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Although many properties of polyacetylene, (CH), can be qualitatively understood with a one-
dimensional model, a three-dimensional model is necessary for understanding others, and for a
quantitative description in any case. We formulate here a tight-binding model of three-dimensional
interactions in undoped and alkali-metal-doped polyacetylene using the structures determined by x-
ray diffraction. In the calculation of interchain coupling, all ~ orbitals on the chains are included,
not just those directly opposite each other and their nearest neighbors. The coupling strength for
each pair is calculated from a semiempirical relation due to Harrison, and extrapolated, again
semiempirically, beyond typical interatomic spacings. It is found that the interchain coupling is en-

ergy dependent, being much stronger at the valence-band minimum than at higher energies. The
calculations show that, if the Coulomb potential of the ions were absent, the potassium-doping lev-
els required to give rise to metallic {CH)„would be greater than 15%, thus much greater than the
experimental value. Dispersion relations perpendicular to the chain are derived for undoped,
sodium-doped, and potassium-doped (CH) in the "metallic" regime by means of an approximate
treatment of interchain coupling. Corrections are calculated to the density of states versus energy
for chain-chain coupling and doping ion-chain coupling. The ion-chain coupling is found to be of
the same order of magnitude as chain-chain coupling because the larger orbital overlap between
carbon atoms and doping ions than between interchain carbons is balanced out by the energy
difference between these orbitals.

I. INTRODUCTION

The electronic structure of polyacetylene, (CH)„, is
well approximated for many purposes without including
the interactions between neighboring chains. This is
justified by the large material anisotropy. The average
spacing between two carbon atoms in the same chain is
1.4 A, while the spacing between the closest carbon
atoms on adjacent chains is 3—4 A, leading to an elec-
tronic coupling that is at least a factor of 10 less in the
direction perpendicular to the chains than in the chain
direction. The Peierls transition and the energetics and
mobility of solitons and polarons arise in a one-
dimensional model. '

However, there are many other important properties of
polyacetylene whose understanding requires a three-
dimensional model of the material. X-ray scattering mea-
surements show that there is a variety of three-
dimensional ordered structures for various dopant con-
centrations and species. Although the existence of soli-
tons and polarons is predicted by a one-dimensional mod-
el, it has been found that the presence of solitons on a
neighboring chain may hinder soliton motion. Also,
the polaron is found to be unstable when interchain cou-
pling becomes larger than some critical value. ' For
doped materials, three-dimensional effects are expected to
be even more important. Transport of electrons in this
material depends on interchain effects as well as on intra-
chain effects.

In this article we use tight-binding theory to estimate
the strength of interchain effects in undoped, sodium-

doped, and potassium-doped (CH), . The calculations are
performed for a variety of dopant concentrations. We in-
clude calculations for undoped (CH), in order to com-
pare our results to those in the literature. We begin with
a discussion of our model for estimating interchain cou-
pling. The model gives numbers for all the geometries we
consider and allows one to assign numbers to other para-
Inetric models. We go on to emphasize three different
outcomes of our calculations. First, we discuss the ener-

gy dependence of the inter chain coupling, and
specifically, why the coupling between valence-band (VB)
states is larger than that between conduction-band states.
Second, we discuss how interchain coupling can give rise
to a mechanism for the metal-insulator transition, finding
that it is feasible only at the highest dopant concentra-
tions. Lastly, we give a prescription for calculating the
effects of chain-chain and dopant-chain interactions on
the density of states for a crystal of finite chains, and
present the density of states for Na-doped and K-doped
(CH)„.

II. MODEL OF THREE-DIMENSIONAL
INTERACTIONS

Three-dimensional interactions in undoped (CH)„have
been considered by a number of researchers. ' ' The
three-dimensional band structure was calculated using a
self-consistent pseudopotential by Grant and Batra, us-
ing a linear-muffin-tin-orbital (LMTO) potential by Ash-
kenazi et ah. , and using a first-principles local-density-
functional pseudopotential by Vogl and Campbell. The
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total energy of the three-dimensional crystal has also
been considered by Vogl and Campbell, as well as by
Baughman et al. , who used pair potentials to minimize
the lattice energy, and by Stafstrom, who used the
modified neglect of differential orbitals (MNDO) to mini-
mize the total energy. '

Kertesz has considered the electronic structure of
potassium- and iodine-doped (CH) using the extended
Hiickel model. ' His calculations show there is almost a
complete transfer of charge from the dopant to the chain,
in agreement with earlier single-chain calculations by
Bredas. ' He goes on to calculate the perpendicular
bandwidths for doped materials. His calculations do not,
however, include the Peierls dimerization. In addition, a
Gaussian smoothing procedure smears the density-of-
states calculation by 0.5 eV, which makes studying phe-
nomena that occur on a smaller energy scale impossible.

The stability and confinement of polyacetylene's ele-
mentary excitations (solitons, polarons, and bipolarons)
due to three-dimensional interactions have been studied
by extending the Su-Schrieffer-Heeger' (SSH) and
Takayama —Lin-Liu —Maki' (TLM) models of (CH), to
allow for interchain coupling. Baeriswyl and Maki have
studied interchain effects by introducing a term in a two-
chain Hamiltonian that couples atoms directly opposite
each other. They have allowed this term to alternate in
magnitude to allow for the zigzagging of the chain. ' A
similar approach to studying the three-dimensional na-
ture has also been used by other groups.

Our model is similar to these latter models in that we
extend the SSH formalism to allow hopping of the elec-
tron between chains. However, we include a number of
additional features that enable us to do more accurate
calculations and, further, to describe doped crystals. In
the SSH-based models, the perpendicular coupling is de-
scribed by a single parameter t~, or at most a few parame-
ters. ' Our model uses the observed crystalline structures
of the undo ped and doped material to calculate an
effective t~ that depends on energy as well as on the
orientation of the two chains being coupled. In some of
our calculations we also include coupling between the
dopant s orbitals and the carbon p, orbitals, and the
Coulomb potential that the carbon atoms feel due to the
charged ions.

To be more explicit, the Hamiltonian we use is

H=Hss~+Hc, „)+H, , +H, d+Hd .

In Eq. (1), Hssii denotes the electronic terms of the SSH
Hamiltonian, Hc, „~ is the Coulomb potential acting on a
chain due to the doping ions and charged solitons on oth-
er chains, H, , are the terms that couple the polyace-
tylene chains, H, d are the terms that couple the chains
to the dopants, and Hd are the orbital energies of the
dopants. We consider each of the terms of H in turn.
We take Hssz to be'

M N

IIssn= g g Ic.„ct c„—[t0+a(u„—u„+&)]I =1n=1

X(c„+& c„+H.c. )I

Here u„ is the displacement of the nth lattice site from its
location in the uniform chain; ta is the transfer integral
when u„=0 for all n; a is the rate of change of the
transfer integral with distance between nearest neighbors;
and c„and c„are the creation and annihilation opera-

tors, respectively, for a ~ electron on the nth site of the
mth chain. X, is the number of sites on the chain and M,
the number of chains in the crystal. We include an addi-
tional term c, c~ c„,which is the energy of an electron
in the ~ orbital. This term is neglected in the SSH Ham-
iltonian because that Hamiltonian was designed to study
only energy shifts due to intrachain coupling. However,
in doped crystals, the energy levels depend on the energy
difference between the carbon atom ~ orbital and the
dopant orbital, so we require this term.

When (CH) is doped, the low value of Pauli suscepti-
bility yz for dopant concentration y up to -4—6 % indi-
cates that the extra electrons or holes go into soliton
states. ' The regular spacing of the doping ions'
means that the solitons are arranged in a lattice. Doping
beyond 4—6 %%uo causes g~ to increase very rapidly. '

There has been considerable discussion as to whether, for
y beyond 4—6%, the extra electrons are arranged in a
soliton lattice or a polaron lattice. The principal evi-
dence against the latter is the observation that the inten-
sity of the three doping-induced infrared-absorption lines
(IRAV) increases more or less linearly with doping in K-
doped (CH) up to —18% doping. It has been shown
that, within the effects included in Hs&~, beyond y -6%
the polaron lattice would be unstable. Its instability is
enhanced by interchain coupling and by finite tempera-
ture. ' It has been argued that the charge polarization
associated with the polaron found in self-consistent calcu-
lations can account for the IRAV. Although large
effects are found for an isolated polaron, which is over 20
sites long, at 16.7% doping the polarons are only six sites
long. The amplitude of the characteristic distortion de-
creases drastically then, and the charge polarization
must decrease accordingly. For these reasons and oth-
ers, we take it that in doped polyacetylene for any y
above a few tenths of a percent, the charges are arranged
in a soliton lattice. The presence of N, solitons on the
chain is incorporated into our calculation by taking

u„= —
(
—1)"u0 g tanh

n —jb
j=l l

where uo is the displacement in the perfectly dimerized
chain, b the spacing between soliton centers, and l the
half-length of the soliton.

Although a soliton lattice was assumed for calculating
the wave functions for individual chains in doped sam-
ples, we simplified the calculation of interchain interac-
tions by assuming a uniform distribution of C-H s on the
chain. This has an insignificant effect on our estimate of
the strength of the interchain coupling. While changing
the interatomic spacing by 0.14 A (the length difference
between single and double bonds) changes the intrachain
coupling by 0.9 eV, or approximately 35%, the same dis-
placement changes the interchain coupling by less than
1%. This is primarily due to the displacements being
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perpendicular to the interchain spacing. Therefore, the
interchain coupling should, to the accuracy of the present
calculation, be the same for an undimerized chain, a soli-
ton lattice, or a polaron lattice.

Hc,„l is the Coulomb potential induced by neighboring
ions and solitons and is given by

7.32A

H Coul

M N

~nm Cnm Cnm
m =1n=1

(4)
/ '/ 4

/

where V„ is the Coulomb potential felt by the nth atom
in the mth chain. Since the location of the ions and soli-
tons has been taken the same for each ion column and
(CH) chain, V„ is independent of m. We have dis-
cussed the importance of this term in previous publica-
tions. The strength of this interaction can be as
large as 5 eV, the value found for 16.7% K-doped
(CH)„. We have found that, because it is energetically
favorable for the ions to avoid the ends of the chains, a
potential well with a depth of the average V, is formed
along the (CH) chain and the presence of this well
makes significant shifts in the band structure near the
Fermi level. These shifts lead to a partially filled band
and thus metallic behavior for heavily doped material.
Although we show that int-rchain coupling can give rise
to an insulator-metal transition, we find that this mecha-
nism is only significant for the most heavily doped ma-
terials. We therefore find it necessary to include the
Coulomb interactions to give metallic bands at doping

6%.
In Fig. 1 we show the crystalline geometry we use for

undoped polyacetylene, Na-doped (CH)„, ' and K-
doped (CH) . The diffraction results show that the ions
go into columns parallel to the chains, and as more ions
are incorporated into the lattice, the spacing between the
ions decreases. In our model crystals we take all the
chains to be the same length and all the ion columns to be
the same length.

H, , is the term in the Hamiltonian that couples orbit-
als between any two chains and is given by

N M N

g t„' ' „(c„c„~+H. c. ) .
m =1 n =1 m'=1 n'=1

Because the coupling between orbitals is exponentially
dependent on the separation between them, only atoms
on neighboring chains couple significantly, and we sett„„.=0 when m and m' are not nearest neighbors.
To be more explicit, we consider coupling to only the six
neighboring chains in undoped polyacetylene, the six
neighboring chains in the sodium geometry, and the four
neighboring chains in the potassium geometry, as indicat-
ed in Fig. 1.

Coupling to a neighboring chain atom directly opposite
a particular atom (n =n') is not the only significant cou-
pling. It has been shown that non-nearest-neighbor
transfer integrals between sites that are chemically bond-
ed in transannular molecules (molecules containing two
sections that are separated by few angstroms)
significantly alter the excited-state spectra. Interchain
interactions in polyacetylene are of a similar nature. We

(b)

—&2.5A

7.2A

6 3/

5/

8.46A
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will show that the non-nearest-neighbor couplings weak-
en the interchain interactions at the Fermi energy.

ln Fig. 2 we show the geometry involved in calculating
the coupling between the two p orbitals. The coupling
depends on both the separation d between the orbitals
and on their relative orientation. Let vl and v2 be vectors
pointing from the origin of the two orbitals in the direc-
tion of the positive lobes, and let N, and @2 be the angles
these vectors make with d. If vl were pointed at the ori-
gin of orbital 2, while vz were perpendicular to v, , then
the symmetry of a p orbital would give a zero coupling
energy. Qn the other hand, the coupling energy would be

FIG. 1. Three-dimensional crystal structures of the three
types of polyacetylene we consider in this paper. The lines
represent the polyacetylene chains coming out of the paper,
while the plus signs represent the ion columns. (a) Undoped po-
lyacetylene, (b) sodium-doped polyacetylene, (c) potassium-
doped polyacetylene. The nearest-neighbor chains to the chain
indicated by the heavy line are numbered in the figure.
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t„„=(98.5 cos+,cos@2

—27. 9 sinC&, sin@~coso)e (8)

where 0 is the angle between the projections of v, and v2
in a plane perpendicular to d.

Hd and H, d are the parts of the Hamiltonian that de-
scribe the dopants and their coupling to the chain and are
given by

Mc Nc Md Nd

H, d
= g g g g t„' "„(c„d„+H.c. ),

FIG. 2. Geometry for the orientational dependence of the
coupling between two p orbitals.

I =1 n =1 m'=1 n'=1

Md Nd

Hd= g g sddt d„

(9)

(10)
a maximum for v1 and v2 pointed at each other. The
orientation of any two polyacetylene p orbitals lies in be-
tween these two extremes for the crystal structures in
Fig. 1.

To calculate the coupling between two p orbitals, it is
useful to replace each one by a linear combination of two
suitably chosen p orbitals. One set is chosen so that v1
and vz are pointing at each other (o coupling) and the
other so that v1 and v2 are parallel and perpendicular to
d (~ coupling). The sum of the o-oriented orbital and
the ~-oriented orbital gives the original orbital, so this
description is equivalent. Harrison has proposed a
semiempirical relation that gives an estimate of o. and a
couplings. According to this relation, the coupling
strength V for either is

$2
V=g

md
(6)

V= Ae (7)

The inverse decay length p can be estimated from the
binding energy c. of a p orbital electron, which has been
calculated to be —11.07 eV. Using p=(2m 8 /A )'~,
which is the rate at which a bound state of energy c. de-

0

cays in vacuum, we find p=1.70 A . 3 can be found
by matching Eq. (7) to Eq. (6) for d = l. 54 A, the
nearest-neighbor spacing in diamond. When this is done
separately for ~ and o. coupling, we find a general expres-
sion for the coupling in eV of any two p orbitals for
d & 1.54 A, which is

where I is the electron mass, d is the orbital separation,
and q is a parameter that is 2.22 for o. bonding and
—0.63 for ~ bonding. When we estimate the intrachain
coupling with this formula, using the actual distance of
1.4 A between intrachain carbons, we find that V=2. 4
eV, which is close to the commonly accepted value for tp

of 2.5 eV. We will continue to use 2.5 eV for the intra-
chain coupling, while using the estimates of Eq. (6) for
the interchain coupling.

Harrison's formula holds only for d of the order of in-

teratomic spacing in an isotropic solid. For larger dis-
tances the coupling is expected to fall off exponentially
with d. We therefore write for large distances

m=1n=1

Nd is the number of dopant ions in an ion column, and
Md is the number of ion columns. d„and d, are the
creation and annihilation operators, respectively, for an
electron on the nth ion of the mth column. Because we
are considering only alkali-metal-atom doping, only the
valence s orbital is included in the Hamiltonian. Ed is the
energy of this s orbital. t„' „. ~ gives the coupling of the
nth orbital on the mth (CH) chain to the nth ion in the
mth column. We estimate the coupling between ions and
dopants in a similar manner to that for interchain cou-
pling. We use Eq. (6), with rI chosen as the universal pa-
rameter for sp coupling (equal to 1.42) and d the dis-
tance between an ion and the nearest chain atoms. The
exponential form, Eq. (7), is matched to Eq. (6) for cou-
pling to carbon orbitals further from the ion. There is a
difference in ion coupling for potassium- and sodium-
doped materials because of both the different geometries
and Ed's (and thus p's) for sodium and potassium. We
find again that ion coupling to carbons other than those
directly opposite the ion is significant. However, we find
significant coupling only to nearest-neighbor chain
atoms —that is, the potassium ion is coupled only to the
four neighboring chains, and the sodium ion is coupled
only to the three neighboring chains.

III. ENERGY DEPENDENCE
OF PERPENDICULAR COUPLING

Let us define a plane that is perpendicular to all the
(CH) chains and that contains the vr orbital to which the
coupling is being calculated. Equation (8) predicts that
not only is the coupling between this atom and those on
nearest-neighbor chains in the plane significant, but also
the coupling between this atom and those on nearest-
neighbor chains in planes that are parallel to the first
plane. In Table I we give the coupling for undoped po-
lyacetylene in the P2, /a structure with the dimensions of
the crystal taken from Fig. 1 of Ref. 30. We tabulate the
couplings between the two nonequivalent atoms, labeled
a and b, in a single chain and the atoms in the six
nearest-neighbor chains [see Fig. 1(a)] that are within
~n n'~ =2 of this chain—atom. The direction of the posi-
tive lobe on the p, orbital is chosen to give the valence-
band minimum at the center of the Brillouin zone, as will
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TABLE I. Coupling between atom pairs on neighboring chains in undoped polyacetylene.

Chain Atom

Coupling to
opposite atom

(eV)

Coupling to atom
one site up

(eV)

Coupling to atom
two sites up

(eV)

—0.0657
—0.0135

0.0101
—0.0135
—0.0657

0.0101
—0.0135
—0.0657

0.0101
—0.0657
—0.0135

0.0101

—0.0329
—0.0329

0.0005
—0.0140
—0.0140

0.0296
—0.0140
—0.0140

0.0296
—0.0329
—0.0329

0.0005

—0.0138
—0.0034

0.0008
—0.0034
—0.0138

0.0008
—0.0034
—0.0138

0.0008
—0.0138
—0.0034

0.0008

y C-C
2 2 'tnm;n, m' tn, +1,m;n+ i, m' ) (12)

be seen. The coupling to an atom at ~n n'~ =—1 can be
larger because the zigzag of the chains can cause this
atom to be closer than the one directly opposite. In fact,
the coupling to the atom directly opposite can account
for less than 30% of the coupling between that atom and
the other chain. The interchain coupling is larger be-
tween nonequivalent chains than between equivalent
chains, but both couplings are of the same order of mag-
nitude.

Baeriswyl and Maki and Fesser' have used tight-
binding theory to discuss the energetics of different crys-
talline arrangements of the polyacetylene lattice. In or-
der to quantify their calculations, Baeriswyl and Maki
neglected coupling between equivalent chains and intro-
duced the interchain coupling parameters t, and t2. The
coupling between two chain atoms directly opposite each
other was taken alternatively as t, + t2 and t, —t2. Fesser
considered in addition the coupling between a chain atom
and the nearest neighbors to the atom directly opposite,
taking this coupling to be alternatively r, +r2 and r, —r2.
The variation between couplings of adjacent pairs of
atoms occurs because of the zigzag of the chain. In terms
of our interchain coupling parameters, Eq. (5), t, , tz, r„
and r2 are given by

l ( C-C C-Ctl 2 tn, m;n, m'+tn+i, m;n+i, m')

disagreement with the experimental results. Fesser's
calculations lead to out-of-phase ordering of the dimeri-
zation for the equivalent chains, also in disagreement
with experiment. The failure of these calculations might
be a result of energy calculations not being extendable to
3D structures, where all possible perpendicular wave vec-
tors must be considered to calculate total energy. How-
ever, a more plausible explanation, in line with the results
of Vogl and Campbell, is that the total energy is strongly
influenced by orbitals other than the carbon p, .

One might think that because the tight-binding model
is parametric, one could increase the coupling between
atoms with n =n', while setting all couplings with nWn'
to zero, and obtain the same results. However, this is not
the case. Because the orbitals with nWn' significantly
couple, there is an energy dependence to the effective
coupling between chains. To make this quantitative, it is
useful to define an effective perpendicular coupling be-
tween chains m and m ',

N N

ti (E)= g g c„(E)c„(E)t„''„,„.. .
n =1 n'=1

(15)

where the c„are the normalized coefticients of the atomic
orbital for the eigenvalue of energy E. It was found that
inclusion of nearest neighbors to the opposite atom (i.e.,
r, and r~) accounts for over 75% of the effective perpen-
dicular coupling between chains.

C-C C-C
1 2( n, m;n+i, m'+ n —i, m;n, m' ) r (13)

y C-C
2 T(tn, m;n+1, m' 'n —l, m;n, m' ) (14)

where m ' and m index nearest-neighbor chains. Note
that coupling strength does not alternate for atoms on
equivalent chains because t2 =0.

We use Eq. (8) to calculate ti, t2, ri, and r~ for the six
nearest-neighbor chains in undoped polyacetylene and
give them in Table II. The condition ~t2~ ) ~t, ~

required
for Baeriswyl and Maki's calculation to lead to parallel
bond ordering on inequivalent chains is not satisfied.
Thus their calculations lead to out-of-phase ordering, in

Chain t, (eV)

—0.0396
—0.0396

0.0101
—0.0396
—0.0396

0.0101

t~ (eV)

0.0281
0.0281

0
0.0281
0.0281

0

r, (eV)

—0.0235
—0.0235

0.0151
—0.0235
—0.0235

0.0151

r2 (eV)

0.0095
0.0095
0.0146
0.0095
0.0095
0.0146

TABLE II. Interchain coupling parameters for undoped po-
lyacetylene.
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FIG. 3. Physical illustration to show why the coupling for
lower-energy states is stronger than that for higher-energy
states. See the text for an explanation. (a) State near the
valence-band minimum; (b) state near the conduction-band
maximum.

With regard to the energy dependence of ti (E), it
is expected that valence-band states will be more strongly
coupled than conduction-band states. The reason this
happens is illustrated in Fig. 3. The wave function for a
particular 1D eigenvalue is a linear combination of the p,
orbitals. In Fig. 3 we show (a) the signs of the tight-
binding wave function for two chains with states at the
bottom of the valence band, and (b) two chains with
states at the top of the conduction band. The sign of the
coupling for a given pair of atoms is the negative of the
combined sign of the overlapping lobes. For the valence-
band wave function shown, both the n =n' and nWn'
couplings are positive and reinforce constructively.
Therefore, the total coupling is larger than it would be if
we considered just the two atoms opposite each other.
For the conduction-band wave function, the couplings al-
ternate in sign and reinforce destructively. The coupling

FIG. 4. Effective perpendicular coupling calculated from Eq.
(15) as a function of energy for undoped polyacetylene. The
solid line represents the coupling to the nonequivalent chains,
while the dotted line represents that to the equivalent chains.

between two conduction-band wave functions is therefore
expected to be less than the coupling between two
valence-band wave functions.

These expectations are borne out by quantitative calcu-
lations. In Fig. 4, ti, (E) is plotted as a function of E
for the two nonequivalent perpendicular couplings in un-

doped (CH), . The plots show the expected energy depen-
dence, with the magnitude of the coupling being largest
at the bottom of the valence band and decreasing with in-
creasing energy. For the conduction band the coupling is
generally quite small. The energy dependence shown in

Fig. 4 is not an artifact of the tight-binding method, but
is also seen in ab initio calculations. In Table III we give
the perpendicular band widths at the bottom of the
valence band and at the top of the valence band for three
ab initio calculations obtained from the published band
structures. We also include the perpendicular bandwidth
from our tight-binding calculation, to be carried out in
Sec. V. We see that all three of the ab initio calculations
give a larger bandwidth at the bottom of the valence

TABLE III. Perpendicular bandwidths for different three-dimensional band-structure calculations.

Author

Cxrant and Batra (Ref. 7)

Vogl and Campbell (Ref. 5)

Ashkenazi et al. (Ref. 8)
Mizes and Conwell

Type of calculation

Self-consistent
pseudopotential
First-principles
local-density-functional
pseudopotential
Linear-muffin-tin orbital
Tight-binding

Bandwidth at
VB minimum

(eV)

0.3

0.9

0.7
0.82

Bandwidth at
VB maximum

(eV)

0.1

0.5

0.3
0.16
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band, where the couplings interfere constructively, as
compared to the top of the valence band, where the con-
structive interference is not as strong. Our estimate of
the bandwidth is comparable to that from the ab initio
calculations.

IV. METAL-INSULATOR TRANSITION

The increase in the Pauli susceptibility observed at-4—6% doping has been attributed to the sample going
from semiconductor to metal. We have previously shown
how the Coulomb effect of the ions may perturb the
bands of a soliton lattice and give rise to a metallic densi-
ty of states. In this section, however, we wish to ex-
amine whether interchain coupling alone can give rise to
this transition.

Consider the ~ band of an infinite chain of polyace-
tylene with a soliton lattice deformation in the chain. To
the accuracy of the SSH or TLM Hamiltonians, the m

electrons will form three distinct bands. These will con-
sist of the valence band and the conduction band that one
obtains when the chain dimerizes, plus a midgap band
composed of the soliton levels. The width of this midgap
band depends on the spacing between the solitons and
can be calculated analytically. ' However, no matter
what the soliton spacing, there will always be a gap be-
tween the soliton band and the conduction and valence
bands.

If we turn on the interchain coupling, however, there
will be dispersion in the direction perpendicular to the
bands and this will tend to close the gap. If the soliton-
band maximum is close enough to the conduction-band
minimum, the interchain coupling could cause the gap to
go to zero, giving metallic Pauli susceptibility.

In Sec. II we described a method for estimating the
strength of interchain coupling in doped polyacetylene.
The Hamiltonian there describes a collection of M,
chains and Md ion columns of length X, and Nd, respec-
tively. In order to obtain energy bands instead of a series
of discrete eigenvalues, we modify our Hamiltonian so
that it describes an infinite lattice of infinite chains. This
Hamiltonian maintains the general form of Eq. (1) and as-
sociated equations, but the sum over m is not over all the
chains and ion columns in the crystal, but is restricted to
those in the unit cell. Coupling between the chains and
ions columns in different unit cells picks up a phase fac-
tor e'" ', where kz is a perpendicular wave vector and r
is the displacement to the next unit cell. A term includ-
ing the phase factor e'"~~' links the end of the chain to the
beginning of the chain. In order to investigate the effect
of interchain coupling alone, we remove the term Hc, „&

from the Hamiltonian. For infinite chains, this term
could not give rise to a metal anyway, since a potential
well would not be formed. We perform the calculations
with and without the chain-dopant coupling term H, d.

In order to demonstrate the strength of interchain cou-
pling required to cause the insulator-metal transition, we
allow the effective coupling to vary. More explicitly, we
introduce a new parameter t „&, that multiplies Eq. (8).
We then pick a dopant density, which defines the size of
our unit cell. For example, for 16.7% K-doped (CH)„,
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FIG. 5. Phase diagram of the insulator-metal transition cal-
culated for K-doped (CH) . The solid circles connected by the
solid line give the phase boundary when both chain-chain and
chain-dopant interactions are included, while the open circles
connected by the dashed line give the phase boundary when
only chain-chain interactions are included.

the ions are spaced three sites apart. Because there are
two chains per ion column, solitons on the same chain are
spaced six sites apart. The solitons alternate between
those that can be described schematically as having two
single bonds and those with two double bonds, so the re-
peat distance along the chain direction is 12 sites. There
are two chains and four ions per unit cell, leading to a
28 X 28 matrix for which the eigenvalues must be deter-
mined as functions of k~ and k~~. Starting with t ]t =0,
we increase it until we observe the top level of the soliton
band cross the bottom level of the conduction band. This

„&, determines the strength of the interchain coupling
required to cause the transition to a metal for this partic-
ular dopant density.

In Fig. 5 we plot the phase diagram arising from the
interchain coupling mechanism for the insulator-metal
transition for K-doped (CH) . On the y axis are plotted
the parameters t „&„and a corresponding average tz(EF )

[specifically, ,' ( t~ —+t, , ), where m, and m 22,m&m2 ~' lm2

denote nearest neighbors with parallel alignment and m
&

and m2 denote nearest neighbors with antiparallel align-
ment], while on the x axis is the dopant density. The
dashed line goes through the locus of points at which the
band gap between the soliton band and the conduction
band closes. To the left and below this line the material
has a gap and is thus an insulator, while above and to the
right of this line the material has no gap and is thus a
metal. The solid line divides the same phases when the
chain-dopant interactions are included in the Hamiltoni-
an. These we evaluated using cd= —4.01 eV and the
chain-dopant coupling parameters for the potassium-
doped structure given in Table IV. The solid line is
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TABLE IV. Coupling between dopant ions and chain carbon
atoms.

n n'/—

Coupling to
sodium atom

(eV)

1.15
0.77
0.27
0.07
0.01

Coupling to
potassium atom

(eV)

1.78
1.06
0.30
0.06
0.01

below and to the left of the dashed line, which means the
transition occurs for smaller dopant densities. This is ex-
pected because including the dopant interactions in-
creases the dispersions of the bands. The horizontal dot-
dashed line at t „&,

=1 corresponds to our calculation of
interchain coupling in Eqs. (8) and (15). If interchain
coupling only gave rise to the insulator-metal transition,
then these calculations predict that the transition would
occur where the solid line crosses the dot-dashed line, or,
more accurately in view of the possible phases of K-
doped (CH), at 16.7%. This dopant percentage is larger
than what is experimentally observed. In order to obtain
an insulator-metal transition in K-doped (CH), at the ob-
served value of approximately 8%, the interchain cou-
pling must be three times larger than what we have es-
timated. For sodium-doped polyacetylene even at
y =16.7%, t „„=7.4 is required to cause the metallic
transition when both chain-chain and chain-dopant cou-
pling is included. We conclude that interchain coupling
alone is not the mechanism for the transition in this sys-
tem.

V. DENSITY OF STATES FOR FINITE CHAINS

The three-dimensional density of states (DOS) has been
calculated in the simplest approximation, with only the
atoms opposite each other, i.e., n =n', giving the inter-
chain coupling. ' It is clear from the foregoing, howev-
er, that other couplings play an important role, compli-
cating the problem of calculating the DOS. Taking ad-
vantage of the highly anisotropic nature of (CH)„, we
have formulated an approximate method for calculating
the energy levels that includes interactions between all
the atoms on the chains. This allows us to write analytic
forms for the three-dimensional density of states in terms
of interchain coupling parameters. The effect of chain-
dopant coupling is then taken into account by second-
order perturbation theory. We make calculations both
with and without the Coulomb potential Ho, „& in order
to study how this term affects the DOS.

Our calculations were done for chains of 108 sites for
Na-doped (CH)„and 104 sites for K-doped (CH)„, which
is of the order of the largest coherence length reported.
For Na-doped (CH), there are three chains in a unit cell,
which means if we wish to calculate the band structure
exactly, we must solve a 324 X 324 matrix for each value
of k~. With our approximation, we need to solve a

108 X 108 matrix just once, and then solve 108 3 X 3 ma-
trices for each value of k~, a much quicker process.
Structurally, both undoped and K-doped (CH) have two
chains per unit cell. However, as we will see, inclusion of
only ~ orbital coupling makes the two nonequivalent
chains equivalent, giving one chain per unit cell. Under
these circumstances, an analytic expression can be writ-
ten for the perpendicular dispersion.

We first consider the effect of the term H, , Consider
two different eigenvectors of energies E and E' on neigh-
boring chains. The coupling between these eigenvectors
is given by

N N

t~ (E,E')= g g c„(E)c„,(E')t„''„.
n =1 n'=1

(16)

where these terms are defined in Sec. II. If the interchain
coupling were zero for nWn', then t~ ~ would be zero
unless E=E'. However, even when the couplings for
nWn' dominate, as for polyacetylene, the perpendicular
coupling still tends to be orthogonal. This is because the
nth chain eigenvectors with different energies have
different numbers of nodes, so that contributions from
different pairs of sites more or less cancel. The (CH)
crystal therefore contains N, states, degenerate with the
M, states on the other chains of the same energy (to zero
order in the coupling), but uncoupled to states of different
energy. In other words, each of these basis states couples
to a like basis state on the other chains to form two-
dimensional lattices for the three crystal structures we
have been considering (Fig. 6). As noted earlier, those for
undoped and K-doped (CH)„are taken to have only one
atom per unit cell. The reason for the reduction is that
the Hamiltonian [Eqs. (1)—(5)] contains no information
on the orientation of a given chain (that is, anything in-
side the circles of Fig. 6), but only on how two chains in-
teract. In other words, the two chains in the unit cell are
coupled equivalently to their nearest neighbors and are
thus indistinguishable for these calculations. For exam-
ple, the lattices of Figs. 6(a) and 6(c) can be translated by
(a„/2)x+a y and a„x+a y, respectively, and the origi-
nal interchain coupling pattern is reproduced. If we in-
cluded coupling between carbon ~ orbitals and hydrogen
orbitals, that would bring in the backbone electronic
states, causing an asymmetry in coupling between oppo-
site bonds and increasing the unit-cell size.

For the coupling between chains we will use the results
of Eq. (15), which have been plotted in Fig. 4 for undoped
(CH)„. For all three cases shown in Fig. 6 there are only
two different coupling strengths between pairs of chains,
the stronger coupling indicated by the darker line. The
variation of interchain coupling is due to chain separa-
tion, chain orientation, and the chain zigzag. For exam-
ple, in undoped (CH)„, the difference in coupling between
the nonequivalent and equivalent chains is due to their
different spacing and orientation. The couplings between
a chain and the four nonequivalent chains surrounding it
are equal because they all have an antiparallel alignment.
However, in K-doped (CH), chain orientation and sepa-
ration would give rise to equal couplings; the existence of
two different couplings in that case is due to antiparallel
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electron with the wave function (17) may be written

E,. „=E,+ ye' ' '- '-' (i,m'!a, , !i,m &,
m'

(18)

where the summation is over only the terms for which m '

is a nearest neighbor to m.
For undoped polyacetylene, shown in Fig. 6(a), Eqs.

(17) and (18) lead to the dispersion perpendicular to the
chains:

x
Na

k a„
E& k Ei V] cos cos y ay V2 osk a„2

(19)

{b)

Q/ A&xihii. wc 4%iiiihiw C) wa%4ii%4 (Z) ~iv'aiio
QQ/

{c) @ @ B s
D~ 8

Q Q)-

FIG. 6. Two-dimensional lattices of (a) undoped polyace-
tylene, (b) sodium-doped polyacetylene, and (c) potassium-

doped polyacetylene. The circles represent the chains and the
lines connecting them represent the interchain coupling, the
darkness of the line indicating the strength of the coupling. The
dashed line in (b) represents the three-chain unit cell.

m =1
(17)

where !i,m & is the one-dimensional eigenvector of ener-

gy E,- in unit cell m, r the vector pointing from the ori-
gin to unit cell m, and M, the number of unit cells, in this
case equal to the number of chains. The energy of an

alignment for half the chains and parallel alignment for
the other half.

For the time being we shall consider the interchain
couplings as parameters and calculate the DOS in terms
of these parameters. For a two-dimensional lattice in
tight-binding theory, the energy for a particular wave
vector is found by minimizing that energy with respect to
the orbital coefficients. This leads to an eigenvalue equa-
tion of the dimension of the number of chains in the unit
cell. For one chain per unit cell, we may derive this
equation as follows: The three-dimensional wave func-
tion with perpendicular wave vector k~ may be written

where V, is the stronger coupling between inequivalent
chains and V2 is the weaker coupling between equivalent
chains. Because V, & 0, the valence-band minimum
occurs at k =k =0 and the maximum (for the direction
perpendicular to the chains) at k =0, k =m/a . This
result appears to be in disagreement with the result of the
local-density-functional calculations of Vogl and Camp-
bell, where the valence-band maximum was found at
k„=k =0. It must be remembered, however, that our
Brillouin zone is twice as large as theirs in the y direction
because we have taken the unit cell to contain one chain
instead of two, as discussed earlier. The halving of the
Brillouin zone causes Ek versus k to be bent back (from
the zone point D), resulting in the valence-band max-
imum at k =0 (at the point 8). The results of our calcu-
lation are therefore equivalent to those of Vogl and
Campbell. The dispersion or bandwidth in the perpen-
dicular direction obtained from Eq. (19) is 8 V&. Equation
(15) (see also Fig. 4) gives ! V&! =0.0204 eV at the
valence-band maximum, leading to the perpendicular
bandwidth of 0.16 eV given in Table III. The perpendic-
ular bandwidth obtained in Ref. 5 is about three times as
large, presumably due to the enhanced coupling resulting
from the inclusion of the hydrogens. The perpendicular
bandwidth also gives the lowering of the thermal energy
gap E due to interchain coupling. However, the direct
optical gap is not changed by interchain w band coupling,
in contradiction to a previous claim. For k, at the
Brillouin-zone edge, interchain coupling moves the
valence-band maximum and the conduction-band
minimum in the same direction. The apparent change in
the optical gap due to interchain coupling found in Ref.
37, for example, results from the assumption of two
chains per unit cell, pointed out earlier to be inconsistent
with the use of the Hamiltonian (1)—(5), or the simplified
version thereof used in Ref. 37. With this assumption a
band splitting is obtained, with two bands moving to-
wards each other. However, the wave functions of the
two states moving towards each other are orthogonal and
no optical transition can occur between them. Physical-
ly, coupling to the H atoms does result in a splitting.
Experimental observation of the change of the optical
transition energy with pressure, however, cannot give in-
formation about m-band —~-band coupling, but only
about coupling of the ~ band to other polyacetylene
bands.

For potassium-doped polyacetylene, the perpendicular
dispersion found from Eqs. (17) and (18), by considering
the lattice in Fig. 6(c), is
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E; k =E, +2V, cosk~a~ +2V2 coskyay 7 (2O)

where a„and a are defined in the figure and V, and
V2 are the couplings appropriate for the potassium-
doped structure.

To treat a case with more than one chain per unit cell,
we define a Bloch wave function for the jth chain in each
unit cell with wave vector k~ and energy E;:

M

li, k„j &=M, '" y e ''-li, m, j& .
m=1

(21)

li, k, &
= g c,, „ li, k„j &,

J =1
(22)

The wave function li, kj & belonging to the total energy
E, z is a superposition of wave functions (21) for each j

J

with constant coefficients c," k
..lJ,

bE, k, thus of E; k, to be distinguished by superscripts

(a), (b), and (c). These values, substituted into Eq. (23)
for the c; k, lead to three sets of c;J k

's to be denoted
(a) (b) ~ (c)

CiJ k CiJ kl' and Clj kl

We now turn to the additional shift in chain energy
caused by coupling to the dopants, represented by the
Hamiltonian Eq. (9). Because there is no first-order ma-
trix element of Eq. (9) for a state representing a given
chain, the energy correction due to the dopants must be
obtained with second-order perturbation theory. For
specificity, we consider the sodium-doped geometry,
where there are three chains and one ion column in the
unit cell. Taking as zero-order wave functions li, k~& of
Eq. (22), with a set of c," &

's determined by solving Eq.
(23) with an E, z obtained from Eq. (25), we have a non-

degenerate set. Second-order perturbation theory then
gives the energy correction for E,' k'.

where j, is the number of chains in the unit cell. The
c; k are determined by the condition that the energy

E; k be a minimum. This leads, as usual, to a set of j,
linear homogeneous equations in the c; k

..lJ,

Nd

& I&,', (.),. I'
n'=1

E(a)
i, k~ d

(27)

N

m'=1 j'=1

x & t, m ' j 'l ass H+H, -, l
& m j &&j'k'

—E, kc,-J&=0 for j=1,2, . . . , j, . (23)

The requirement that the set of equations (23) have a
nontrivial solution leads to the condition of the vanishing
of the j, by j, determinant with elements

ik& (r —r, )
N

e
m'=1 j'=1

x ( t, m', j'lHssH+H, , i, m, j & F.; g 5JJ, —

(24)

—AEi, k~

—AEi, k

—AEi, k~

=0, (25)

where AEi k =E; k
—Ei7 the change in energy due to in-

terchain coupling, and

i(& a Na k a Na) —2ik a N
yNa+ VNa(e x x y y +e y y )

—p-Na+VNa(e xx yy +e xx yy
)

l(g a Na+ k a Na) i(g a Na g a Na)

(26)

Solutions of Eq. (25) with Eq. (26) give three values of

j varying from 1 to j,. For the case of Na-doped (CH),
with j,=3 and hexagonal unit cells chosen as shown in
Fig. 6(b), the equation for E; z is

where cd is the energy level on the ion and the summa-
tion is taken over the ions in a column. Similar expres-
sions hold, of course, for the (b) and (c) linear combina-
tions.

Because the three chains in the unit cell are located
symmetrically with respect to the ion column, the matrix
element may be written

(28)

where

N

D,„.= g t„' „. c„(E,), .
tt = 1

(29)

giving the coupling of ion n to chain eigenvector i. For
K-doped (CH), the presence of the dopant breaks the
symmetry and there are now two chains per unit cell.
One chain has a dopant column to the side, and the other
chain has a dopant column above. An analogous expres-
sion to Eq. (28) for two chains must be used.

To obtain a measure of the ion-chain coupling, we in-
troduce the quantity t~" ~ (E), the effective perpendicu-
lar coupling between a chain m and an ion column m'.
In the spirit of second-order perturbation theory, we take

Nd N 2
d c

t', d, (E)= g g c„(E)t„'d „.. . (30)E —
Ed

To evaluate t~" (E) the quantity t„' ".„. was calculat-
ed as described in Sec. II. The results are plotted as a
function of energy, in the absence of a Coulomb poten-
tial, for 8.33% sodium doping in Fig. 7. The coupling to
the ion column is large at low energies where the cou-
pling to different ions tends to reinforce. In addition,
even though the ions are much closer than the neighbor-
ing chains, their perturbation is of the same order of
magnitude. This occurs because the energy difference be-
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FIG'. 7. t y
~ as a function of energy calculated from Eq.

(30) for 8.33% Na doping. The Coulomb potential is neglected.

tween the carbon p orbitals and the ion s orbitals, which
decrease the coupling, balances out the increased hopping
parameter due to the proximity of the ion. The discon-
tinuity at E= —3.6 eV occurs because at that energy the
nodes of the chain wave function are aligned with the ion
positions. Addition of the Coulomb potential gives
tz" (E) more structure as a function of energy, but
does not significantly change its magnitude.

To show explicitly the effect on the chain energy E,
(calculated with HssH) of chain-chain and chain-dopant
coupling, we write the energy for the state i (a) including
these effects by incorporating Eqs. (28) and (27):

Nd

2 D„ Ic;) k +c;2,i,,+c;3,k, l'

E"=E+aE" + '
1 i, k~ E, +aE,'„' —E„

(31)

Similar relations may be written for the states (b) and (c)
of the Na-doped lattice.

To evaluate (31) numerically, D;„was calculated from
Eq. (29). hE,'k' and c,."k were calculated from Eqs. (25)

and (23), respectively. V& and Vz were taken from Eq.
(15). The dopant orbital energies are Ed= —4.95 eV for
Na and —4.01 eV for K.

The DOS versus energy, including both the effects of
chain-chain and chain-dopant coupling, was calculated
by evaluating Eq. (31) for a large number of perpendicu-
lar wave vectors sampled uniformly across the Brillouin
zone, and plotting a histogram of the energies, with the
bin size chosen small enough to make the plots appear
continuous. To show separately the effects of chain-chain
coupling on the DOS versus energy, we followed the
same procedure using Eq. (20) or (25), as required, instead
of Eq. (31). The resulting DOS for Na-doped (CH)„ is
plotted in Figs. 8 and 9, while that for K-doped (CH) is

4.00-

2.00-

0.00-

-2.00-tD

Ul
Clc -4.00-

UJ

-6.00-

-8.00-

-10.00-

-12.00
Density of States (arb. units)

FIG. 8. Energy levels and density of states for a 104-site
chain of 8.33% Na-doped (CH) calculated from (a) HssH, (b)
HSSH +HCoul ~ ( ) HSSH +HCoul + c-c ~ ( ) HSSH + Coul

+H, ,+H, d. The arrows indicate EF measured with respect to
the C p, orbital energy.

plotted in Figs. 10 and 11. The lowering of all the energy
levels going from Figs. 8(a) to 8(b) or Figs. 10(a) to 10(b)
is due to the potential well, as has been discussed in Refs.
27 and 28. Figures 8(c) and 10(c) show the spreading of
the discrete levels due to interchain coupling only. As
anticipated, the spreading is larger for the lower energy
levels, making the valence bands quite continuous for K-
doping and relatively so for Na doping. The difference is
due to the different geometries. For the Na doping case,
although there is a perpendicular coupling of approxi-
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FIG. 9. Higher-resolution histogram of the DOS in Fig. 8 in
the neighborhood of EF. The DOS is calculated from (a)
HssH +Hc,„], (b) HssH +Hc,„]+H, „(c) HssH +Hc „]
+H, , +H, d.
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FIG. 10. Energy levels and density of states for a 108-site
chain of 16.7% K-doped (CH)„calculated from (a) H$$H, (b)
HSSH +H( oui & (C) HSSH +HCoul +Hc-c & (d) H$$H +HCoul
+H, , +H, d. The arrows indicate EF measured with respect to
the C p, orbital energy.
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FICx. 11. Higher-resolution histogram of the DOS of Fig. 10
in the neighborhood of EF. The DOS is calculated from (a)
HSSH +HCoul & (b) HSSH +HCoul +Hc-c & (C) HSSH +HCoul
+H, , +H, d.

mately 100 meV between any pair of the three chains sur-
rounding an ion column, the coupling between these
three and other chains is an order of magnitude less.
Therefore, there is not a significant dependence on the
perpendicular wave vector and the peaks are not
significantly broadened. As seen from a comparison of
Figs. 9(b) and 9(c), incorporating dopant-chain coupling
gives a shift in the levels, but no increase in dispersion.

Figures 9 and 11 show clearly that there remains a small

gap at the Fermi energy for the Na-doping case even
when both chain-chain and chain-dopant interactions are
included, but the energy levels are continuous at EF for
the K doping. The difference may again be entirely due
to the difference in geometry, but it must be remembered
that the K-doping concentration is twice as high as the
Na-doping concentration. The smaller doping results in
the potential well for the Na-doping material being shal-
lower by almost a factor of 2, and also decreases the soli-
ton wave-function overlap. The pairs of singularities seen
in the DOS of Fig. 11(b) for K doping, symmetric about
the original discrete levels shown in Fig. 11(a), are ex-
pected to arise from a two-dimensional lattice with aniso-
tropic coupling in the two perpendicular directions. The
Oat-topped peaks between the singularities arise i'rom the
overlap in the DOS from two different discrete states.
Again, as seen in Fig. 11(c), the dopant-chain coupling
shifts all the energies downward, but does not increase
the perpendicular bandwidth.

VI. CONCLUSIONS

We have developed here a model to examine three-
dimensional effects in undoped and doped (CH) . Our re-
sults for the band structure of undoped (CH) lie in the
range delineated by past calculations, allowing confidence
in our calculations for the doped material. The calcula-
tions use the experimentally determined geometry of the
crystal and can be extended to other structures we did
not consider here as well as other polymers. We find that
opposite neighbors may account for as little as 30% of
the interchain coupling in (CH)„. Inclusion of next
nearest neighbors brings it up to 75%%uo of the coupling.
An important result obtained in the paper is that the
magnitude of the interchain coupling is quite energy
dependent, decreasing monotonically from a maximum
value at the bottom of the valence band. Thus, for exam-
ple, for the more strongly coupled chains, the equivalent
ones ~t~~ =0.03 eV at the Fermi energy, considerably
weaker than the O. l-eV value usually assumed. This was
shown for undoped material in Fig. 4 and is also true for
doped material. Although t~ changes when (CH) is

doped due to the change in lattice structure, the change is
small, particularly at EF. Coupling between a (CH)
chain and a potassium or sodium ion column also has
maximum magnitude at the bottom of the valence band,
being several times as large as the chain-chain coupling at
that energy. That coupling also decreases (although not
monotonically) with energy to a small value, comparable
to that for interchain coupling at EF and above.

Incorporating the couplings we have calculated to find
the energy-level structure, we find characteristic
differences between Na-doped and K-doped (CH)„. Be-
cause of its structure, for the Na-doped (CH) there is
small coupling between the three chains surrounding a
Na ion column and other chains, resulting in little
broadening of the levels by interchain interaction and a
transverse bandwidth at EF [see Figs. 9(b) or 9(c)] less
than 0.1 eV. K-doped (CH)„has a somewhat larger
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transverse bandwidth, 0.15 eV according to Figs. 11(b) or
11(c). This bandwidth is slightly smaller than the one we
found for undoped (CH)„. The larger anisotropy of me-
tallic material than undoped material was also found in
optical properties, specifically for AsF5 doping. The
small transverse bandwidth in the metallic state suggests
that transverse conductivity in that state is due to
diffusive hopping rather than band motion, at least for
Na doping and K doping.

In principle, interchain coupling itself could shrink the
energy gap between soliton band and conduction band to

zero. We found that to account for the insulator-metal
transition occurring at —6% would require much
stronger inter chain coupling than is characteristic of
(CH) . The interchain and chain-dopant coupling we cal-
culate will not stabilize a polaron lattice in the metallic
state against a Peierls distortion, in contradiction to the
suggestion of Logdlund et ah. %'e reach this conclusion
because t ~ '(E~ ) and t ~ "(EF) are essentially equal to
t~ '(EF) in an undoped sample, and it is evident that
chain-chain coupling does not prevent the Peierls distor-
tion in an undoped sample of (CH)„.
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