. INTRODUCTION u~~ cosq z (2)

In recent years the study of Raman scattering in quan-
tum wells and superlattices composed of semiconductors
has revealed the existence of guided optical-phonon
modes. ' The confinement of optical vibrational modes
is to be expected in all systems whenever the frequency
bands in the adjacent materials do not overlap. The de-
tailed description of this confinement is by no means fully
understood and is currently controversial regarding the
validity of continuum models. The development of a val-
id description in terms of a continuum model is especially
important for understanding how confinement aAects the
electron-phonon interaction, the description of the latter
in terms of microscopic models based on linear chains of
atoms being impractical in terms of computational com-
plexity. The controversy centers on the choice of bound-
ary conditions for the longitudinally polarized optical
(LO) modes, on the ability of LO modes to mix with
transversely polarized optical (TO) modes, and on the im-
portance of dispersion. Our purpose here is to attempt a
clarification of some of these issues and to discuss some of
the problems which attend the relating of continuum
modes to microscopic modes.

It is useful to have in mind a concrete example and we
take the one most studied experimentally and theoretical-
ly, namely the GaAs/A1As quantum-well system in
which the disparity of the frequency bands for optical
modes is total. All microscopic models agree that the
relevant ionic displacement u must be zero at or very
close to the interface. We take the GaAs slab to be of
thickness L and the z direction to coincide with the nor-
mal to the plane of the layers so that 0 z ~ L defines the
quantum well. To a good approximation microscopic
theory suggests that, for LO modes, the corresponding
macroscopic envelope function is [Fig. 1(a)]

u, ~ sinq, z, 0 ~ z ~ L

which has antinodes at the interface. The electric field
associated with the ionic polarization is proportional to
displacement and thus has components with the z depen-
dence depicted in Eqs. (1) and (2). It follows that the sca-
lar potential associated with this field is of the form

P ~ cosq, z,
which has maxima at the interfaces.

The symmetry of the potential is of importance in
determining selection rules for the electron-phonon in-
teraction whose strength is just eP. For intrasubband
transitions the initial and final electron wave functions
have, of course, the same parity, and so P must have even
parity. This means that the interaction is only with

L 0=2 0

L n 1 0

L n 2 0

L n=1 0

n =1,2, 3, . . . z

For LO modes VXu=O, whence the in-plane displace-
ment u~~ is of the form

FIG. 1. Mode patterns for n= 1 and n=2: (a) HD and linear
chain models, (b) EM model.
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E(co ) ='e
CO CO T

(4)

where e is the high-frequency permittivity, and col and
coT are the LO and TO angular frequencies, and it takes
the value zero, because for LO modes co=col .. since LO
phonons in A1As have an entirely different frequency,
e(co)%0 in A1As. Because D„ the normal component of
the electric displacement, is continuous, it must be zero
in A1As, since it is zero in GaAs. Thus the electric-field
component E, =O in A1As, but there is no necessity for
E, to be continuous. Because E, =0, then $ =0 in AlAs,
and since P must be continuous,

nnP~sinq, z, q, =, n =1,2, 3, . . .

in GaAs, from whence it follows that

u, ~ cosq, z, u
~~

~ sinq, z . (6)

These results are quite opposite to those obtained by mi-
croscopic theory [Fig. 1(b)]. They predict intrasubband
scattering by odd n modes and intersubband scattering by
even n modes.

There is a second macroscopic model, however, which
mirrors microscopic theory more closely. This is the hy-
drodynamic (HD) model of Babiker. Again a uniform,
isotopic, dielectric continuum is assumed, but this time
dispersion is fully taken into account, and indeed appears
as an essential ingredient. The connection rules are the
standard hydrodynamic ones. These entail the continuity
of particle velocity and of mechanical pressure.

Confinement is seen to be caused by the mechanical
discontinuity between the two adjacent materials. Con-
nection across the interface is made between these D =—0
modes such that e(co(q))=0 on both sides, which is im-
possible without dispersion being taken into account.
Thus, in Eq. (4) coL and coT are replaced by roL (q) and

modes with n even. For scattering between adjacent sub-
bands the reverse is true, only modes with n odd contrib-
uting. The electron-phonon interaction involving in-
trasubband transitions has been probed by experiments
on Raman scattering, and the above expectations have
been confirmed.

The most widely used macroscopic model is that based
on the treatment of slab modes in an ionic film by Fuchs
and Kliewer. The characteristic features of this ap-
proach are to regard the crystal as a uniform, isotropic
dielectric continuum, to neglect dispersion, and to use
standard electromagnetic connection rules at the inter-
faces. These rules entail the continuity of the scalar po-
tential (or, what is the same thing, of the tangential com-
ponents of the electric field), of the normal components of
displacement and magnetic induction, and of the tangen-
tial component of the magnetic field. For this reason we
refer to this treatment as the electromagnetic (EM) mod-
el.

Confinement in the EM model is seen to occur as a re-
sult of the dielectric discontinuity between the two adja-
cent layers. The dielectric function is given by

~ ~ ~

~ ~

Imq 0 Req
= Imq

FIG». 2. Complex LO-LA phonon band structure (schematic).

coT(q), where q is the total wave vector, which can be
imaginary with a dispersion given by the complex pho-
non band structure (Fig. 2). Where no modes exist with
e(co) =0 (as in the case for vacuum) the connection rule is
still D==O, which means, since e(co)%0 in one of the
media, that E=O. With HD boundary conditions this
translates to E, =O on both sides of the interface and a
discontinuous scalar potential. In contrast, the EM mod-
el takes E&&=0 on both sides, which leads to a mechani-
cal discontinuity. For the GaAs/A1As system the HD
model predicts u, =O at the interfaces for the GaAs LO
mode whether e(co(q)) =0 is taken to apply to the com-
plex branch connecting LO and LA modes in A1As, or
whether, quite simply, it is assumed that e(co(q))WO but
D=0. In either case u, =0, agreeing with the microscop-
ic model [Fig. 1(a)].

We turn to the question of interface modes. The
modes we have been describing are guided modes, but in
principle there could be interface modes as well. These
modes would have maximum amplitude at the interface
and imaginary values of q, . In the HD model the re-
quirement that u, =0 at the GaAs/A1As interface clearly
precludes the existence of LO interface modes for this
system. In the EM model, however, u, &0, and indeed,
two interface modes are predicted with frequencies which
lie between coT and mL. These are often referred to as
Fuchs-Kliewer modes. It is obvious that these modes
are not LO modes, since e(co)%0. They are, in fact, po-
laritons (Fig. 3). As such they do not have a scalar po-
tential and cannot therefore interact with electrons via
the Frohlich interaction. To assume that they do (as one
of the present authors regrettably did in a previous
work' ) is incorrect. We will discuss the relation between
polaritons and LO modes later, but for the present it can
be remarked that the use of EM boundary conditions in
the EM model predisposes that model to confuse the two,
physically distinct, types of vibration.

The LO and TO modes in a medium which is isotropic
and homogeneous can be kept distinct whatever the
direction of propagation. In the crystal lattices of the
III-V compounds, elastic anisotropy blurs this distinction
except where the propagation is along a major symmetry
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guided
poiarito

odes

FIG. 3. Surface and guided polariton dispersion in a slab.
e( co) is the frequency-dependent dielectric constant e( u )

~e, (co=0), e(co)~e (~~ ~). Note that the whole span of
q~~

depicted is small compared with typical wave vectors involved
in the electron-phonon interaction.

AXE=0,
V.D=0,

(7)

and this approximation is also implied in HZ. Both
groups develop a microscopic model that allows solutions
which satisfy both the elastic force equations of the lat-
tice and the EM boundary conditions. In the case of nor-
mal incidence (8=0) this is regarded as straightforward
for even modes (n =2,4, 6, . . . ) where a "constant" added
to the potential can make /=0 at the interface. For odd
modes (n =1,3, 5. . . ) this does not work. Nevertheless,
HZ choose solutions which make /=0 for these modes
too. In BG, P is taken to be continuous, which leads for
n odd to the potential being nonzero at the interfaces and
z independent in alternate layers, though it is claimed
that no Frohlich interaction (and hence no Raman
scattering) results from that. They note that P being
nonzero at the interface contradicts the EM model ~ In
this respect the HZ solution does not contradict the HD
model.

Modes propagating at an angle 0 to the superlattice
axis become mixed to some degree, but for LO modes P
vanishes at the interface as a consequence of the EM
boundary conditions in both treatments. Both treatments
also discover Fuchs-Kliewer (FK) interface modes to

direction, such as along the usual growth direction [100]
of the layers. Isotropic continuum theories cannot de-
scribe mixed mode effects. Another defect of continuum
theories is that they cannot seriously be applied to situa-
tions involving changes of vibration amplitude over dis-
tances of order of the unit-cell dimension.

Recent analyses of the relation between the EM contin-
uum model and microscopic models have been made by
Bechstedt and Gerecke" (BG) and by Huang and
Zhu' ' (HZ). BG begin by adopting the nonretarded
limit of Maxwell's equations, viz. ,

which they ascribe a scalar potential. HZ find that the
fundamental LO mode (n= 1) exists only for 8=0 and
converts into the upper FK interface mode for 0) 0.
They argue that this means that the n =2 mode should be
taken to be the microscopic counterpart of the n=1
mode of the EM model, since in the latter the FK inter-
face corresponds to an n=O mode. When they compare
the n = 1 EM mode with the n =2 microscopic mode they
find a discrepancy in the ionic displacement, which they
eliminate (largely) by adding short-range components.
They then conclude that the EM model, thus modified, is
a good description of confined and interface LO modes.
BG are less happy with the EM model and emphasize
that the lack of dispersion in that model is a serious
deficiency.

The models of BG and HZ, though differing in some
aspects, show a substantial amount of agreement. Never-
theless, there appear to be several elements on which
both models are based that are open to criticism. These
concern (i) dispersion, (ii) the relations between LO
modes and polaritons, and (iii) the criteria for boundary
conditions. In what follows we discuss these aspects and
arrive at the conclusion that all models of LO modes
based on EM boundary conditions are fundamentally
fiawed and that the HD model is the best continuum
model that we have so far.

II. DISPERSION

As remarked by both HZ and BG the neglect of disper-
sion in continuum models leads to the situation where all
LO modes are degenerate, and similarly TO modes,
whence any linear combination can be taken. More fun-
damentally, without dispersion it is impossible to con-
struct a quantum theory of vibrational fields. Assuming
an isotropic homogeneous continuum which is dispersive
we can define the allowed eigenvalues for the system
(which in general includes interfaces) as a whole and dis-
tinguish longitudinally polarized from transversely polar-
ized modes without ambiguity. In such a model there is
no mode mixing —an allowed LO mode with frequency
coL(q) is an allowed mode for the system as a whole.
Without the dependence on wave vector (dispersion) it is
impossible to match the frequencies of LO modes across
an interface. We saw that in the EM model matching
could only be carried out between a LO mode and a po-
lariton, which meant mixing modes. With dispersion this
is naturally avoided.

Taking dispersion into account modifies the permittivi-
ty function as follows:

co —col (q)
e(~) =~„(q)

co cor(q)

For long wavelengths we can assume that e„(q) =e (0),
and, to a good approximation,

2 = 2 2 2
COL

—
COLO UL g

2 = 2 2 2
COT

—Q)TO UTg

where mLz and coTO are the zone-center frequencies of the
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LO and TO modes, and ul and vz- are the corresponding
acoustic velocities. For a frequency to obtain throughout
the system it may be necessary that q be complex. In
general it is essential to know the complex as well as the
real band structure for the phonons (Fig. 2). With disper-
sion it is now possible for e(co) =0 everywhere, and thus
LO modes keep their character when crossing an inter-
face. (However, the magnitude of the imaginary wave
vector must be regarded as unrestricted for this to be gen-
erally true. ) We note that the HD model contains all of
these features, whereas the EM model does not.

III. OPTICAL PHONONS AND POLARITONS

In a polar material ionic vibrations can generate elec-
tric fields and acct the dielectric function e(co), which in
turn affects the propagation of EM waves. The allowed
vibrations are described by Maxwell's equations plus the
equations describing mechanical stress and strain in the
medium. The equation which indicates what modes of vi-
bration are possible in the absence of free charge is that
of Gauss:

V D=O, (10)

D =0 (longitudinal),

DAO (transverse) .
(12)

Now D =eoE+ P, where e0 is the vacuum permittivity
and P is the polarization. For long wavelengths the
latter is related to the longitudinal ionic displacement u
via P=e*u/VQ, where e is the effective ionic charge
and VD is the volume of the unit cell. Thus D=0 implies
that E= —e*u/e0Vp corresponding to the field of a LO
mode, attached to which will be a scalar potential P,
whose gradient is the negative of E. The energy of an
electron in this potential is given by eP, which is the basis
of the Frohlich interaction.

Turning to the transversely polarized solutions we first
note that the dielectric function is given by Eq. (8). Since
in general D=e(co)E, the solution D=O, EWO, means
that co=coL(q), as it should. For all frequencies coWcoz-(q)
or col (q), e(co) is finite and both D and E exist as finite
transverse vectors. These modes are the polaritons, of
mixed photon-TO character, which become increasingly
phononlike as co approaches cor(q).

A glance at the other equations of Maxwell will il-
luminate those modes. D=O implies, in the absence of a
current, H =0, where H is the magnetic field, and so

where D is the electric displacement. For a traveling
wave of wave vector q, Eq. (10) reduces to

q.D =0,
and so, with finite q, two categories of solution are al-
lowed, namely,

and

c
co —

qe(co )
(14)

BHVXE= —pa Bt
(15)

Boundary conditions ensure the continuity of the Aow
of energy and momentum. In order to identify the
correct boundary conditions for each of the three types of
mode it is necessary to define these correctly.

%'e note first of all that neither the LO nor pure TO
modes [polaritons with co=cor(q) j possess EM energy,
only mechanical. The energy density in a traveling wave
is given by

U=pu (16)

where c is the velocity of light in vacuo. Note that in the
frequency region co& & co & coL the permittivity is negative
and consequently q must be negative, implying attenua-
tion in the medium. This is the reststrahlen region. It is
also the region in which lie the Fuchs-Kliewer interface
modes. The latter are thus nothing but surface polaritons
and they can interact with electrons through the usual
A p interaction (A is the vector potential and p is the
momentum of the particle). That is true also of the guid-
ed polaritons. Guided polaritons, being EM waves, do
not possess a scalar potential and they therefore cannot
interact strongly with electrons. However, polaritons
with frequencies near cor(q) may interact with electrons
via a deformation potential. It is clear as far as the limit-
ing case of TO modes are concerned the only interaction
possible is via a deformation potential. For electrons in a
central conduction-band valley this would be ruled out,
but for holes it is not. ' One might expect polaritons to
interact with electrons solely through the magnetic pro-
cess, but with holes through both the magnetic and
deformation-potential processes.

It is unfortunate that the electron-phonon interaction
based on the dielectric continuum model with interface
and guided Fuchs-Kliewer modes continues to be found-
ed on a scalar-potential interaction, as though the modes
which were described were LO modes and not polari-
tons. ' A clue to how this error could have been made is
suggested by Eq. (15). For wave vectors large compared
with those of visible light it is often assumed that so-
called retardation effects can be ignored and thus the
right-hand side of Eq. (15) is put to zero as in Eq. (7). But
then it looks like Eq. (13), which could be held to describe
a longitudinally polarized mode. If this mistake is made
it is easy to assume the existence of a Frohlich potential
associated with a polariton, but this naturally would be
incorrect.

IV. BOUNDARY CONDITIONS

VXE=O . (13)
where p is the reduced mass density. The Aux intensity is
thus multiplied by the group velocity ug Vq67:

This is only true for LO modes. For polaritons both D
and E are finite and so H is also finite. In fact, polaritons
are just simply EM waves with a dispersion relation given
b

S=pu V-' co . (17)

From Eq. (9) V'~co= —ULq/co, and so, focusing on the LO
mode,
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—~ 2 2
pQ Ul

Sl = — q=pvt u(V. u) . (18)

A condition on momentum is equivalent to a condition
on the force acting. Thus it is necessary for mechanical
stability that the pressure associated with the optical vi-
bration be continuous. For the LO mode the optical
strain can be written

s=V u,

whose continuity in itself provides for the continuity of
the tangential components of E and H, i.e., the EM
boundary conditions. Thus the use of EM boundary con-
ditions for the Fuchs-Kliewer interface modes and for
guided polaritons is justified only provided the mechani-
cal energy component can be neglected.

V. DISCUSSION

From the foregoing discussion it seems clear that the
use of EM boundary conditions cannot be justified on the
grounds of energy conservation (except for very-long-
wavelength polaritons). Since without the continuity of
energy Aow no system is stable, it follows that the EM
model has to be abandoned as a description of confined
LO modes. There seems therefore no point in attempting
to reconcile microscopic theories with that model, nor,
moreover, is there any point for microscopic theories of
LO modes to have EM boundary conditions built into
their structure.

It also emerges that dispersion is essential in a continu-
um model if confusion of mode types is to be avoided.
Thus LO and TO modes retain their individual charac-
ters across a boundary and do not mix. Even in a real

from which a pressure ~ can be defined via an elastic
modulus cL.

rr=cL(V u),
where we define the modulus in terms of the velocity of
sound as cL =pUI, whence=—2

~=pvL(V u) .

The continuity of S, and m boils down to the continuity
of u, and pvt (V-u), which are just the HD boundary con-
ditions used by Babiker. A similar argument leads to
HD conditions for purely TO modes. It seems that the
use of EM boundary conditions for LO modes is not war-
ranted on these grounds.

Polaritons have both EM and mechanical energy and
both must be taken into aeeount. We defer this to a fu-
ture publication and treat polaritons as though they were
pure EM waves. The Aux vector is then

S=ExH,

crystal individual characters are retained whatever the
direction of propagation, though polarizations may not.
Thus a LO mode will retain its scalar potential whatever
transverse components may enter as a consequence of
crystal anisotropy. Its conversion to a surface polariton
for propagation directions away from the superlattice
axis, as suggested by HZ, appears, on these grounds, to
be unphysical.

The attribution of a scalar potential to surface polari-
tons goes back to the original treatment by Fuchs and
Kliewer. There can be no doubt that the FK interface
modes are, indeed, polaritons. As such they are basically
transverse modes satisfying Eqs. (14) and (15), and they
consequently do not possess a scalar potential. Under
certain circumstances true LO interface modes can exist.
For example, in the Al„Gai As/GaAs system with x
not too large the mismatch between the elastic properties
of the two media is small enough for u, to be appreciable
such that a guided mode in GaAs penetrates into the
Al„Ga& „As layer. An interface mode is then possible
for finite q~~, and being a true LO mode it will interact
strongly with electrons via its scalar potential. ' Clearly,
such an interface mode has to be distinguished from the
FK interface modes, which will also be present.

In conclusion, it seems that the HD model is the best
continuum model available at the present time. Its prin-
cipal virtue is that it incorporates energy conservation,
which is a basic requirement. The connection rules used
in the HD model are, however, not above criticism, as
Akera and Ando' point out, and are not the only ones
which conserve mechanical energy, but they are the sim-
plest. Of course, as a continuum model it is open to the
criticism, voiced by Deans and Inkson' against all con-
tinuum models, that it is ill equipped to describe the real
vibrations of a superlattice, especially a short-period su-
perlattice. But what concerns many people about the
HD model is that it allows the scalar potential to be
discontinuous. Electrostatic potentials are certainly not
allowed to be discontinuous because test charges would
have "schizophrenic" energies. It is, however, unclear
that the same criterion ought to be applied to the scalar
potential of a quantum field when the latter acts solely as
a coupling between it and the electron field. The discon-
tinuity means that an electron in GaAs where P is finite
would interact with a GaAs LO phonon, whereas an elec-
tron in A1As, where /=0, would not. This does not seem
so terrible.
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