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We have used low-field de Haas —Shubnikov oscillations in the resistivity to determine the elec-
tron temperatures of a two-dimensional electron gas subjected to various heating currents. This was

done at many values of the electron density from 5.5 X 10" to 10X 10"m that were incrementally

induced by the persistent-photoconductivity effect. The onset of second-subband occupation is

clearly reflected in a large rise in energy-loss rates. The variations of the energy-loss rate with both
temperature and electron density are well reproduced by detailed numerical calculations using

values of deformation-potential and piezoelectric coupling parameters consistent with bulk mea-

surements. The calculations also show that there is a transition from the low- to high-temperature
behavior in the liquid- He temperature range. In this region the energy-loss rates vary roughly as

the cube of the temperature, a result often observed experimentally but one which is not of funda-

mental significance. At the lowest temperatures the behavior should be dominated by the piezoelec-
tric interaction which is characterized by a T law. The present experimental data show the transi-

tion from T to a higher-power law as the temperature is decreased, in accordance with the theoret-
ical predictions.

I. INTRODUCTION

Low-temperature experiments on the Joule heating of a
two-dimensional electron gas (2D EG) above the lattice
temperature were reported at the same time as the first
demonstration of 2D gases in Si metal-oxide-
semiconductor field-effect transistor (MOSFET) devices. '

The eA'ect was detected through a decrease of the ampli-
tude of the de Haas —Shubnikov (dHS) oscillations in the
resistivity, a technique that is still widely used and em-
ployed in the present work. Since that time there have
been numerous reports of studies on Si inversion layers
but there is still no consensus as to whether the known
energy-loss mechanisms (primarily energy loss by acous-
tic deformation-potential coupling to the lattice) can ade-
quately account for the experimental results.

More recently attention has focused on 2D gases in
heterostructure devices. These systems have higher-
quality interfaces than Si devices and one might hope for
better data reproducibility. In the case of polar semicon-
ductors one must also take into account the piezoelectric
coupling of electrons to the phonons. Two groups, in
particular, have had reasonable success with
GaAs/Ga& Al As heterojunctions in fitting experimen-
tal data with calculations based on deformation-potential
and piezoelectric coupling mechanisms: Hirakawa and
Sakaki found good agreement for a lattice temperature
T„h =4.2 K and electron temperatures T, up to 20 K us-

ing a deformation-potential coupling constant Z of 11+1

eV, in approximate agreement with recent estimates from
bulk measurements; more recently, Manion et al. " have
deduced a higher value of Z —16 eV from their studies in
the range 3~ T~7 K. This discrepancy is rather sub-
stantial since the energy-loss rates vary as Z . These au-
thors suggest that the discrepancy is either due to
difFerences in the normal modes at the junction compared
to the bulk or that another unknown energy-loss mecha-
nism is contributing. In both cases the assumption was
made that the deformation potential is screened. Okuya-
ma and Tokuda have recently reanalyzed both sets of ex-
perimental data and find essentially the same results.
They concluded that one should use an unscreened defor-
mation potential but screened piezoelectric coupling,
their arguments being based on the range of the two
mechanisms.

Many papers have focused on the temperature
dependence of the energy-loss rate P. It is found (cf. Sec.
III) that P can be well approximated by

P =F(T, )
—F(T h),

where F(T) is a function characteristic of the specific
electron-phonon interaction. Simple power laws are pre-
dicted for F(T) in the low-temperature limit. For exam-
ple, the screened deformation-potential (DP) coupling
gives F(T)~T as T~O, whereas for screened
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piezoelectric (PZ) coupling F(T)~T in the same limit.
On the other hand, when the two mechanisms are un-
scree-ied, one finds T (DP) and T (PZ) dependences.
The low-temperature behavior is usually referred to as
the Bloch limit and corresponds to the phonon wave
numbers being small compared with the dimensions of
the Fermi circle. At higher temperatures the tempera-
ture dependences are much weaker. Most workers in the
liquid- He temperature range find a good fit to F ( T)—T
and this has sometimes been used to suggest that un-
screened piezoelectric coupling dominates in this
range. ' Kreschuk et al. measured energy-loss rates in
the liquid- He temperature range as the sample density
was varied from single- to double-subband occupancy.
They found that the power law appeared to change from
T to T at the point where the second subband is occu-
pied and analyzed their results in terms of piezoelectric
coupling. Wennberg et al. ' have found a T behavior at
T 0. 1 K which is consistent with screened piezoelectric
coupling, though they note that their measured
coefficient appears to differ from that predicted by about
two orders of magnitude.

The present work deals primarily with a single-
heterojunction sample which, when illuminated, shows a
persistent-photoconductivity effect that raises the carrier
density from 5.5 X 10' to 10X 10' m . We have exten-
sive data from earlier experiments on this sample which
show that the detailed behavior of the electron filling of
the individual subbands as a function of total density is
accurately represented by self-consistent electronic-
structure calculations, with no adjustable parameters. "
We therefore believe that this well-characterized sample
is an ideal one with which to investigate the energy-loss
mechanisms and have accordingly performed measure-
ments of both the temperature and density dependences
of the energy-loss rate. In order to provide a quantitative
interpretation of our data, we have performed detailed
calculations in which all parameters, apart from the mag-
nitudes of the electron-phonon coupling constants, are
fixed by the electronic-structure calculations. We have
put specific emphasis on the implications of inelastic in-
tersubband scattering which turns on as final states in the
second subband become accessible. Although several cal-
culations of the energy-loss rate in heterojunctions have
appeared in the literature, there has not been a quantita-
tive analysis of the importance of intersubband scatter-
ing, apart from our preliminary results reported else-
where. '

The experimental details and analysis are presented in
Sec. II and the corresponding calculations are outlined
in Sec. III. We will show that both the absolute magni-
tude and the temperature dependence of the energy-loss
rate are well described by the numerical calculations
when both screened piezoelectric and deformation-
potential interactions are included. We are also able to
see the transition to the low-temperature (Bloch) behav-
ior in this sample, in full accord with the numerical cal-
culations. It is found that the T dependence usually ob-
served in the liquid- He temperature range simply marks
a transition between the high- and low-temperature re-
gimes and has no fundamental significance.

II. EXPERIMENTAL TECHNIQUES AND ANALYSIS

Experiments were carried out on two samples with sin-
gle heterojunctions grown by molecular-beam epitaxy
(MBE) at Philips Research Laboratories, Redhill. Details
of the samples have been given elsewhere" but we sum-
marize the growth details of the sample that was used for
the majority of the work. A 1-pm layer of nominally un-
doped GaAs was first grown on a semi-insulating sub-
strate. This was followed by a spacer layer of undoped
Alo 3QGaQ 68As 16.7 A thick, 400 A of Si-doped
(1.34X10 m ) Alo»Gao 67As, and finally a 200-A cap
layer of GaAs. In the dark at 4.2 K, the total electron
areal density nz- was -5.5 X 10' m with mobility
—10.5 m V ' s ' but illumination increases n z- to
—10X 10&5 m

—2 and p to —17 m2 V
—

& s
—i We have pre-

viously found that the subband occupations and the wave
functions are sensitive to the type of light used in the il-
lumination and in the present experiments we have
chosen to work with infrared light which has been filtered
to eliminate electron-hole-pair production in the GaAs.
nz was varied by short pulses of infrared radiation and
was measured using the Hall resistivity in the high-field
limit (see Ref. 11 for more details).

Constant currents in the range of 0.1 —50 pA were pro-
vided by a battery-powered source, and potential
differences were measured by a Keithley 150B micro-
voltmeter with 100-MA input impedance. The maximum
Joule heating in the whole sample was ( 1 pW so that
the lattice temperature T h could always be taken to be
the liquid- He bath temperature with high accuracy. The
electron temperatures T, were measured using the fact
that the amplitude of the dHS oscillations in the resistivi-
ty p„„has a temperature-dependent damping factor of
the form X/sinhX with X=2~ k~T, m*/eRB with the
usual notation, B being the Aux density. Thus the ratio of
the amplitudes of a particular oscillation at two tempera-
tures serves to fix one of the temperatures if the other is
known. The extrema of p„were determined automati-
cally by computer as the magnetic-field sweeps were tak-
en. This was done by simply reading the voltmeter at a
rate of about 8 readings per second and saving only the
maxima and minima. On data taken at higher currents
( ~ 1 pA) this could be done to yield amplitudes reprodu-
cible to ~0. 1% (provided that the oscillations were not
too small). This technique is not suitable in situations of
low signal-to-noise ratio, and so very-low-amplitude oscil-
lations were avoided, as were currents less than 1 pA.
This latter restriction means that at the lowest tempera-
tures, T, rises significantly above T h even at the lowest
current of 1 pA, and this must be allowed for in the
analysis since all actual amplitude ratios involve those
taken at the lowest current and temperature. We also
kept the maximum peak-to-peak oscillation amplitudes
less than about 30% of the smooth background. It
should also be noted that when the second subband is
populated, the oscillation frequency for this band is an
order of magnitude lower than for the lower subband. In
these circumstances the extrema recorded are due only to
the lower subband.

The experiment proceeded as follows. In some cases
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PpT haTp=
Py

T y
e

Tph

where we assume ATp (& T h. In the first instance we as-
sume ATp =0 and evaluate T, for P using the ratio of the
amplitudes for P and Pp; this is then used to evaluate
b. To from Eq. (2) and the procedure is iterated to a final
value ATp. The results depend only weakly on y; clearly,
to first order b, TO-PO(T, —T „)/P, which is indepen-
dent of y. From the published literature we expected
y —3 and so we evalu~d all our data on this basis. As it
happened, our final results suggested a higher power but

we made calibration runs that entailed measuring the os-
cillation extrema at about ten fixed bath temperatures in
the range 1.17—4.2 K. This was done at low current (1
pA for T~ 2 K and up to 3 pA at 4.2 K) so that
T h

——T, . The lower-temperature limit was fixed by being
the lowest temperature at which we could accurately con-
trol the vapor pressure of liquid He to better than 0.1%
over long periods of time. The amplitude was taken to be
the difference between any extremum and the average of
the adjacent two extrema. Because the oscillation fre-
quencies are relatively high, this should be a good ap-
proximation. After correcting the data for the expected
temperature rise of T, above T h, to be described below,
we fitted the amplitudes to the X/sinhX damping factor
to extract the m* which best reproduced all our data.
Residual root-mean-square deviations of fitted and actual
bath temperatures were 10—20 mK, showing that the
damping factor reproduces the actual oscillation ampli-
tudes very accurately. We detected a slight increase in
m * with electron density nT, with a value of 0.0674m, in
the middle of the range. We see no significant variation
of T, with B as measured by different oscillations; any
such effect is less than 1%.

The bath temperature was then fixed at 1.17 K and the
oscillation amplitudes remeasured as a function of
current I through the sample (using about 17 values of I) .
This was repeated at many values of nT, the latter being
increased incrementally by photoillumination. Using the
calibration values of I *, each amplitude was converted
to T, using the damping factor and an iterative numerical
procedure. We expect the results to be accurate to the
same 1% as the calibration.

It is clear that in both the calibration and the actual
data, the lowest current used Ip must give rise to an in-
crease in T, above T„h. This is completely negligible at
T h

-4 K but it becomes more serious at lower tempera-
tures and amounts to 30—50 mK at T h

—1.2 K and
Ip

= 1 pA. This increase must be allowed for if T, is to
be obtained accurately and we do this by adopting the
following procedure. We assume that a power law for the
energy-loss rate P as a function of T, and T„h is ap-
propriate, i.e.,

P =a(T,~ T~„) . —

Then the temperature increase ATp to be expected from
the lowest power Pp is given in terms of T, obtained for
any higher power P by

it cannot be greater than 5. If the procedures are repeat-
ed using y =5, we find shifts of & 10 mK compared to
y=3; these are comparable with our calibration uncer-
tainties and so have not been incorporated.

For any particular n T there is usually a variation of the
smooth background resistivity with magnetic field and,
because we have used constant current, this leads to vari-
ation in the Joule heating. We have corrected all the data
to constant power —in fact, the power at B =0—using
interpolation between data sets taken at different powers
and adopted the average over all the different oscillation
values as the best estimate of T, . When only a single sub-
band is occupied, the variation of T, with oscillation
number is always less than 1% and so the averaged T, is
accurate to no worse than 1%. However, for
nT ~ 8.5X10' m, the second subband has its own set
of dHS oscillations, of much longer period than the first,
and this leads to a strong variation of T, which is in anti-
phase with these long-period oscillations in p„. Figure 1

shows an example of this behavior and clearly indicates
that the energy-loss rate is strongly affected by the densi-
ty of states at the Fermi energy. This is presumably also
true for the lower-subband oscillations and it is perhaps a
little surprising that in the single-band case the measure-
ments of T, for different oscillation numbers are so in-
dependent of the oscillation amplitude (over at least a
factor of 3 in the amplitude). In the two-band case we
take as the best estimate of T, the average over all the
useful oscillations. The ideal case would be to average
over a complete upper-subband oscillation, but it was
usually possible to obtain data for at most one-half oscil-
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FIG. 1. A comparison of the measured average resistivity p „
(solid symbols and right-hand axis) and the measured electron
temperature T, (open symbols and left-hand axis which is on a
logarithmic scale) appropriate to three fixed electron input
powers as a function of magnetic field at nT=9. 55X10' rn

p „ is determined from the midpoints of the dHS oscillations of
the lower-subband electrons and the partial oscillation seen here
is due to the electrons in the upper subband. The variation of
T, is in antiphase with that of p and shows that the energy-
loss rate is aAected by changes in the density of states at the
Fermi energy.
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lation (including a minimum and a maximum). Hence for
these values of nz- the energy-loss rates could be much
more uncertain than at lower nz-.

Finally, we would like to mention an auxiliary experi-
ment which was carried out to check that the tempera-
tures of the electrons in the two bands are the same, as is
assumed to be the case in the calculation. This experi-
ment was actually done on another sample of similar
characteristics, but which had more electrons in the
upper subband when the persistent-photoconductivity
effect was close to saturation; this gave us about twice as
many oscillations for the upper-subband electrons which
allowed a more accurate analysis to be made. The dHS
oscillations p „were recorded on a scale linear in 1/B.
Using filtering of the Fourier transforms, the data were
separated into the oscillations appropriate to the indivi-
dual subbands. The set of oscillations for the upper sub-
band was then analyzed (assuming the same m * as ob-
tained for the lower subband) by fitting all the data
points, not just the extrema, to the full expression of the
dHS oscillations, i.e.,

X
p = Ao . exp

slnkX

—2~ k~TDm*

AeB

277'
cos +PB

(3)

where TD is the Dingle temperature, f is the oscillation
frequency, and P and 3 o are constants and were obtained
from a At to the experimental data at 1.17 K. This tech-
nique should give a much more accurate value for T,
than simply fitting the extrema of the oscillations because
it involves all the data points ( =200) rather than the few
( —6) extrema values. For three input powers we ob-
tained three electron temperatures of 1.47, 2.15, and 3.21
K. The average electron temperatures for the lower-
subband electrons (using the usual analysis with 20 —30
values of the extrema) were 1.47 K (this value was in-
correctly reported as 1.57 K in Ref. 12), 2. 13 K, and 3.29
K, which are in excellent agreement and show that the
electrons in the two subbands are in good thermal equi-
librium.

within the electronic system of the energy extracted from
the external electric field. The magnitude of the steady-
state temperature difference between the electron and
phonon subsystems is finally established by the strength
of the electron-phonon coupling.

The electron-phonon energy-transfer rate is given by
the expression

P =g p; ( E&~" E,t'"—)w;
if

where w, f is the Fermi golden-rule transition rate

(4)

Here H, h is the electron-phonon interaction, to be
specified, which induces transitions from the initial state
~i ) with energy E, =E +Ef~ to the final state

~f ) with
energy E&=EJ'+EJ". Finally, the initial-state density
matrix p; is assumed to have the form

p p ( T, )p""(Tph ),
i.e., a product of canonical distributions at the subsystem
temperatures T, and T „.

To evaluate Eq. (4), we must specify in more detail the
model of the heterojunction to be used. Regarding the
phonons, we shall make the simplifying assumption ' '
that the lattice modes can be approximated by the bulk
modes of GaAs, the material to which the 2D EG is
mainly confined. This effectively neglects the elastic in-
homogeneities at the interface, but is not a bad approxi-
mation for Al Ga& „As/GaAs heterostructures since
the elastic properties of the two materials are not too dis-
similar. ' In any event, since the total energy-transfer
rate is a sum over all possible lattice modes, one would
not expect details associated with the reAection and re-
fraction of elastic waves, or the possible existence of lo-
calized modes, ' to affect significantly our estimate of the
energy-loss rate.

In III-V semiconductor compounds, electrons couple
to phonons via the deformation-potential and piezoelec-
tric interactions. Both of these interactions can be
represented in the form

III. THEORY
H, „=gM ~n -(a=q+a -~),qX —

q qA. —
q A.

(7)
Our starting point is the usual assumption of weak cou-

pling between the electronic and lattice degrees of free-
dom. With this assumption, the energy-loss rate can be
calculated using lowest-order time-dependent perturba-
tion theory (Fermi's golden rule) as first demonstrated for
bulk semiconductors by Kogan. ' The approach is well
suited to problems of this kind and has been applied to
other situations, such as Kapitza resistance. ' In all such
applications, the subsystems between which energy is be-
ing exchanged are each assumed to be in internal thermal
equilibrium with a distinct temperature. In the present
context, the lattice (i.e., the phonon system) is maintained
at the temperature T h by means of an external heat bath
(liquid He). The electrons, however, are maintained at a
higher temperature T, through resistive Joule heating.
Implicit in this picture is that electron-electron interac-
tions are sufficiently strong to ensure rapid equilibration

where q and k are the (bulk GaAs) phonon wave vector
and polarization, respectively; a-& is the annihilation

qk
operator for phonons with frequency co-&,' and M-& is an

qA, '

electron-phonon matrix element which depends on the
specific form of the interaction. The remaining quantity
n- is the Fourier transform of the electron-density opera-
tor. With this form of the interaction, Eq. (4) reduces
to13

where y"(q, co) is the absorptive part of the electron-
density response function and
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fico/k~ T,.N;(cu)=(e ' —1)

is the Bose factor at temperature T;. If several distinct
electron-phonon interactions are relevant, Eq. (8) is un-
derstood to be summed over all such interactions (provid-
ed that interference terms in the squared matrix element
do not contribute). The factor of 2 in Eq. (8) appears be-
cause of our definition of y"(q, co) (not because of electron
spin) and N, the total number of electrons in the 2D EG,
is introduced to define the power dissipation per electron.

At low temperatures only acoustic modes are impor-
tant and these are represented within a Debye model. As
such, the phonons have frequencies cu-&=s&q where the
index distinguishes one longitudinal (A, =l) and two de-
generate transverse (A, =t) branches. The phonon wave
vector q has components parallel (q~~ ) and perpendicular
(q1) to the heterojunction interface. The summation over

q in Eq. (8) can be converted to an integral in which
q~~

and co appear as integration variables. We then obtain
for the energy-loss rate the expression

P= —f dtoco'IN, (to) N„(~)—]
p

x'V dq2
O

II

(
2 2 2)1/2s&~ sgq

))

x fM-~[ y"(q, co) .

The bar over the electron-phonon matrix element denotes
an angular average with respect to the direction of the
parallel wave vector q~~,

'all other quantities in Eq. (9) are
independent of the direction of q~~. Equation (9) is a par-
ticularly convenient form for numerical evaluation.

The temperature dependence of I' arises from the Bose
factors and through y" (q, co). For a strongly degenerate
Fermi system the latter is only weakly temperature
dependent, in which case the energy-loss rate is well ap-
proximated by

coupling constant. In the Debye ~odel, only longitudi-
nal modes contribute to the crystal dilation and hence to
the coupling to electrons. The important point to note is
the linear proportionality to q. Both longitudinal and
transverse modes contribute in the piezoelectric interac-
tion ' ' and we have, for the respective cases, the aver-
aged matrix elements

pz 2
A'(eh14) 9qiq~~

q/ (12)

and

p, , @ h14)' gqlq()+q((MPZ 2—
2ps( 2q

(13)

y(r, r ', t)= —6(t)( [R'(r, t), n(r ', 0)]), (14)

which is defined in terms of the Heisenberg electron-
density operators 6'(r, t). The quantity of interest is

where (eh, 4) is the piezoelectric coupling constant. Both
of these expressions behave as q

' for small wave vec-
tors. Thus, if the frequency wave-vector dependence of
g"(q, ro) 1n Eq. (9) scales as co"+ q ™,we find the limit-
ing low-temperature behaviors of F ( T) ~ T"+ and
F (T) ~ T"+, i.e. , T and T, respectively, if n =2 as is
found to be the case for screened electron-phonon in-
teractions. This shows that the piezoelectric interaction
dominates the energy-loss rate at low temperatures.
However, the range of temperature over which these lim-
iting forms are valid necessitates a more careful evalua-
tion of Eq. (9). We note in passing that for optic modes,—Rcoo/k~ TF(T) ~e ', which is small at temperatures well
below the optic-mode frequency cop.

To this point we have not specified the electronic sys-
tem and in fact Eq. (9) is perfectly general to within the
approximate treatment of the phonons and their coupling
to the electrons. The function y"(q, co) is related to the
density response function

P =F(T, ) —F(T „), (10) y"(q, co)=1m f d r f d r' f dt e'1 + "'e '"'y(r, r ', t),
where F( T) exhibits a temperature dependence charac-
teristic of the specific electron-phonon interaction being
considered. The form of Eq. (10) refiects the fact that the
net energy-transfer rate is the diA'erence between phonon
emission by the electrons at temperature T, and phonon
absorption from the lattice at temperature T h. Since
F(T) is in general a rapidly increasing function of T, P
will be dominated by F ( T, ) when T, is appreciably larger
than Tph

The limiting low-temperature behavior of F(T) can be
extracted easily from Eq. (9) for each of the electron-
phonon interactions (see the Appendix). For the
deformation-potential interaction the electron-phono n
matrix element is'

2
~MDP~2

AZ

2psl

with q a three-dimensional wave vector. For a planar
heterojunction, g(r, r ', t) depends on the spatial variables
z, z' and the difFerence p —

p '. As a result, Eq. (15)
reduces to

I

g"(q, co) = A Im f dz f dz'e ' g(z, z',
q~~, co),

where 2 is the area of the heterojunction interface.
To proceed, we make use of the random-phase approxi-

mation (RPA) in which the electrons are assumed to
respond as independent particles to the total electrostatic
potential.

A standard calculation then gives y in the form

y(z, z', q((, ~)=g f (z)fp(z')y (q~~(, co)e p'(q(~(, co)
a, P

where p is the mass density of the solid, sI is the longitu-
dinal sound speed, and Z is the deformation-potential

=y f (z)fp(z')y p(q~~~, ~),
cz, P

(17)
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x'..(q, ~)= —Aco+ih+c ——o. , —
k nk n', k+ t(l

(19)

where k is a two-dimensional wave vector and
c k =E„+A k /2m is the energy of the subband states.
f(E) is the Fermi-Dirac distribution. The summation
over k can be performed analytically at zero temperature
while convenient integral expressions are available at
finite temperature. We shall not display these here as
they are not needed in their full generality. Finally, the
dielectric matrix is given by

(20)

where the Coulomb potential matrix element is defined
by

2 2 I

V i3(qll)= f dz f dz'f (z)f&(z')e
Kg

ii

(21)

K is the dielectric constant of GaAs.
Substituting these expressions into Eq. (16), we obtain

where a denotes a pair of subband indices (n, n') and the
summations run over all pairs of subband states of the
heterojunction. These states appear in the form of the
products

f (z)=y„(z)y„,(z) .

The function X (qll, co) is a subband density polarization
function defined by

x"(q,~)= . Q(I*X+ I—X *J*)
l

,. y [(J+&x'J)*xa. (—J+&x'J)&P.*]

(Jkxo+ J xoAJ& )

= A g ~J ImX (qll, co) .

There are two distinct contributions to Eq. (28). The first
corresponds to single-particle excitations and occurs
when Imp is finite. This contribution is weighted by the
screened transition form factors as can be seen from Eq.
(26). There is also a second contribution which arises
from the poles of

~
J

~

and corresponds to collective exci-
tations, such as plasmons, of the electronic system.
These, however, give a minor contribution to the energy-
transfer rate at low temperatures and only the single-
particle excitations need be considered.

Referring to Eq. (19), we have, for the imaginary part
of g, the expression

ImX„„.(qll, co)= g [f(E k
—f(E, k+- )]

k

X 5( A'co+ E ——E, ——)nk n', k+

f (E)—f(8+A'co)

2vrh

X"(q,co)= 2 Im Q I*(q~)I&(q~)X &(qll cl)),
a, P

where we have defined the transition form factors

I (q~)= f dz e ' f (z) .

(22)

(23)

where

c.„.=En +
(A'co+ 5„„—E )

(29)

In a matrix notation, g is defined by the equation

y=y —y VX

Using this equation, we have

x& =x'J

(24)

(25)

gll
2m* and Ann' En En" At finite tem-

peratures, Eq. (29) must be evaluated numerically but at
zero temperature we have the analytic result

ImX„„(qll ~)I T=O

m* 1 [B(EF e„„)QEF E„„
rrfi

where I is a column vector with components I and J is
given by

J=e 'I . (26)

(27)

As a result, we find

X"(q,co) = A Im[I*XI]= 3 Im[I*X J]= A Im g I*XQ,

—e(E,—~~—.„„,)QE, —a~ —.„„.].
(31)

This expression reAects the nature of the electron-hole-
pair excitations in the multisubband situation. The nega-
tive, second term accounts for the Pauli exclusion effect
and corrects the spectral density for transitions to final
states that are already occupied. From Eq. (29), these ex-
citations occur at the energies

since X is a diagonal matrix (with respect to the pair in-
dices a). Equation (27) can finally be simplified as fol-
lows:

'Rco = E,n', k+qI~ nk

=6„„+ (2k qll+q„),
2m

(32)
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which defines a region in the co-q~~ plane corresponding to
the occupied k states. Figure 2 shows the allowed excita-
tions for a two-band model in which only the first sub-
band is occupied (E& (Ez); intersubband excitations
occur only above the minimum energy A, o

—E~. As the
occupancy of the first subband increases, the intersub-
band particle-hole spectrum slides down the co axis, mak-
ing intersubband excitations more accessible. From Eq.
(9) we see that the region of the co-qII plane sampled in the
energy-loss rate lies above the line ~=s&q~~ and is cut off
above some frequency m of the order k~ T/A because of
the Bose factors. Thus intersubband excitations first be-
gin to contribute when 6,0

—EI; -k~ T. Once the second
subband is occupied, excitations from the second subband
also occur and are represented by the Imp, o and Imp»
terms in Eq. (31). The particle-hole excitation spectrum
is illustrated in Figs. 3(a) and 3(b) for transitions from
the first and second subbands, respectively.

With the result given in Eq. (28), our final expression
for the energy-loss rate is

0

P = f dao co'IIN, (co) Nph(co) —]
P1y 0

CO/S ~

+X p qII 2 2 2)l/2
~. si~ o (~ —si.qII

X IM-, I' & I& (q, , qi, ~) II'

X Imp (qII, ~),

where n~ is the total electron areal density. Imp was
evaluated using Eq. (29), and all integrals were performed

0

0
0

q/k

FIG. 2. Domain of the particle-hole excitation spectrum for
a subband occupancy corresponding to 6&0/EI;O=2. 5. The no-
tation n ~n' indicates transitions from the nth to n'th subband.
The region bounded by the solid (dashed) lines is that for which
the transition 0~0 (0~1) is allowed. The shaded region indi-
cates the range of variables in which the Pauli exclusion effect is
operative for the 0~0 transition.

FIG. 3. As for Fig. 2, but with 5»/E«=0. 85 corresponding
to two-subband occupancy. Panel (a) is for excitations from the
lower subband. For clarity we have shaded only the region for
the 0~1 transition in which the Pauli principle has an effect;
the situation for the 0~0 transition is the same as Fig. 2. Panel
(b) corresponds to excitations starting from the upper subband.
Again, the shaded regions indicate where the Pauli principle has
an effect.

numerically for each of the electron-phonon matrix ele-
ments in Eqs. (11)—(13). At the low temperatures of in-
terest, the integrals are restricted to low frequencies. A
typical parallel wave vector is such that
U~qII-(U~/s~)co»co, where v~ is the electronic Fermi
velocity. As a result, electronic screening is essentially
static and the ~=0 limit of the dielectric matrix provides
a good approximation in the screened form factors, Eq.
(26). Finally, we have retained only the lowest two sub-
bands in the calculation of the screened form factors.
The effect of the second subband is included in the first-
subband polarization, even when just the first subband is
occupied.

The only place in which the subband wave functions
appear explicitly is in the transition form factors, Eq.
(23). The wave functions were obtained from a self-
consistent calculation of the heterojunction electronic
structure as described in a previous paper. " The calcula-
tions were performed for each 2D EG density in accord
with the experimental conditions of persistent photocon-
ductivity, i.e., those pertaining to infrared irradiation.
From our earlier work it is known that the electronic
structure is well described theoretically for the full range
of areal densities and we therefore expect our transition
form factors to represent faithfully the actual situation.

The results of our calculations of the temperature
dependence are displayed in Figs. 4 and 5 for a fixed den-
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FICz. 4. The calculated deformation-potential contribution to
the energy-loss rate P=F(T) as a function of T in the present
sample (i.e., with T~h =0 K so T= T, ) and n z- =5.5 X 10" m
The dashed-dotted and dashed lines do not include electronic
screening; the dashed-dotted line is for an ideal 2D gas of arbi-
trarily small thickness while the dashed line is calculated with
the actual wave function of the 2D gas. The solid line gives the
final result which includes both screening and form-factor
effects.

show the effect of making various approximations in the
calculation of F(T) for the deformation-potential cou-
pling. First, we have neglected the screened form factor
in Eq. (33) which corresponds to assuming an ideal 2D
EG with no electronic interactions; next, we include the
actual form factors, calculated with the self-consistent
wave functions, but still assuming no interactions; and,
finally, we include both screening and form-factor effects.
The argument of the form factor Ioo(q~ ) is

which is small for small frequencies. Thus at low temper-
atures, Ioo(q~) approaches unity, which explains why the
"ideal 2D" and "real 2D" curves merge in this limit. The
characteristic power law for the unscreened-
deformation-potential coupling is T (see the Appendix).
At higher temperatures, the parameter aq~ (where a is
the typical extent of the subband wave function) becomes
appreciable over the range of integration and ~Ioo(q~)~
falls below unity, leading to a reduction in the energy-loss
rate. When screening is included, ~IO0~ is reduced by an
additional factor of [zoo(q~~, O) ] . It should be em-
phasized in this regard that physically there is no choice
in the matter; screening of the interactions must be in-
cluded. Since the static dielectric function is given by

sity of nz-=5. 5 X 10' m corresponding to a single oc-
cupied subband. In these calculations we have used the
following material parameters: m ' =0.067m„~= 13.2,
s&=512X10 ms ', s, =301X10 ms ', p=536
g cm, Z = 10 eV, and eh &4

=0.12 eV A '. In Fig. 4 we

100

10

where q, is the screening wave vector, the integrand in

Eq. (33) acquires an additional factor of q
~~

which changes
the low-temperature power law to T; this is seen to be-
come effective below about 1 K. In the range of tempera-
tures between 2 and 10 K, F(T)/T is relatively constant
so that an apparent T law is observed. However, this is
just the transition region from the low- (Bloch) to high-
temperature behaviors and is not a characteristic limiting
form.

In Fig. 5 we compare the relative contributions to the
energy-loss rate of the deformation-potential and
piezoelectric interactions. The transverse component,
Eq. (13), exceeds the longitudinal component throughout
the temperature range shown, mainly because of its lower
sound speed. Since the screened piezoelectric interaction
leads to a limiting T low-temperature behavior, it dom-
inates the deformation-potential coupling below about 2
K. At higher temperatures, the piezoelectric contribu-
tion is typically a 10% correction. Interestingly, because
of the relative magnitudes of the deformation-potential
and piezoelectric contributions, the low-temperature T
law extends to somewhat higher temperatures than for
the piezoelectric contribution alone. We shall return to a
more detailed comparison with experiment in Sec. IV.

0.1
0.1 10

IV. RESULTS AND DISCUSSIQN

FIG. 5. The calculated energy-loss rate P=F(T) as a func-
tion of T for the present sample with n&=5. 5X10" m (i.e.,
with Tph 0 K so T T, ). The various dashed lines show the
contributions from deformation potential (DP), transverse
piezoelectric (tPZ), and longitudinal piezoelectric (lPZ) scatter-
ing to the total (solid line).

It is convenient to present the data in the form of the
power P required to produce a fixed temperature T, at a
constant lattice temperature T h. In order to do this, we
have interpolated the original experimental data sets
(containing about 17 difFerent T, at each nz-) to produce
data at a few selected T, as shown in Fig. 6. The results
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FIG. 6. The measured (symbols) and calculated (solid lines)
energy-loss rates P =F( T, ) —F( T» ) as a function of total elec-
tron density n&. The measured data have been interpolated
from much larger data sets to give P at various fixed T, . All the
data are appropriate to T» = 1.17 K. The solid and open sym-
bols on each data set correspond to different experimental runs.

of the calculations are also displayed for comparison; the
only adjustable parameters in the calculations are the
deformation-potential coupling constant Z and the
piezoelectric coupling ehI4. Over most of the tempera-
ture range Z is mainly responsible for the observed mag-
nitudes and it is clear that we could not significantly
change our value of Z = 10 eV without seriously affecting
the quality of the experimental and theoretical agree-
ment. Recalling that the energy-loss rate for
deformation-potential scattering varies as Z, we see that
the value of Z at 10 eV is probably accurate to +10%%uo.

This value is in good agreement with 11+1 eV deduced
by Hirakawa and Sakaki for MBE samples with energy-
loss rates measured over the range 4—20 K and is in
agreement with a recent estimate of Z=9. 3 eV for bulk
GaAs. This suggests that the model of the bulk acous-
tic waves interacting with the 2D ECr is adequate to corn-
pletely explain the energy-loss rates and no further mech-
anisms need be invoked. The higher value of 16 eV ob-
tained by Manion et al. over the range 3—7 K was ob-
tained with a metal-organic chemical-vapor deposition
(MOCVD) sample, which may be a relevant factor.

The qualitative density dependence of the observed
energy-loss rate is well reproduced by the theory and the
agreement is particularly good at the higher electron tem-
peratures. For single subband occupancy, the low-
temperature density dependence is nr ~ (from the factor
k~; see the Appendix) which accounts quite well for the
decreasing trend in the range of densities from 5. 5 X 10'
to (7.5 X 10' m . Beyond about 7. 5 X 10' m ~, there
is a sudden increase in the dissipation rate due to the on-

set of inelastic intersubband scattering. The differences
between theory and experiment in the range
(7.5 —8.5 ) X 10' m have two sources. First, the second
subband becomes occupied theoretically at a density of
8.3 X 10' m whereas experimentally it is closer to
8.0X 10' m . Thus the onset of intersubband scatter-
ing should occur somewhat later in the theory. This
difference can be eliminated by a slight adjustment of the
acceptor areal density from 0.73 X 10' to 0.70 X 10' m
but we have chosen, for purposes of comparison, to retain
the value of 0.73X10' m, which is obtained directly
from experiment. "

The second source of difference between theory and ex-
periment is due to the different threshold behaviors of the
second-subband density of states. In our calculations we
have assumed an ideal 2D density of states while the ac-
tual subband edge is impurity broadened. The latter
effect is clearly evident in this sample in measurements of
the mobility" and in (unpublished) measurements using
magnetic depopulation. Referring to Fig. 3, there is not
in reality a sharp boundary defining the single-particle ex-
citation spectrum for the intersubband excitations. As a
result, excitations into the second subband can occur at a
lower density as the Fermi level begins to enter the tail of
the second-subband density of states. There is an addi-
tional thermal smearing effect which is clearly seen in the
calculations and which increases the experimental width
of the transition region at elevated temperatures.

There are in addition two discrepancies for which we
have no explanation. The increase of the intersubband
scattering contribution to the energy-loss rate is more
pronounced in the experimental results than in the theory
at the lowest electron temperatures. Secondly, the exper-
imental energy-loss rates begin to decrease as the density
approaches the saturation density of the heterojunction
while theory indicates that a plateau is maintained up to
a value of n z- = 10X 10' m . However, there is a
greater uncertainty in the experimental values at the
highest densities and the observed falloff is not well estab-
lished experimentally. In spite of these differences, the
agreement between theory and experiment is gratifying
and supports the soundness of the theoretical formula-
tion.

We also compare calculations and experiment at a
fixed nz- as a function of T, . This is most useful if we
correct the experimental data to T h =0, i.e., by produc-
ing F(T, )=P+F(T h). In this case we can compare
directly with the calculated characteristic function F(T)
as discussed in Sec. II. We do this by assuming
F(T)=a.ji' with @=5 for T(2 K (cf. Fig. 5). We then
use

F(
p
T)h= P/( I,T/T„)~ —1],

where P is the measured energy-loss rate measured at T,
and T h. We typically have three data points below 2 K
which enables three independent values of F(T h ) to be
estimated. We find F(T„h) to be in the range 30—50
eV s ' with a maximum uncertainty of 20% for any par-
ticular value. After correcting for F(T „), we produce
data sets for F(T, ) =F(T) of which three examples are
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shown in Fig. 7. We avoided the region where the second
subband is just appearing because, as we have already
mentioned, the observed width of this region is clearly
dominated by disorder broadening but the calculations
do not attempt to take this into account. Again, the
overall agreement is good in both the trend of the results
and the absolute magnitudes. Notice that in this figure
most of the temperature variation is removed by plotting
F ( T) /T and so we are looking at deviations from
F ( T) —T . In particular, we see that the cubic power
law is approximately valid at higher temperatures and ex-
plains why the bulk of the published experimental data in
the liquid- He temperature range appears to follow this
law. To emphasize this, Fig. 8 shows data plotted in the
style that has become common in the literature, i.e., lnP
as a function of ln(T, —T & ). This plot indicates that the
cubic power law is not unreasonable though there are sys-
tematic deviations from the line that has a slope of unity.
The tendency for F(T)/T to tend to the origin in Fig. 7
seems to be the first demonstration of the smooth transi-
tion from medium- to low-temperature behavior, and in-
dicates the onset of F(T)-T at the lowest temperatures.
In connection with this, Wennberg et al. ' have obtained
the expected F(T)=aT behavior on a superlattice at
T~0. 1 K and have evaluated a. If we use their results
to calculate F(T)/T at 0.1 K, we obtain 0.020 eV/s K
at an electron density of 1.7X10' m . The calculated
value for our sample at the lowest density of 5.5X10'
m (see Fig. 5) is about 0.3 eV/sK, and this will in-
crease somewhat at lower nz according to the trends
shown in Fig. 6 and discussed in Sec. IV and the Appen-
dix, i.e. , F(T)-nr ~ In othe. r words the energy-loss
rates reported by Wennberg et al. seem to be at least an

4
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10
V'-V „' (K )
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FIG. 8. Typical data on energy-loss rate P as a function of
T Tph for particular values of n z (in units 10 ' m ). In al l

cases T» = 1.17 K. The solid line has a slope of unity.

order of magnitude lower than we would expect, a con-
clusion which echoes their own statements on the matter.

With reference to Fig. 5, we see that, at the lowest elec-
tron temperature achieved in our experiments (T, =1.6
K), the deformation-potential and piezoelectric coupling
contributions are comparable. It would be of consider-
able interest to extend these measurements to lower tem-
peratures where the piezoelectric interaction is dominant.
It would then be possible to check the magnitude of the
piezoelectric coupling constant.

160 V. CONCLUSIONS

120

80

40

0
0

FIG. 7. The energy-loss rates as a function of electron tem-
perature T, for the three fixed electron densities n& (in units of
10"m ). Both the experimental and theoretical curves are for
T» =0 K and so P =F ( T, ) =F ( T). The experimental data
have been corrected for F(T») as outlined in the text. In the
case of n &

=9.0 X 10' m, there are two independent sets of
experimental data at n&=9.04X10' m (open circles) and
n~ = 8.97 X 10"m (solid circles).

Using deformation-potential and piezoelectric coupling
parameters consistent with bulk GaAs values, we have
been able to give a good account of both the temperature
dependence and the electron-density dependence of the
electronic energy-loss rate for a well-characterized sam-
ple in the liquid- He temperature range. This, together
with the similar results of Hirakawa and Sakaki in the
4—20-K range, suggests that the interaction of bulk lat-
tice waves with the 2D EG provides an adequate descrip-
tion of the experiments and no other scattering mecha-
nisms need be invoked at the present time. We can
roughly represent our data using a T dependence for the
energy-loss rate, as has been observed by many others.
However, below about 3 K we see a transition to a higher
power law, in accord with the theoretical calculations.
Although the limiting low-temperature behavior of T
appropriate to piezoelectric electron-phonon scattering
becomes valid only below about 1 K, theory shows that
the combination of deformation-potential and piezoelec-
tric scattering behaves approximately as T to about 2 K
and this is presumably what we are observing. At about
1.5 K, both types of scattering have roughly equal magni-
tude and so one needs temperatures of ~ 1 K to investi-
gate the piezoelectric part in isolation. The apparent T
dependence of the energy-loss rate over most of the
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liquid- He temperature range is seen to be of no funda-
mental significance and represents a transition region be-
tween the T low-temperature limit and a variation of
roughly T by 10 K.

The occupation of the second subband is readily visible
in both the experimental and theoretical results. Rough-
ly speaking, the strong rise in the energy-loss rate at this
point is due to the enhancement of the electron-phonon
scattering rate by the increased density of states.
Kreschuk et al. reported a change in the power law
from T to T as the second subband becomes occupied
but we do not see any comparable eAect in either the
theory or the experiments.
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APPENDIX

m * ~ «F-F &oo)—
Imyoo( q ~i,

oi )— ' 1/2~A' UFq&~
1

~oo

E

(Al)

where coo is given in Eq. (30). Substituting this expres-
sion in Eq. (33), we have

In this appendix we consider the single-subband model
and obtain the limiting low-temperature behavior of the
electron-energy-loss rates for the various kinds of
electron-phonon interactions. For this purpose it is
sufficient to use the T=0 K form of Imp„„, in Eq. (31),
expanded to leading order in co,

~oo

E

Iraqi l igloo(qi ) e(EF—
cooF(T)=

2 3 J de to~Ã(to)g j dqi~
vr fi kF o i si, o (to siqii )' —

[E(qadi)]
1

(A2)

In the limit of low temperatures iIoo(qi)~ can be set
equal to unity and the static dielectric function is given
(for

qadi (2kF ) by

and

'Aco=
4E

(A8)

(A3)

where q, =2m*e /scA is the screening wave vector, in

cgs units.
We consider first the deformation-potential interaction

for which ~M& ~

=A'Z ro/2psi is independent of qadi.

The basic q|i integral to be considered is therefore

Eq. (A6) can be written as

which has the positive roots

'}/I+4y —1 +1+4y +1ti- t2=
2p 2p

(A9)

(A10)

~oo1—
E

~is &
(qadi ) «FF coo). . ]/2-

(co 5 q~i )
(A4) Since y is a small parameter at low temperatures, we

have

where s is a phonon sound speed. The result for e(q~i ) = 1

will be denoted I„„„,while the result obtained using (A3)
will be denoted I„,. With the substitution qadi=(co/s)u,
we have

t, =y and t2-—1/y,

so that the integration range in (AS) is bounded by

(A 1 1)

&oo1—

1 i 1 e(+F coo)
I„„„,=— duso(l —u)2 1/2 (A5)

1/2
2m sui=

%co

' 1/2
m s

(A12)

m*s
u

2EF
%co

u
2m s

(A6)

The domain of integration is restricted by the 8 function:
setting cpp equal to EF, we obtain the equation

2

and

1/2
2m s

2

(Bm*s E )'i
t2=

16co

2kF
(A13)

Defining

2 %67
u

2m *s2 (A7)

If q (2kF, u2 is larger than 1 and the upper limit of in-
tegration in (A5) remains unaffected. Thus in this limit
we have
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We therefore find

(A14)

s q,

7T CO

4 $3q2

Thus we find

~oo1—

u 2 &(EF ~oo)

( 1 2)1/2 1/2

(A16)

w2 2

F„„„,(T)= f dcoco X(co)
m A k 2ps

FDP(T)= 180((7) m* Z
(k T)~

k 'A'ps, 6q 2 (A17)

12$(5) m* Z
kFA pst

(A15)
For completeness, we list the screened and unscreened re-
sults for the longitudinal and transverse piezoelectric
couplings,

where g(5) is the Riemann g function. Equation (A15) is
identical to the result found by Karpus. ' According to
Eq. (A13), the low-temperature result is valid for

ke T &c ( 8m *si EF):ke To

For n T
=5. 5 X 10' m, the characteristic temperature is

To = 15 K. As can be seen from Fig. 4, the low-
temperature form is only valid when T/To ~ 0. 1

When screening is included, the integrand in Eq. (A4)
contains the additional factor (ql/q, ) and, following a
similar analysis,

m*~(eh )z
FiPz (T) 14

(k T)3
32 k3g, 2 a

pst

m* (eh )2
F~pz (T) 13((3) (k T)unscr 32 k 3~5 2 3

F ps]

ipz 1350(5) &4 s
m* (eh )

64~ kFA psI q,

,pz
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