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Transfer-matrix cluster approximation for lattice models
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A cluster approximation for the transfer-matrix method is formulated. The method yields the
free energy, correlation functions, and the phase diagrams for a large class of lattice models. The
high accuracy of the method is exemplified by the calculation of the critical temperature of the Ising
model ~

I. INTRODUCTION

There are two important classical approaches to the
calculation of the free energy, correlation functions, and
other thermodynamic properties of lattice models with
discontinuous site variables: cluster-variation
methods' (CVM) and the transfer-matrix method. In
the first one, the free energy is constructed from the
configuration probabilities of a finite cluster. To obtain
thermodynamic quantities, the free energy is minimized
with respect to unknown probabilities. The cluster-
variation methods explicitly yield phases with lower sym-
metry when compared with the symmetry of the Hamil-
tonian, phase transitions between them, and the high-
symmetry phase when the temperature or other parame-
ters are changed. They give classical critical exponents
but renormalization-group ideas are easily applied to
them. However, it is not clear how to construct, in the
most effective way, the free-energy functional. For
higher approximations and long-range interactions, the
minimization procedure is generally tedious.

The transfer-matrix method is applicable only to one-
dimensional systems. In fact, instead of higher-
dimensional systems only one-dimensional slabs or strips
are treated by it. Naturally, for these systems no phase
transitions occur and all the values of the order parame-
ters of continuous phase transitions are equal to zero.
Nevertheless, the values of the critical temperature, the
critical exponents and indirectly also the values of order
parameters can be derived from a finite-size scaling pro-
cedure. The simplicity of mathematical methods allows
one to treat large systems with rather long-range interac-
tions.

Our treatment combines both the mathematical simpli-
city of the T-matrix method and the explicit occurrence
of nonzero order parameters and phase transitions of
CVM's. The construction of an arbitrary approximation
is straightforward and the method is more elan'ective than
CVM as it uses less unknown parameters than the num-
ber of unknown configuration probabilities in CVM of
the same accuracy. The results are obtained by simple

iterations.
The presented method is closely related to the varia-

tional approach by Baxter which was later applied to the
Ising model by Tsang. This relation is discussed in Secs.
II and III.

Recently, there has appeared, a double-chain approxi-
mation for the Ising model, ' similar, to some extent, to
our approach. But our method, in distinction to Ref. 10,
is applicable to very general lattice models; it uses a num-

ber of multisite mean fields instead of one single-site field,

and can be formulated with arbitrary accuracy.
To solve the two-dimensional Ising model, Suzuki and

co-workers" ' used one-dimensional strips with a
single-site mean field at the boundaries. From the point
of view of that paper, our method may be considered as
one reducing the two-dimensional problem to a similar
problem on a strip with multisite mean fields applied only
to one boundary.

The method is formulated in Sec. II and the example of
the Ising model in Sec. III is used to illustrate it. The ac-
curacy of the approximate values of the critical tempera-
ture is within 0.1% for comparatively low-order approxi-
mations, which is a better result than the values of the
critical temperatures in Refs. 9—11.

II. METHOD

We shall develop an approximate method for the calcu-
lation of the correlation functions and the free energy of
two-dimensional lattice models with discontinuous site
variables and short-range interactions described by the
Hamiltonian

H= g H;(IKiI)n, , . . . , n; ),
i=1

where i numbers lattice sites, n, are site variables at sites
k

in a finite-size area around the site i. n&=0, 1, . . . , N (in

the illustrative calculations below for the Ising model, we
put X =1). A set of short-range interaction constants is
denoted by [Ki I. The site Hamiltonians H, may be writ-
ten explicitly in the following form:

H;(IKtI;n, , . . . , n, )=
m, , , m,-

1 j
K(m;, . . . , m; )5( mn; ) . 5(m;, n; ),

J J
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where j is the number of the lattice sites of the cluster in
the neighborhood of the site i, K (m;, . . . , m; ) is the en-

ergy of the cluster configuration (m, , . . . , m; );

m& =0, 1, . . . , N. The diameter of the cluster is given by
the range of the interactions. Expression (2) is the most
general form of a classical lattice Hamiltonian with
finite-range interactions. (In the case of the Ising-type
lattice-gas model with nearest-neighbor interactions on
the square lattice, the values of the parameters in (2) may
be chosen as follows: j =3, i =i2—= (1,k), i, :—(1+1,k),
i3—= (1,k+1), K(1, 1, 1)=2K+p, , K(0, 1, 1)=K(1,1,0)
=K + iLi. , K (0, 1,0)= iu, , K ( m;, 0, m; ) =0, where K is the

nearest-neighbor pair interaction and p is the chemical
potential [cf. Eq. (11)]. Other possible choices of the clus-
ters are depicted in Fig. 1 by squares with vertical bars. )

For the calculation of the partition function
Z P

~ ~

exp [H ( n; ) ] (the factor —1 Ik~ T is absorbed in
l

the interaction constants), it is useful to introduce a
transfer matrix T; defined by the relation

(&v)

exp[H(ni)]= + T;(N;, N;+i, . . . , N;+k);

i numbers the rows of the lattice and M ~ Oo is the num-
ber of the rows in the whole lattice; N~

= [n i] is th. e set
of the lattice site variables in the jth row, and the width
of the strip A: is at least as large as the range of interac-
tions perpendicular to the rows. For homogeneous lat-
tices we take all T-'s in the same form. The above
definition of the T matrix is not unambiguous and gives a
lot of freedom how to choose it. We impose only one lim-
itation on the choice of the T matrix: the T matrix (to-
gether with the Hamiltonian) should be invariant with
respect to the transformations corresponding to the sym-
metry which we expect to be broken for some values of
the interaction parameters. The T matrix can obviously
be written in an exponential form, as well

T;(N;, N;+„. . . , N, +k )

=exp[G ([Ki]»;»;+i . . »;+k)l
where QG; =H.

It is well known that the free energy of the system and
the correlation functions are directly related to the larg-
est eigenvalue and to the corresponding eigenvector of
the equation

Ti(N;, N;+i, . N;+k)q'i(Ni+i ' Ni+k)
N,. +

=A, ,V ( iN„. . . , N, +ki) . (3)

Generally, it is not possible to solve this equation exactly,
as the T matrix as well as the eigenvector are infinite
along the rows. That is why Eq. (3) is usually solved only
for a strip of a finite width with appropriate boundary
conditions. Then, the problem turns out to be effectively
one-dimensional and neither phase transitions nor spon-
taneous symmetry breaking appear. In our approach we
leave both the T matrix and the eigenvector infinite, but
we rewrite also the eigenvector into an exponential form

FIG. 1. Clusters of sites on which the functions 6;j (squares
with vertical bars) and g; j A ' j {squares with horizontal bars) for
the approximations (I)—(IV) are defined.

+i(N;+i, . . . , N;+k)=
N,. + k + I, . . . , Ni + k + I

p[g +i([, l N;+i ~, N;+k)

+hi + 1( [Ji) ];Ni + i). . . ) N; + k, N; ~ k + i). . . ) Ni + k + i ) ] (4)

Substituting (4) into (3) we get

X X
i+k i+k+1' ' ' ' ' i+k+1

exp[6;( [Kp ];N;, . . . N;+)k )+g;+ &( [Li, ] N'+1 ~ ) Ni+k)

+ ;+i([,l' ;+i . N;+k

exp[g;([L~l;N;, . . . , ;N+k) i+([iJ~];N;, . . . , N;+k „N;+k, . . . , N;+k+i i)) . —
Ni+k Ni+k+1 —I

(5)
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%'e assume that both g; and h; can be expressed in the
same way as (2) where the number of lattice sites in the
cluster is finite, i.e., the number of constants L and J. is
also finite and they are of short range. This assumption
represents the only approximation in our method; for an
infinite number of the constants L or J, , expression (4) is
exact. As the exponentials at the left-hand side of (4) are
positive, the factorization (4) is valid only for the eigen-
vector corresponding to the largest eigenvalue.

If we put A. ; =0 we obtain a generalized mean-field ap-
proximation. Instead of a single-site mean field of usual
approaches, a set of many-body fields or many-body in-
teractions {L I is involved in g, +, which is added to the
row Hamiltonian 6;. The expression
g, +i({L I;N;+i, . . . , N,. +k) represents the effect of the
half lattice (N;+/, +„N/+k+2, . . . ) on the half lattice
(. . . , N, +k, ,N;+ „). If the expression for g; contained
an infinite number of the constants L, all the properties
of the latter half lattice described by the Hamiltonian
H, &2 =g, +,+g' „G, would be the same as the proper-
ties of this half lattice of the full system described by the
Hamiltonian H =g G.. In our approximation, we as-
sume that, in most cases, only the short-range interac-
tions from the set {L~ I are important. [Compare ap-
proximations (I) and (II) in Sec. III.]

There are no long-range interactions in our approxi-
mate expression for g; which the exact solution does con-
tain. To some extent, they can be simulated by a "mean"
lattice represented by the rows i +k + 1, . . . , i +k + 1

included in h;+& but not included in the T matrix. Nev-
ertheless, the effect of the few extra rows cannot be
equivalent to that of the whole infinite half lattice. In
fact, the decay of pair correlations at the left-hand side of
Eq. (5) is always smaller than the decay of those at its
right-hand side. [Compare approximation (III) in Sec.
III.]

The effect of the extra rows added to the left-hand side

of the eigenvector is similar to the effect of the rows add-
ed to the right-hand side of both the T matrix and the
eigenvector. In this case, (5) remains unchanged, h, is
equal to zero and k is larger than the minimum allowed
value. Both these modifications improve the results,
namely, the values of the critical interaction constants.
[Compare approximation (IV) in Sec. III.]

Reducing only the number of interaction constants, the
vector equation (5) would represent an infinite number of
nonlinear equations for a finite number of unknown pa-
rameters. Thus the reduction of the number of the in-
teraction constants L must be accompanied by the
reduction of the number of the lattice sites in the strip by
summing up over most of the site variables leaving only a
number of equations equal to the number of parameters.
It is an easy task to perform the summation because the
exponents at both sites of (5) can be considered as (unnor-
malized) configuration probabilities of infinite one-
dimensional strips consisting of k +l and k +I —1 rows,
and some of the well-known methods of the statistical
mechanics can be used. Performing the summation (e.g. ,
by the T-matrix method), what we get are the
configuration probabilities of a finite cluster for the corre-
sponding one-dimensional statistical system. The size of
the cluster is given by the requirement that the number of
its configurations is equal to the number of parameters L;
and J, . Then, we have to solve the following equations:

~k+/({L;] {J;]ni

for all configurations of the lattice variables n, of the
cluster which is a part of the (k —1)-row strip consisting
of the rows i, . . . , i +k —1. Pk+I are the configuration
probabilities of this cluster in the (k+l)-row statistical
system described by the Hamiltonian

Hk+/=[G, ({E/ I;N/, . . . ~N/+k)+g/+i({L/];N, ~„.. . , N, +k)+h, +,({J~I;N, „+. . . , N +/„/N +k/„+. . . , N;+„+, )]

while P/, +/, are the probabilities of the same cluster in the (k +1 —1)-row system described by the following Hamil-
tonian:

H/, +/, =g/({L/, I;N/). . . , N/~/, , )+h/({J/, I;N/, . . . , N;+/, „N/+k, . . . , N/+/(+/ i) .

Both probabilities are normalized to unity. The eigenvalue A, i has disappeared from (6) due to the normalization of the
configuration probabilities. It is obtained if we sum up over all variables at both sides of (5)

=Zk+/(G, ,g/, h, ) /Zk+/ i(g, , h, ),
where Z/, +/ and Zk+/ i are the partition functions of (k + I)-row and (k +l —1)-row systems.

Equations (6) are the main result of this paper.
The order of the approximation is given by the number of parameters L, and J, , i.e., by the number of sites in the

cluster.
The probabilities P&+& and Pk+&, are not the configuration probabilities of our problem described by the Hamil-

tonian H. These can also be calculated from one-dimensional strips but using the following Hamiltonians:

(G,N. /. . , N/+)+/g(N/+». . . , N/+k)+g(N/+k, , . . . , N/)+h (N;+». . . , N;+k, N/+k+». . . , N/+/, +/)

+h (N;+k „.. . , N;, N;, , . . . , N; /),
or
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g(N, , , N, ~k 1)+g(N~~k „.. . , N, )+h(N;, . . . , N;~k 1,N;~k, . . . , N;~k~i 1)

+h(Ni~k „.. . , Ni N( 1, . . . , N; i),
i.e., the multisite mean fields are now applied to both sides of the strip.

To solve (7), we use the iteration method which reminds one of the power method for the matrix eigenvalue problem.
Using the values of interaction constants I.; and J, from the preceding iteration step, the right-hand side of the equation
is calculated by the T matrix method and then the interaction constants of the next iteration step are obtained from its
left-hand side. The latter problem is generally not a simple one, but in some cases it can be solved by straightforward
calculations. If h,. is equal to zero (I =0) and g, has the following explicit form:

ni p 1 J' ) ~ o ~ l+1 J+s

gi+1 ggi+1, j
J

l +k)J ) ' ' ) l+k, J+$ ~ ~k

gi+ 1,J

n l + 1 j 7 ~ ~ ~ ) ni +1,j+s,.

J & n / k J

mi+1, j

ml ~k j ) ~ ~ ~

mi+1, j+s,.

l +k,J +$ ~ gk

5(m, ~, , ,n, ) -5(m, ~k j~, , n, ~k)~, ),

the free energy of the (k —1)-row strip is the following:

nl'+ 1 j ) ~ ~ ~ ni+1,j+s,. ni+1,j ni +1,j+s,.

F=X XL
j InI ni+k, j ni+k, j+s,. +k

P

J ) n /k J

nl P1J) ~ ~ ~ ni +1,j+s,.

ln P

ni p 1 J ) ~ ~ ~ nl. +1,j +s,.

'+kj ' ' +kj+,. ni+k, j ) ' ' ' ni +kj +s,.

ni+1, j+1 nl +1,J +s,. ni +1,j+1 ni +1,j+s,.
P

nl+kJ+1 ) ) nl+kJ+s~k
ln P

ni+k j+1 ) ) ni+k j+s +k
(9)

The meaning of the notation in the expression for g,. is analogous to that in (2). I' s are the probabilities of cluster
configurations in a (k —1)-row strip and the probabilities in the last row of (9) are obtained from them by summation
over the first column; s; is the range of the interactions I k along the ith row. Minimizing the free energy with respect
to P's, we get the formula for the calculation of interaction constants from configuration probabilities

ni+1, j ni +1,j+s,.
= —ln P

ni +1,j ni +1,j+s,.

+ln P

ni +1,j+1 ni +1,j+s,.

i+k j ' ' i+k j+s ~k '+k j ' ' ni+k j+ nl+kj +1 ) ~ . . ) nl+kj+5 +k

(10)

There is no such simple formula for the calculation of the constants J; and I; when h; is nonzero, because of long-
range interactions introduced by summation over the rows i +k+1, . . . , i +k +/. To avoid this di%culty, we try to
solve a larger set of equations instead of (5)

plGi( I+i I Ni& ~' ' ' t Ni+k )+gi+I( I @LID iN+ &1' ' ' &Ni+k )+hi+1(I r JiNi+1& ' &Ni+ &Nki+k+1& ' &Ni+k+ )1i
N,. +k

=A, ,exp[g;( I Lp I;N„. . . , N;~k, )+h;( I J„I;N;, . . . , N; ~k ~„.. . , N; ~k ~i, )] .
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defined by the equation

P] +](IL')

k+] —](IL'+'I I~ +'I'"] (6')

where IL~+'I, I
J~+'I are shifted by one row with

respect to I L,J)„IJ/I. For superstructures, the repetition
of the values of the parameters L,J,JJ after the number of
steps equal to the period of the superstructure is expect-
ed. If the values of the parameters never repeat, the sys-
tem is in an incommensurate phase. The method repro-
duces very well the superstructures and incommensurate
phases of ANNNI model. '

Our approach is, to some extent, similar to the varia-
tional approximation for square lattice models developed
by Baxter, which can be however easily generalized to
more complicated models. Despite the similarity, there
are many differences between them. Baxter's method
starts from the equation

rather than from (3); ]II is for transpose of ]II. This equa-
tion is further treated variationally.

The common feature of ours and Baxter's method is
the factorization of the eigenvector %. The factorization
in Ref. 8 is a special case of Eq. (4). There, in our nota-
tion, g; =0 and h, involves only interaction between two
neighboring columns in the ith row and in the I extra
rows of our "mean" lattice.

The resulting equations differ from ours. In Ref. 8
they involve the transpose of O';. Generalizing the varia-
tional method to more complicated models with super-
structures, it would be necessary to anticipate the period-
icity of the superstructure and then to solve simultane-
ously a large set of matrix equations as each of the equa-

Now, if we reduce the whole strip by summation to a
cluster of the same width as that of the strip, i.e.,
(k + l —1), we can repeat the whole above described pro-
cedure for calculation of the interaction constants.

For computational reasons, it is convenient, when solv-
ing Eqs. (6), to use compact clusters consisting of k —1

finite rows. But in principle, the cluster in (6) may be
chosen arbitrarily even with sites far apart from each oth-
er. In such a way we can change the type of the approxi-
mation.

An important field of application of the described
method is the calculation of phase diagrams in systems
with superstructures appearing in various two-
dimensional systems, e.g. , surface adsorbate and CuO lay-
ers in high-temperature superconductors. In these cases
the symmetry breaking in the problem with a homogene-
ous Hamiltonian again naturally appears making all the
parameters L;, J; site dependent. They would be periodic
functions of the position with a period equal to the period
of the superstructure. Now, it is more consistent to inter-
pret Eq. (6) as a nonlinear mapping of the parameters L;
and J,.

tions would combine + and + for different rows. In our
approach the equations are solved for each row separate-
ly. The period of the superstructure is equal to the
period of the iterative nonlinear mapping procedure for
the paramters L;, J;. It is not possible to obtain any in-
commensurate structures using the method in Ref. 8.

Our method seems to be more natural; as the parame-
ters L in g; have a direct physical meaning of many-
body fields simulating the effect of one of the half lattices
on the other one, while the interpretation of J's in h; is
not so transparent.

In the iterative procedure of the variational approach,
all the eigenvectors and the eigenvalues of two 2'+' by
2'+' matrices must be calculated. In our approach, if we
use the T-matrix method for calculation of P's in (6) or
(6'), only the largest eigenvalue and the corresponding
eigenvector are needed.

In the variational approximation, there appears a prob-
lem of "reasonable" guess of the vector %. In our
method the choice of 0' at the beginning of the iteration
procedure is not very important in those areas of the pa-
rameter space where there is no coexistence of two or
more phases. It represents actually the boundary condi-
tions for a semi-infinite lattice.

As we shall see in the next section, our approach gives
better values of the critical temperature for the Ising
model in low-order approximations than the variational
method.

III. RESULTS FOR THE ISING MODEL

To compare the results of our approximate method
with exact solutions, we calculate the critical temperature
and the coverage of the two-dimensional lattice-gas mod-
el on the square lattice with nearest-neighbor interactions
(which is equivalent to the two-dimensional Ising model)
described by the site Hamiltonian

H; =Kn; (n; +,.+n;+, ~. )+pn;

H=gH, , n; =01.

We have calculated the free energy, the correlation func-
tions, and the critical temperature for different approxi-
mations according to the following choices of the func-
tions G; =g~G; ~, g; =g~g;

&
and h; =gjh;&'.

K(I) G, = (n, +—n;~] ~])(n ~] +n, ~])

+ (n/ J+ /n/ J]+n/ ~]+n/ /] ~])

L)
g J 3

( n J + n J ~ ] +n J ~ 2 )

L2+ n; ~](n; . +n; ~2)

+L3nI Jnf J+2+L471) Jn/J+$n$ J+

h, =0.
It is a three-site approximation.

(II) G, , and h,. are the same as in (I), and
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g' J (n j +Pl j+]+8 J+2+n' j+3)+ n' j+](n' j+i1' j+2)++ j+2n j+3)+ (n' jn' j+p+n' j+ jn' j+3)

Ls L
+L~n; Jn; J+ 3+ n; j+,nj+2(nj+n; J+ 3) + n; Jn; J+3(n; J+, +n; J+2)+L7n, jn, J+n; J+2n; J+3,

i.e., (II) is a four-site approximation.
In the case when h; J =0, the T matrix for the calculation along the strip t; =exp(G; . +g;+, .) is the same as for a

single chain except of two sites in the second row originating from 6;
(III) G, j is the same as in (I), and

Li L2 L3
g;, +h; = (n; J+n; +, )+. (n, +, , +n;+, +, )+ (n;, n;+, , +n, , +,n, +, +, )+L4n, n;, +, .

+L5n;+, n;+, +,+L6(n, n;+, . +, +n, +, n; +, )+L7n, n, +,(.n, +, +n;+, +, )

+Lsn;+, n; +, , +(n; J+n; +, )+L9n;, n; .+,n, +, jn, +, +, ,

1 K 1 K
(IV) G, , = ——p+ —(n;, +n; ++n; +j2+n; z+ 1+&)+

—p ——(n;+& J+n;+& J+&)

K
i j ij+1 '+I,j i+1j+i+ni+2j i+2j+1)

K+—[&;+i,, (n;,, +n;+2j )++'+1,J 1+( i j+1+ 'n 2+j+2)i

h, =0,

g, is equal tog; j+h; in (III).
The specific choice of the chemical potential at the

edges and in the middle of the strip in (IV) is due to the
requirement of invariance of T, =exp(G, .) with respect to
the particle-hole symmetry when iM= —2K (i.e., the mag-
netic field is equal to zero for the corresponding Ising
spin model). The clusters, on which the functions
G;,g;, and h; are defined, are shown in Fig. 1.

The values of the critical temperature (the critical pair
interaction K, =J/kji T, ) for the approximations (I)—(IV)
together with the exact value are given in Table I. They
are the largest values of the pair interaction when the
coverage (n ) is still equal to —,'. The coverage is calculat-
ed from the correlation functions of a one-dimensional
system described by the Hamiltonian (8). We see that
even the lowest approximations give the values of K, very
close to the exact value and the approximations using ex-
tra rows (III) and (IV) yield better results than (I) and (II).
In our method, working with infinite T matrices, for
p = —2K and IC' )K„ the coverage ( n ) is di6'erent from

(the magnetization is nonzero). As our method is of
mean-field type with the critical exponent of magnetiza-
tion 13=—,

' instead of the real value —,', we cannot expect
good coincidence of our coverage curves with the exact
one near the phase-transition point. The coverage calcu-
lated from the approximations (II) and (IV) and the exact

CD

C3

CD)0
U

0.4—

0.2

prox. IV
prox. II
oct

coverage curve are shown in Fig. 2. The values of cover-
age for the approximation (III) lie between the curves 2
and 3. From Fig. 1 we see that, if shifted to the exact
value of K„ the approximation (II) yields better values
for coverage than (IV). The method makes it possible to
calculate all correlation functions, but again near the
phase-transition point, we have to expect the decay of
long-range correlations to be too fast.

Baxter's variational method has been applied to the Is-
ing model by Tsang. For the special case of magnetic
field equal to zero, he has been able to find the critical
temperature for the first 20 approximations using
Kaufman's technique of spin representation. We have
performed the calculations only for few first approxima-
tions using a quite general approach applicable to any

1.775

+c, II

1.7672

+c,III

1.7652

+c, IV

1.7638

+c,exact

1.7627

TABLE I. Critical interaction constant for the Ising model in
our approximations and its exact value (Ref. 14).

0..0 I ~ i I I ~ 0 i I I 1

1.75 1.80 1.85 'I .90 1.95

FIG. 2. Coverages for the lattice-gas Ising model in our ap-
proximations and their exact values (Ref. 14). The coverages in
the approximation (III) lie between the values of the approxima-
tions (II) and (IV).



914 ANTON SURDA 43

Hamiltonian with short-range interactions. Our approxi-
mation (IV) with four-site clusters in g, , which corre-
sponds to Tsang's n =4 approximation, yields better re-
sults for the critical temperature (K, &~=1.7638) than the
variational method (E, ~= l.7580) (IC, ,„„,= 1.7627).

In conclusion, we have developed an approximate
method for the calculation of thermodynamic properties
of a wide class of lattice models of statistical mechanics.
The approximation is an extension of the cluster-
variation methods and the transfer-matrix method. As it
has been shown for the Ising model, the results of the

method are very close to the exact results, even in the
case of low-order approximations. The order of approxi-
mation can be systematically improved in a straightfor-
ward way. The symmetry of the results may be lower
than the symmetry of the Hamiltonian. As the method is
reformulating the calculation of the partition function to
a nonlinear mapping of the effective multisite fields acting
on the strip of the rows i, . . . , i +k to the fields acting on
the strip of the rows i —1, . . . , i +k —1, the superstruc-
tures and incommensurate phases appear from the calcu-
lations quite naturally. '
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