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The photon-echo signal in disordered semiconductors is treated including the electron-hole
Coulomb attraction. The amplitude of the spontaneous photon echo is calculated up to third order
in the external-field amplitude using the semiconductor Bloch equations. Several idealized situa-

tions are analyzed showing the significance of a critical correlation of the polarization dynamics in

the two time intervals preceding and following the second excitation pulse. Strong photon-echo de-

cay is predicted for short-range disorder without Coulomb interaction. The inclusion of electron-
hole attraction leads to a stabilization of the echo signal. For the case of long-range disorder with

Coulomb interaction, we predict slow decay in the diffusive limit.

I. INTRODUCTION

During the past decades the near-band-gap optical
response of semiconductors has been studied in great de-
tail both experimentally and theoretically. The theoreti-
cal analysis clearly shows the important influence of the
electron-hole Coulomb interaction on the linear and non-
linear, cw and femtosecond-time-resolved optical-
absorption and refractive-index spectra. ' In most of
the theoretical studies, a more or less perfect semiconduc-
tor crystal has been assumed and the imperfections
present in real materials have been dealt with by intro-
ducing phenomenological broadenings and/or decay
rates. Even though such an approach is well justified for
an analysis of experimental results obtained with high-
quality semiconductor crystals, it is clearly a poor ap-
proach for most amorphous or disordered materials. Ac-
tually, basically all semiconductors posses a certain de-
gree of static disorder. This is evident for alloy semicon-
ductors like Al Ga, As or CdS„Se, , for amorphous
semiconductors like amorphous Si:H, but also for quan-
tum wells, quantum wires, quantum dots, and superlat-
tices due to interface roughness. Since, in general, the
quasiparticle interaction strength depends on static disor-
der, it is necessary for a complete theory to consider stat-
ic disorder and electron-hole Coulomb interaction on an
equal footing.

As a first approach to study the combined inAuence of
Coulomb and disorder effects, we investigate in this paper
the process of optical dephasing for statically disordered
semiconductors. After an ultrashort laser pulse excites a
semiconductor a variety of dynamical processes occur
which each develop on their characteristic time scales.
Phase relaxation of optical excitations can be considered

as one of the earliest developments in such a situation.
The theoretical description of these processes requires a
thorough treatment of a highly complex interacting
many-particle system in a nonequilibrium situation.

Experimentally a wide range of phase-relaxation times
has been reported, ranging from femtoseconds in GaAs
(Ref. 4) to hundreds of picoseconds in CdS Se& (Ref. 5)
mixed crystals. The interpretation of this enormous
range of T2 times provides a challenging theoretical
problem. As a first step it seems to be in order to treat
the inAuence of static disorder on optical phase relaxa-
tion exclusively, omitting all quasiparticle interactions.
This is the purpose of this work. Since quasiparticle in-
teractions destroy the phase coherence of optical excita-
tions, our present treatment provides a lower limit for the
phase-relaxation rate.

We consider in particular a spontaneous-photon-echo
experiment, which gives information about the irreversi-
ble phase relaxation of optical excitations. In such an ex-
periment a coherent optical polarization is produced in
the sample, say, at time t =0 by a short laser pulse No. 1

(with k vector k, ). This coherent polarization develops in
time under the inAuence of many-body Coulomb effects
and interaction with the static disorder. After a time de-
lay ~ a second pulse No. 2 with k vector k2 is applied. A
spontaneous-photon-echo signal is then emitted in the
direction 2k& —

k& at a time 2~ if an inhomogeneous distri-
bution of oscillators has been excited. The decay of the
echo signal is then monitored as a function of the delay
time ~. Assuming optically thin samples, the echo am-
plitude is proportional to the nonlinear optical polariza-
tion P(t). For an ensemble of inhomogeneously distri-
buted two-level absorbers
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2vP(2r) ~ exp
T2

where T2 ' is the phenomenologically introduced dephas-
ing rate. This particular system closely resembles the
case of the well-known spin echo, and many results ob-
tained for the latter can directly be transferred to the op-
tical case. However, the analogy no longer holds if we
consider a semiconductor which in a tight-binding
description can be modeled by an ensemble of two-level
absorbers, which are mutually coupled by quantum-
mechanical transfer rates and the Coulomb interac-

1,2, 3, 8, 9

Recently we have shown that a treatment along these
lines of the photon echo in a disordered semiconductor
without Coulomb interactions yields a decay of the
photon-echo amplitude, which is in general nonexponen-
tial and depends on the ratio of coupling and disorder. '

In particular, it turned out that the Anderson localization
determines the long-time behavior of the photon-echo
signal. The decay of the photon-echo amplitude in this
situation can be related to irreversible phase relaxation in
ensembles of n-level systems, of which quantum beats in
three-level absorbers is the simplest example.

These findings are relevant for disordered semiconduc-
tors where the Coulomb interaction is of minor impor-
tance, as, e.g. , in amorphous semiconductors. Most ex-
periments, on the other hand, are performed on semicon-
ductors characterized by excitonic excitations. It is,
therefore, necessary to include this interaction in the
theory. We find, as a result of the electron-hole coupling,
that the phase coherence is enhanced. For the particular
case of a long-range correlated disorder potential we ob-
tain (for a suitable configuration of excitation pulses) no
decay of the photon-echo amplitude at all. This result
can be explained in terms of phase reconstruction by
phase conjugation in a situation where the scattering sys-
tem and the nonlinear system are identical.

This paper is organized as follows. In Sec. II we intro-
duce the model Hamiltonian used in our study. In the
next section we derive the relevant equations of motion,
which are a generalization of the semiconductor Bloch
equations for inhomogeneous systems. For our present
purposes we neglect the exchange contributions. The
photon-echo signal is computed in Sec. IV leading to a
general but formal result. This result is then evaluated
for the cases of short-range disordered in Sec. V and for
long-range disorder in Sec. VI. Instead of using the for-
mal result of Sec. IV in the Appendix an alternative
derivation for the long-range disorder case is presented
based on the equations of motion of the physical expecta-
tion values of the polarization and densities. In this
equivalent formulation the physical interpretation of the
approximations is more transparent.

II. MODEL

Disorder usually is related to spatial inhomogeneities
of the local material properties, such as, for example, ir-
regularities in compositions or bondings. Hence one can-
not use a theory that is based on the homogeneity of the

material. Therefore we use a site representation of our
model semiconductor, where we assume that there is only
one resonant transition at each atomic site. However, it
is possible for optica1ly excited electrons and holes to be
transferred from site to site. The transfer dynamics of a
single electron (hole) is described with the Hamiltonian
matrix T,' (T,"), the indices i and j going through the op-
tically active sites in the material. The diagonal elements
of the matrix T are the local energies which are deter-
mined by the levels of an isolated atom plus the shifts due
to the interaction among neighboring atoms. The off-
diagonal elements describe the transition between the
different sites which gives rise to kinetic motion. The
matrix T is nondiagonal because the site basis which is
appropriate for purely localized electrons and holes does
not describe the eigenstates of delocalized electrons and
holes. A diagonalization of the matrix T would lead to
the introduction of energy bands and the corresponding
eigenstates would be more or less localized or delocalized.

When the interaction between neighboring atoms is not
regular throughout the total system we expect the diago-
nal elements to vary as a function of the site index. In
that case also the off-diagonal elements vary in a form
that is typical for the specific type of mechanism causing
the disorder. In what follows we assume that the disor-
der induced modifications are more important for the en-
ergy shifts than for the transfer rates. We take for T the
general form

T, =t, , fo"r i'
In the continuum limit, site-dependent diagonal elements
cause position-dependent energy levels, i.e., a local disor-
der potential. More general expressions for T are possi-
ble but certainly would complicate the problem.

The total sample in our model is described as an in-
teracting gas of electrons and holes. We assume that the
Coulomb interaction in the medium has the general free
space form even though the strength might be changed in
the disordered material. Our tight-binding model Hamil-
ton operator takes the form (in Hartree approximation)

H =g ( T', a, a + T ', b tb ) + —,
' gu, ' a ta a a,.

17J j)J

(3)
I)J I)J

where a and b are the fermion annihilation operators of
the electrons and holes, respectively, and u's are the
Coulomb matrix elements. In general they are all
different but for the sake of simplicity we take them to be
equa1. In contrast to the ordinary electron gas problem,
our model has no translational invariance because of the
site dependence of the diagonal elements in the matrix T.

We treat the coupling between the semiconductor and
the external light field semiclassically assuming that the
light couples to the induced, local dipoles at each site.
Furthermore, we assume that the local-dipo1e matrix ele-
ment does not depend on the site index. The local-dipole
operator is given by the product a;6, . Using the dipole
approximation at each site, we obtain the interaction
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Hamiltonian in the form

H,„,= p—g[Ei(t)a ib i+Ei(t)biai] .
I

Note that the dependence of the interaction Hamiltonian
on the local field also introduces a force, the so-called
light pressure force, " that causes translational motion of
the induced dipoles in addition to the oscillatory motion.
When a photon is absorbed not only its energy but also
its momentum (determining the spatial phase factor of
the field) must be absorbed. As long as the site depen-
dence of the field is treated with equal footing to the site
dependence of the electron and hole kinetic energies this
effect is included. The continuum limit is taken by re-
placing the sums in the Hamiltonian (3) by integrals and
the discrete site index by continuous position variables to
be integrated over.

Our main goal in this paper is to represent a theory for
the detected signal in a photon-echo experiment when the
detector is in the phase conjugated direction. We neglect
the absorption of the scattered field. According to classi-
cal electromagnetic theory the far field Ef is related to
the source polarization distribution P by

i ( kr —cot )

E*(r,t) ~ J dr'P(r', t)e

where k =co/c and k points from the source to r. The in-
tegral determines the radiation pattern in different direc-
tions, and its square gives the intensity measured by the
detector at r if the detector is not looking in the direc-
tions of the incoming pump beams. Quantum mechani-
cally we can evaluate P(r, t) as the sum of the oscillating
local dipole moments (a, b, ) of the sample which are in-
duced by the two pump fields. The observed intensity in
the discrete site case is then given by

2

I.„~ g(a, b, )e (6)

matrices, we can write the resulting generalization of the
Bloch equations in the compact form

B,p+ (pT—;ff+ T','ffp) = (F—,ff
n—F,ff F—,ffn'),eff

r), n '+ [n—', T;ff )
= — (F—,ffp p—F,ff ),

eff )ij ~lj~2 il ( ll ll ) ij ij ji
I

(12)

(F,ff);, =pE;(t)o; +u; p;

T ff and F,z describe the many-body renormalizations of
the energy and the local light field.

In the case of the photon-echo problem to be analyzed
the light field E consists of two components

E (t) =E. i(t)+E &(t)

iki R. —icut —iki R. +(cut

(13)

where R is the position of site j. Within the rotating
wave approximation we keep only the first terms in the
parentheses on the right-hand side of Eq. (13). The am-
plitudes can be written as

At first sight, these equations look just like the linear den-
sity matrix equations of motion for two-level systems. In
reality, however, Eqs. (11) are a set of nonlinear matrix
equations, where the many-body effects are hidden in the
definitions of the effective energy matrices T,ff and
effective field matrix F,ff,

(T,ff); =T,' —.gu, i(ni, nii)5—;, u;, n—
I

(14)

III. EQUATIONS OF MOTION

Using the Hamiltonian (3) we follow the method of
Ref. 12 to derive the Hamiltonian equations of motion.
We apply the time-dependent Hartree-Pock approxima-
tion by factorizing all expectation values in terms of two
operator expectation values. The loss of translation in-
variance, however, complicates the problem in compar-
ison to Ref. 12 since, e.g., now

&.-,b, &«.-„,b, , & .

Introducing a notation consistent with Ref. 12, we define

p j=(b,a, ),
n, ', =&b,'b, &,

(10)

because we are interested in the case where the pulse
duration is smaller than all other relevant time scales in
the problem except the optical frequency.

In what follows we shall assume that the exciting fields
are weak enough that we can treat Eqs. (11) perturbative-
ly. We especially neglect all products of polarizations
and populations, which allows us to write the equations
in the form

i3,p; + [(pT'+T"p);, ——u; p; ]

4

B,n;', + [n', T'];, = ——(E;p; Ejp,*; ), —

Since the derivation of the dynamic equations is straight-
forward but lengthy, we omit those details. If we formal-
ly treat the expectation values (g) —(10) as components of

The remaining term proportional to the Coulomb matrix
element u describes the attraction between the electrons
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and holes, which produces the exciton structure in the
optical-absorption spectrum.

A handy notation is obtained if we understand E, (t) as
a component of the diagonal matrix 6' and define opera-
tors V and & operating on matrices by setting () '"+ &t(p"')= — [( (t) ' '+n ' '( (t)]t 2 2 (25)

In the third-order equation for the polarization we again
neglect on the right-hand side all the terms irrelevant for
the photon echo and obtain

[V(X) ],~
=

u;~ X,

& (X)= [XT—'+ T"X V(X—)] .=1

(16)

(17)

or, after an integration,

l2(3)(t) i P e
—i(t —w)ff [g eiT&(gk )@ ]2 (26)

With these definitions the equations of motion take the
form

B,p+i& (p)= [6(t)—n "(o(t) 6(t)n—'],

(),n'+ [n'—, T']= —~ [e (t)p —pt6(t)],

As discussed in Sec. II the detected signal can be comput-
ed from the polarization density. The local polarization
at site i is given by p; ' for the phase conjugated com-
ponent. Using Eq. (6), we find the observed signal travel-
ing in the direction of k from the source as

2

(27)

B,n "+—[T"',n "]=— [pet(t) 8(t)p —] .

IV. PHOTON-ECHO SIGNAL

In this section we solve the semiconductor Bloch equa-
tion (18) perturbatively up to third order. For the
photon-echo configuration considered, the echo signal
travels in the direction 2k2 —k, , Hence we have to obtain
the polarization p up to second order in 62 and first order
in 0„together to third order in the field amplitudes. We
solve the equations iteratively.

To first order we have

(Ak), =5, e (28)

which has on the diagonal the phase factors at each site
we can write the maximum signal in the form

I b
~ ~Tr[Atke

—i rA (Ak eir'A(At )A ) ]
2

=
~
fr[e '~~(Atk)Ak e' ~(At )Ak ]~ (29)

The maximum signal for the photon echo is expected to
come approximatively a time delay ~ after the second
pulse. By defining a diagonal matrix,

where the second step follows since

Tr[B& ( A ) ] =Tr[&(B)2 ] (30)

Since both pulse envelopes were assumed to be 5 func-
tions in time, we write

6'l(t) v =(6) ),15(t)=elb, je'"l "'6(t) (20)

p'"(t)= e " (( ()6(t) .

In the next step we solve the second-order contribution
for the populations. Because of the short pulse duration,
we neglect all transfer effects during the pulse. Keeping
only the components that are relevant for the photon
echo, we obtain

iP (22)2

h(2) —iP'
@ (t) (l)

2

The solutions of these equations are given by
2

n' (t)= ~ [e"~(g*)g ]f3(t —r)I 2

(23)

2
n"' '(t)= [( e" (6*)B(t—r)]2 1

and similarly for the second pulse. The integration can
be formally performed and we obtain the first-order con-
tribution to the polarization in the form

for any matrices 3 and B.
If we can separate the length scales of the light wave-

length and the disorder by assuming, for example, that
the wavelength of the light is large in comparison to the
length scale of the disorder, we can perform the summa-
tion independently for the phase factors and the dynami-
cal evolution. It is easy to see that a nonvanishing contri-
bution for the signal is only obtained in the direction
k=2k2 —k&. The approximation, which allows one to
separate the length scales, is equivalent to neglecting the
mechanical effect related to the momentum of the light.
Another way of looking at this approximation is to say
that within each wavelength of light there is place for
several regions, which already contain all the characteris-
tics of the total sample. For example, if the system is
completely localized by the disorder, an ensemble average
taken within a wavelength gives the same result as taken
over the whole system. In this limit the field has only a
parametric spatial dependence. The observed intensity is
given by

I,b, ~Tr[e " (1)e" (1)]~ 5), 2k (31)

The results (29) and (31) are formal and, hence, very gen-
eral in nature. The excitonic effects due to the electron-
hole Coulomb attraction are included. No assumptions
about the nature of the disorder have been made. In the
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following sections we evaluate the theory in some limiting
cases.

V. SHORT-RANGE DISORDER

First we study the case of short-range disorder, i.e., the
parameter region where Eq. (31) is valid. For the case of
amorphous semiconductors, where excitonic effects seem
to be masked by disorder, we completely neglect the
Coulomb interaction in the lowest-order approximation.
It is generally accepted that the disorder potential in
amorphous semiconductors is short range (i.e. , on a typi-
cal length scale of 5 A) and strong (of the order of 0.1

eV). A further simplification can be introduced if we ex-
cite the amorphous semiconductor by photons with ener-

gy well below the mobility gap. Then most excited
electron-hole pairs are in states where one of the particles
is localized in deep tail states, and the other is energeti-
cally close to the mobility edge. This situation can be
modeled by taking T,." =0 for i' Th. en the holes are
strongly localized, which in the theory is manifested by
the absence of the hole transfer. To be more realistic we
also investigate the effect of the Coulomb interaction be-
tween electrons and holes in this case. The opposite lim-
it, a nearly perfectly ordered crystal, is not treated here.
In this case the photon-echo amplitude decays if we in-
troduce scattering by disorder because the decay rate is
simply related to the scattering rate, i.e., to the conduc-
tivity. '

If we neglect the Coulomb interaction, the time evolu-
tion operator can explicitly be written as

T —5 c,1j IJ (35)

U U
2

I, , ge ™
U, (r)U, (

—T)
l, m

(36)

where the matrix U(T) obeys the equation

a, U(T) =t [I'U(T) V(—U(T))]

with U(T=0) = 1 . (37)

The matrix Eq. (37) is equivalent to a set of Schrodinger
equations for a particle moving in the potential of a local
point charge in various positions. The matrix element
U,- is the ith component of the wave function for an elec-
tron, which started initially from the site j, where the at-
tracting point charge lies. For the subsequent discussion
it is instructive to use the notation

Hkl = ~kl +kj~lk (3&)

The Hamiltonian matrix is only parametrically depen-
dent on the site j of the attracting charge. Since the hole
energies cI are assumed to be randomly distributed we re-
place the exponent in the sum on the right-hand side of
Eq. (36) by its configurational average. Furthermore we
choose the matrix elements of T' to be real. This leads to

I,b, ~ [1 g(T) ]gUl, (T)—Ull( T)—
I

We keep the Coulomb term to obtain a generalization of
Eq. (33) for the electron motion. Inserting Eq. (35) into
Eq. (31) we obtain

ei~B(g) ei~T hei rT"

yielding

(32)
+g(T)Tr[ U(T) U( —T) ]

I ~ ~Tr(e " e " e" e" )obs (33)

Equation (33) shows that the photon-echo amplitude does
not decay if we have

[Zc Iut] —0 (34)

The relation (34) holds for an ensemble of uncoupled
two-level absorbers, since T' and T' are site diagonal. In
this case the mechanisms included in our theory do not
lead to any dephasing. Because of Eq. (34) there exists a
common set of eigenvectors a with real eigenvalues e&
and e&. It can easily be seen that the corresponding uni-
tary transformation also diagonalizes the interaction with
the external field indicating a selection rule for optical
transitions. We can therefore state that whenever we
have an optical selection rule, then there is no irreversible
dephasing. Apart from the trivial case of uncoupled
two-level absorbers we mention as examples the some-
what academic case of a perfect crystal without Coulomb
interaction. This system can be viewed as an ensemble of
inhomogeneously distributed two-level absorbers, each la-
beled by a k vector. Other examples are ensembles of di-
mers. '

In a general disordered system Eq. (34) does not hold.
As a representative example we treat the case where the
holes are completely localized, i.e.,

=QTr[pj(0)pj(T)]—:C&oo(T),
J

(40)

where [pj(0)]l =5lj5 is the initial density matrix for
the single-particle problem determined by the Hamiltoni-
an (38). Hence Eq. (40) describes a kind of config-
urational sum of density-density correlation functions for
electrons in the conduction band attracted to localized
holes.

The result for the particular case when the Coulomb
interaction is neglected has been derived and discussed
previously. ' Here we note that the density-density
correlation function of particles in a band with diagonal
disorder has well-known properties as revealed by various
theories of Anderson localization. These properties are
rejected in the nonlinear optical response, if the model
assumptions of this section are met. The strongly local-
ized conduction-band case (T,' =0, i Wj ) evidently gives

4&oo(T) =X (41)

since the electrons are unable to move and the system

where g(T)=~(e '')~ . The physical contents of the
sum of the product of the diagonal terms are better
shown if we manipulate it into the form

g Ul, (T) Uii( —T) =QTr[e' "pj(0)e "pj(0)]
I J
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reduces to an ensemble of uncoupled two-level absorbers.
For finite coupling, however, still in the localized regime,
Woo(r) decays initially and attains a finite saturation
value, which can be shown to be roughly proportional to
g~„, where g„, is the localization length. ' The signal
finally decays to zero if the Anderson transition is
reached. The decay rate for intermediate times in the
delocalized regime is given by the diffusion constant. The
fastest decay follows if we take as an extreme case a per-
fectly ordered conduction band. If only nearest-neighbor
coupling J, in the conduction band is considered the
density-density correlation function is given by

Coo(r) =F0"(2J,~), (42)

where d is the spatial dimension and Jp is the zeroth-
order Bessel function.

In order to understand the behavior of the photon-
echo amplitude it is instructive to consider the photon
echo in an ensemble of n-level absorbers. Let n = 1 be the
ground state, which is optically coupled to all higher
states. We assume that all transition energies co&; are in-
homogeneously distributed. Let us start with n =3. One
particular three-level absorber produces quantum beats
with a beat frequency given by the energy separation
Aco co ]3 co ]2 For an inhomogeneous distribution of
such systems the signal initially decays with a rate given
by the distribution function of bee and attains a constant
long-time value. Qualitatively the same behavior is found
for n ) 3 systems; the long-time limit of the photon-echo
signal, however, decreases with increasing n. For n —+ ~
there can be irreversible phase relaxation even in a single
n-level system. '

There is a close analogy of the n-level ensemble with
our semiconductor model with strongly localized holes.
The ground state n =1 corresponds to the localized hole
state, while the excited states are the eigenstates, to
which the hole state is optically coupled. For strongly lo-
calized electrons only the excited state corresponding to
the same site is coupled to the hole state, and there is no
dephasing. Increasing coupling (and decreasing disorder)
leads to localized states with larger and larger spatial ex-
tent. This implies that a given site contributes to more
and more eigenstates, i.e., n increases and the long-time
value of the photon echo decreases. The photon echo for
long time vanishes if the electronic eigenstates become
delocalized, since then every (or nearly every) site con-
tributes to infinitely many eigenstates. In this case com-
plete irreversible phase relaxation occurs as for n-level
absorbers in the limit n ~~.

Note that the appearance of a density-density correla-
tion function in Eq. (39), which is conceptually related to
transport, does not mean that particle transport is respon-
sible for dephasing in this particular situation. It rather
indicates a correlation of amplitude propagation in two
distinct time intervals due to the static disorder. The
propagation in the interval [O, w] is correlated with the
propagation in the interval [r,2r]. Formally this correla-
tion rejects itself in the appearance of the correlation
function.

It is interesting to speculate how inelastic interactions

C — C
Ti,j Ti —j,p

u f J u 'I J P '~

In this case Eq. (39) simplifies to

I, . [ [I g(&)]l Uoo(&)l'+g(~)I ',

(43)

(44)

where the matrix U(~) obeys Eq. (37). The solution can
be expressed in terms of excitonic envelopes (not neces-
sarily hydrogenic),

T'0" %le"=E 0"— (45)

where we have 'MI~ =51~ u&p. The matrix U is then given
by

U(t)=pe (46)

The expression for
l Uoo(w)l can be evaluated and we ob-

tain

2

(47)

The sum contains the discrete and the continuous spec-
trum of Eq. (45). For long times the continuous spectrum
does not contribute because it decays to zero. Also g (r)
vanishes for long times and we, therefore, obtain for large
7

discrete 4

g leal'e""' (48)

To illustrate the situation we solve the eigenvalue prob-
lem for two simple cases. First for a contact Coulomb
potential in one dimension, uI p

= u 5I p and
TI'= —T'6I +&. The problem can be solved in the discrete
case too but the results in the continuum limit are more
instructive. The spectrum has a band and a single bound
state which has the binding energy

u fi
+

4T' 2m *r (49)

with the corresponding eigenstate

with dynamical degrees of freedom, e.g. , with phonons,
destroy optical phase coherence in the situation at hand.
Since the electron-phonon interaction tends to delocalize
carriers, it will induce an increased decay rate of the pho-
ton echo. Phonon-induced delocalization is most pro-
nounced close to the mobility edge, where the localiza-
tion length exceeds the inelastic scattering length. ' Ex-
citations involving states close to the mobility edges,
therefore, will reveal phase-relaxation rates due to pho-
nons which are much larger than those related to strong-
ly localized states.

The stabilizing action of the Coulomb potential on the
phase coherence can be demonstrated most easily for
strongly localized holes and an ordered conduction
band. Because of the translational symmetry of the
conduction-band Hamiltonian we have
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0
2T

1/2
—(u/2T')

~ j~

1/2 —[x//r B

fB
(50)

In the long-time limit the photon-echo signal approaches
the limit

4

ables denoted by r, and r2 and consequently we have to
express the Hamiltonian in the continuum representa-
tion. In the long-range disorder case we assume the
Hamilton operators to take the form describing a particle
in a potential caused by the disorder

cc
2T

(5 I) &(X)(r),r2)= cos
— V, — V2 X(r„r2)

2fPz ~ 2' g

i.e., a constant value given by the reciprocal Bohr radius
rB to the fourth power. A true 1/r potential in three di-
mensions in the continuum limit has the binding energies
for the bound states given by

——[V,(lr, —r, l) —@,(r, )
1

—e, (r2)]X(r), r2) . (56)

1

2@i 7" fl
(52)

and the corresponding eigenstates at the origin have the
values

i —()(r=0) ~ 1

T 7lB

' 1/2

(53)

This yields the photon-echo signal proportional to

1
obs

TB
(54)

In the long-time limit we have included the leading term
only. The general behavior is the same as in the one-
dimensional case. After a very fast initial decay, deter-
mined by the spread of excitonic energies, the amplitude
approaches a constant value given by the Bohr radius to
power —4d, where d is the dimension. This result indi-
cates that the Coulomb interaction tends to stabilize the
phase of an optical excitation in a disordered semicon-
ductor.

foal p, Plq
r =R— r r =R+ r

M M
(57)

Pex
m, m&

M=m, +m&,

is used and in addition we denote o.=(m, —
m& )/M. The

sums in Eq. (55) are transformed into integrals over r and
R. In the new coordinates the Hamiltonian ~ is defined
by the equation

Here m, and m& are the electron and hole masses, respec-
tively. V,h denotes the Coulomb potential and N, and

are the local disorder potentials for electrons and
holes, respectively.

For this purpose we introduce the center-of-mass and
relative coordinates. Our goal is to describe the system in
terms of internal and center-of-mass motion and to
separate the variables in the Hamiltonian (56). First we
relate the coordinate r, to the electron and r2 to the hole
motion, respectively. The standard notation,

VI. LONG-RANGE DISORDER POTENTIALS
AND WANNIER EXCITONS

2 1V„——I, (lrl)
Rex

&(X)(r,R) = co — V~—
2M 2

Tr[e " (Ak)A), e"~(A~q )Ak ]

/ [e &&&(At )] [ (SJY(A ]k) Jl (55)

In the continuum limit r,. and r will be continuous vari-

In this section we study the limit of long-range disor-
der, assuming that the length scale, in which the disorder
changes the material properties, exceeds the Bohr radius
of the exciton. We no longer assume that the photon
momentum is negligible and, as a consequence, the exci-
ton which is interacting with the light also must change
its center-of-mass state. We use here the formal result of
Eq. (29), but for instructive reasons we show in the Ap-
pendix how to obtain the same results from the semicon-
ductor Bloch equations in the continuum representation.

We write Eq. (29) explicitly and obtain

1 Ply,XX(r,R)+ —4&, R — r
fi ' M

+(I)', R+ r X(r, R) .
M

(58)

At this point we use the assumption that the disorder is
of long range, i.e., the disorder potential does not vary
appreciably within an exciton Bohr radius, allowing us to
neglect the r dependence in the disorder potentials.
Physically this means that an exciton is not deformed but
only changes its center-of-mass state as a consequence of
the disorder. With this assumption the Hamiltonian & is
approximatively separable and the time evolution opera-
tor can be given in the form

—is[ —(fi/2p, )V„—()/A')V, ( r)). i~[( 1/2MV&+4,——(R)+4,(R))[5r e R e U (59)
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The other factor that potentially is able to deform the ex-
citons is the light field. Its effect is manifested by the fact
that in Eq. (55) the sites i and j and consequently in the
continuum limit the coordinates ri and r2 are reversed in
the second time evolution operator. The internal motion
is disturbed by the imbalance of the momentum transfer
to the electron and the hole in the optical process. When
transformed into relative and center-of-mass coordinates
the first coordinate is going to be —r instead of r and the
second coordinate R+ar instead of R. We see that in
the signal the internal and the center-of-mass motion are
still coupled. We now argue that, because the range of r
is restricted inside a Bohr radius and because the features
we study take place on a larger spatial scale, we can
neglect this coupling by setting a =0 (note if m, =mh the
decoupling is exact). The phase factor is then also given
in terms of R only,

ik2 (r)+r2) ik2 (2R+er) i2k2 R=e (60)

After this approximation the internal and the external
I

2

H,„(r)=cps — 7'„——V, ( rl ),
2pex

HCM(R)= V'~+4, (R)+N, (R) .
2M

(61)

The Hamiltonians are Hermitian so that the time evolu-
tion operator (59) is essentially formed of two wave func-
tions, one for the internal dipole oscillation and the
second for the center-of-mass motion. Inserting the ap-
proximations in the expression of the signal we obtain the
result

motion are completely decoupled and only the center-of-
mass motion is affected by the disorder in the environ-
ment. With these approximations we have reduced the
system to a set of induced oscillating dipoles propagating
through the sample. The center-of-mass propagation of
these dipoles is influenced by the interaction with both
the photons and the disorder in the sample.

We write the Hamiltonians for the relative and center-
of-mass motion (CM) as

i2k~.R i~HcM(R—)
—ik( R i~BcM(R) —ik( R~ ~ ~

~ (62)

The last step follows from the conversation of the nor-
malization for the wave functions. For the detection
direction k we can write the signal in the Dirac bracket
form

Because of the stochasticity of HcM, the matrix elements
in average are translationally invariant so that we obtain

I b" fdRe &I&Rle ' IR0)l)
I ~l&kle e ' e (63) (66)

The phase conjugated signal is obtained in the direction
k =2k2 k ] ~ Note that the exponential operator of k2 R
is a momentum shift operator describing the absorption
of the momentum of the second pulse. No dephasing
takes place if no disorder exists and HcM is just a func-
tion of momentum operators.

In the diffusive limit when the localized character of
the excitons is dominant we should use the position rep-
resentation. We can write

—i(2k2 —kl ) R i2k2. Rl —ikl. R2Ib ~ dRdRdR2e e e

& l&RIe
' ' 'IR=O&I —R /4Dre

(67)

which, after the Fourier transformation, gives
—8k2D r —(4/3)k 2 (R (r) )

The result is, hence, a spatial Fourier transform of the
transition probability for moving under the inAuence of
the disorder potential a distance IRI from the starting
point in time ~. In the diffusive limit this probability has
the typical exponential form

3/2

x &Rle 'M'IR, ) &R(le IR, & (64) where & R (r) ) is the mean-square displacement

X& l&R, le' 'IR&l (65)

In the diffusive limit only those combinations of the ma-
trix elements of the time evolution operator are dominant
in the configurational average, which start and end in the
same point. This reduces one integral and we have

I,b, ~ fdRdR, e

&R (~) ) =6D~ . (69)

The dephasing time is given by the time the exciton needs
to diffuse over distances comparable to the wavelength of
light. If, on the other hand, the disorder potential pro-
duces localization of excitons, the transition probability
has a finite long-time value implying a long-time value of
the photon-echo amplitude, in this particular situation.

In the following we will neglect the possibility of the
photon-echo amplitude to decay due to diffusion, which
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can be a rather slow process, ' by taking k2=0. Experi-
mentally this situation can be realized by applying at time
t=~ two pulses from opposite directions kz and —kz
simultaneously. We are faced with the following ques-
tion. Why is there no dephasing, although disorder of ar-
bitrary strength is still present? Formally the answer fol-
lows simply from Eq. (63) when k2=0. The two time
evolution operators cancel each other. It is instructive to
interpret this result physically. At time t=0 a plane
wave (light or excitonic) is prepared which then develops
in time. At the time of the second pulse, which in order
to have k2=0 is applied from two opposite directions
simultaneously, the excitation has developed random
phases and reads

k

Now the nonlinear interaction produces an excita. tion
proportional to

k

which further develops in time according to

~k)( —k~
'

k )*
k

This is essentially the initial wave with k& replaced by—ki. The situation is equivalent to the case where an ini-
tial plane wave is scattered in a nonlinear medium. The
nonlinear interaction conjugates the phase of the scat-
tered wave, which is then transformed back into the
phase conjugated plane wave at time 2~. A similar case,
in a stationary situation, however, has recently been
treated by Kravtsov et al. ,

' Our result is a further man-
ifestation of the reconstructive property of the phase con-
jugated wave. As a consequence, purely kinematic effects
on the center of mass of exciton do not cause dephasing.
Dephasing is caused by mixing of the internal states,
which occurs due to a short-range disorder or in lesser
degree by taking the photon momentum fully into ac-
count.

What happens if the disorder potential fluctuates on
length scales comparable to or shorter than the Bohr ra-
dius? The excitonic transitions do not remain indepen-
dent anymore. The internal dipole is excited always into
a coherent mixture leading to stronger dephasing of the
photon-echo signal for similar reasons to those explained
in Sec. V. The dephasing rate will again be determined
by the energetic range of the excitonic states and can
therefore be rather large. A further cause of excitonic de-
phasing is a mass asymmetry (a )0) together with a
short-range disorder potential because it causes internal
exciton states to mix and the effect is similar to that
caused by the disorder. Notice that the mass imbalance
causes mixing even if the disorder is not present. Clearly,
more work is needed to investigate the influence of
short-range potentials on Wannier excitons in detail ~

VII. CONCLUSIONS

We have discussed the inhuence of static disorder on
the decay of the spontaneous photon-echo amplitude in

disordered semiconductors. The most important contri-
bution of the Coulomb interaction, the attraction be-
tween electrons and holes, is included. One might be
surprised that static disorder produces irreversible phase
relaxation at all. Scattering on impurities is a purely
coherent process, there is no phase relaxation whatsoev-
er. Also Anderson localization is a coherent constructive
interference of enhanced backscattering of partial waves.

The key for understanding this puzzle is provided by
looking at quantum beats in n-level systems. We have
pointed out that whenever more than one state is dipole
coupled to a given ground state, quantum beats occur,
which for an inhomogeneous infinite ensemble of such
systems add up to a decaying nonlinear signal. There is a
finite long-time value of the nonlinear signal, if only a
finite number of states is dipole coupled to a given ground
state. On the other hand, complete relaxation occurs if
infinitely many excited states with a dense energy spec-
trum are coupled to a given ground state. This corre-
sponds to delocalization within a disordered conduction
band. The argument also applies if a single excited state
is dipole coupled to more than one ground state. We can
also have the dipole coupling of several ground states to a
group of excited states. An optical selection rule has
been shown to lead to a nondecaying signal. Special cases
are an ensemble of uncoupled two-level absorbers and a
perfect crystal, both without Coulomb interaction.

The Coulomb interaction has been shown to stabilize
the photon-echo amplitude. The special case of Wannier
excitons in a long-range disorder potential closely resem-
bles a time-resolved configuration, where a plane wave is
reconstructed within the scattering nonlinear medium
due to phase conjugation. This corresponds to a constant
photon-echo amplitude. Again in this situation there is
no mixing of more than one exciton state in an optical di-
pole transition. All interactions which lead to an admix-
ture of different excitonic states, in particular a short-
range disorder potential, produce a decay of the photon
echo. It remains an open question, whether the exchange
contributions to the Coulomb interaction, which have
been ignored in the present treatment, can be an addi-
tional source of phase relaxation. This problem seems to
require heavy computation work which is in progress to
find a definite answer.

Finally we may speculate as to what one should expect
in various real situations. First of all one must remember
that we have neglected all other relaxation mechanisms
except the scattering due to disorder. Hence our results
are describing only situations in which disorder scatter-
ing is the dominating decay mechanism. We base our
speculation on the simple trends obtained; fast dephasing
is related to short-range disorder and slow decay is relat-
ed to long-range disorder. Amorphous semiconductors
are characterized by a strong short-range disorder, which
seems to mask excitonic effects. In addition, for not too
high photon energies electrons and holes are located en-
ergetically in states with quite different character. Either
the electrons are localized and the holes are free or vice
versa. We expect a very fast phase relaxation in this case.
If one were able to produce electrons and holes, both in
localized states, we expect an initially decaying signal
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with a finite long-time value which increases with increas-
ing localization. This situation can be expected in mixed
crystals, which have band tails of finite width. A small
enough photon energy then excites only localized parti-
cles.

The Coulomb interaction has an additional stabilizing
effect on the photon-echo amplitude. For bound exci-
tons, we found that there is a long-time value, which is
proportional to the Bohr radius to the power —4d. No
dephasing at all due to disorder is obtained for excitons
in a long-range disorder potential, independent of the
strength of the disorder amplitude. This result could ex-
plain the extremely long dephasing times observed in
CdS„Se& „. If the disorder is due to Se and S clusters
with linear dimensions larger than the Bohr radius, we
would not expect a direct inftuence of disorder on the de-
phasing. There is, however, an indirect inhuence related
to the electron-phonon coupling. This interaction is
supressed for excitons strongly localized in the static po-
tential Auctuations due to small spatial overlap of the
states involved in the interaction (hopping). The puzzling
result that Al Gas& As shows a much faster photon-
echo decay' [however, still slower than that of the binary
system GaAs (Ref. 4)] suggests that the disorder in this
ternary alloy might be of short-range character.

Finally we suggest that dephasing of excitons in quan-
tum wells' or superlattices is not related directly to dis-
order. Interface roughness is usually reported to consti-
tute a long-range disorder perturbation, ' which has no
direct dephasing inhuence on Wannier excitons according
to our result. It is the exciton-exciton or exciton-phonon
interaction which leads to dephasing. For quantum dots
in a glass matrix very short dephasing times have been

I

measured. There the disorder is most certainly short
range if compared to the relevant electron-hole length,
i.e., the diameter of the dot. This could explain the short
dephasing time. Electron-phonon (or exciton-phonon) in-
teraction has not been treated explicitly here. We note
that the interaction rate and thus the dephasing rate due
to this quasiparticle coupling depend on disorder. Work
is in progress to investigate this indirect inhuence of dis-
order on dephasing interactions.
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APPENDIX

In this appendix we show how the results for Wannier
excitons in Sec. VI can be obtained using the equations of
motion for the macroscopic expectation values in the
continuum limit. This approach is completely equivalent
to that used in the main text. In this formulation the
physical contents of some of the approximations made
are more transparent. We describe the kinetic motion
with an effective mass Hamiltonian and the disorder
through effective disorder potentials for electrons and
holes. The values of the disorder potentials have then a
random character. The resulting equations of motion are
given by

B,p(r„rz)+i cps
— V', — Vz ——[V, ( r, —rz )

—4, (r, ) —4, (rz)] p(r„rz)2 A 2 1

mh
'

m,

LP
[&(ri rz)E(r„t) —E(r„t)n (ri rz) —E(rz t)n (11 rz)]

r

B,n'(r„r )+z(V, —Vz) ——[@,(r, )
—N, (rz)] n'(r„rz)= [E(r„t)p(r„rz, t) E(rz, t)p*( z, r, )]-,

2m,
(Al)

n (ri rz)+ (Vz Vi) [C'u(rz) +.(ri)] n (ri rz) [p(ri rz)E(rz ) p '(rz ri)E(r„t)],
2m„

where mh and m, are the hole and electron efFective masses. V,h denotes the Coulomb potential and @, and +, are the
local disorder potentials for holes and electrons, respectively.

Following the same iteration scheme as in Sec. IV we obtain the equations

Bp(r„rz)"'+i co — V', — Vz ——
[ V, (~r, —

rz~ ) —@,(r, )
—4, (rz)] p(r, , rz)I"= ~ 6(r, —rz)E, (r, , t),

mh

B,n'(r„rz)' '+ (V& —Vz) ——[@,(r, ) —@,(rz)] n'(r, , rz)'z'= ~ Ez(rzt)p*(rz, r, )"',
me

&,n (r~, rz)"'+ (V',—V', ) ——[@.(rz) C.(ri)] n (ri rz) = p ( 2 1) Ez(rl t)
2mh A'

(A2)

&,p(r), rz) +i cos—(3)
2mb

V', — Vz ——
[ V, ( ~r, —

rz~ ) —@,(r, )
—&b, (rz)] p(r, , rz)' '

me

[Ez(r„t)n'(r&, rz)' '+Ez(rz, t)n (r&, rz)' '] .



8944 BENNHARDT, THOMAS, WELLER, LINDBERG, AND KOCH 43

For our treatment of the spontaneous photon echo we again have omitted all the contributions that do not inAuence the
lowest-order signal. We continue by transforming the equations into relative and center-of-mass coordinates, which
yield

8 p(r, R)'"+i.co — V'
2M 2

2 1 me mhV'„——V( ~r~ ) —4, R+ r —4&, R— rp„' R ' ' M ' M
-p(r R)"'

5(r)E, (t)e

i3, n'(r, R)' '= ~ E2(t)e ' " p*( —r, R+ar) ",
(A3)

2 1 m, mh
i) p(r, R)' '+i ~ — V — V ——V (~r~) —4& R+ r —@, R— r

g 2M 8 2p M M
.p(r, R)' '

(R+i, ~M~ ) (~~ k~ (R
n rR j.

We have again neglected the internal dynamics in the equations for the populations, because we assumed that the pulse

duration is so short that the system only responds to the pulse. We combine the two population equations by introduc-

ing a total population function f,
(A4)

This substitution leads to

8 p(r R) +i co — V — V' —— V (~r~) —4 R+ r —4 R — r(]) . A 2 A 2 1 me mI,

2M 2p M M p(r, R)'"

5(r)E, (t)e

52p — ik& R
a,f(r, R)i i= "E,(t)e ' p*( —r, R+ar)"', (AS)

i3 p(r R) +i co — V — V ——V (~r~) —4 R+ r —@ R—(3) ~ 2 ~ 2 me

2M ' 2IMex

m j
M' p(r, R)' '

E~(t)e ' f(r, R)' '

In this set of equations the internal and relative motion
are still coupled as can be seen by the appearance of the
factor a.. So far no approximations concerning the prop-
erties of the disorder have been made. This set of equa-
tion is still equivalent with the formal result (29) in the
continuum limit. Physically, however, the continuum
limit can be used only if the disorder is of long range.
The kick of the photon is manifested in this formulation
by the appearance of the spatial-dependent phase factors
which actually in quantum mechanics represent momen-
tum shift operators.

With the assumptions discussed above we can solve
Eqs. (AS) and we obtain for the third-order polarization
at t =2& the expression

3

where the Hamiltonian is given by

HR = — V~ +4&, (R)+@,(R) .
2M

The polarization density needed for the evaluation of the
observed intensity is obtained by setting r=O. The for-
mal divergence disappears because the expression must
also be divided by the volume of the sample. A more
careful evaluation gives the density as a multiplier. The
observed intensity is, hence, given by

p(r„rz, 2~)' '= i ~ E 2E i 5(r)e— =)(k/e ' "'e ' e R
/

—k &/' (A8)

i2k2 R ittRr —iki.R)~ (A6) as we obtained using the formal expression too.
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