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Variational thermodynamic calculations for liquid transition metals
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We present calculations of the Helmholtz free energy of three series of liquid transition metals
performed by using the Gibbs-Bogoliubov variational method with a hard-sphere reference system.
In order to observe the role of the s- and d-like electrons, the interaction is evaluated by extending
the nearly-free-electron theory of simple metals to include the effects of transition-metal d states.
For the 3d series, our results for the free energy compare fairly well with those given in the litera-
ture, and the packing fraction lies in the same range as that of simple metals, for all transition met-
als.

I. INTRODUCTION

The thermodynamic properties of liquid metals are fre-
quently studied by combining the Gibbs-Bogoliubov vari-
ational method and the second-order, pseudopotential
perturbation theory. While simple liquid metals have
been fully investigated, ' relatively few studies have
been carried out up to now on the thermodynamics of
liquid transition metals. Itami and Shirnoji have in-
volved the s-d hybridization effects in the calculation of
energy, by means of a term which is inversely proportion-
al to the sixth power of the interionic distance, but they
have neglected the band-structure energy. On the other
hand, Aryasetiawan et al. omitted the s-d hybridization
when they combined the variational method with a semi-
empirical tight-binding model describing the interionic
potential energy. Nevertheless, their work sheds some
light on successes and shortcomings of the model and al-
lows one to envisage further developments.

With the recent expression of the interionic pair poten-
tial for the liquid transition metals elaborated by Wills
and Harrison (WH) our knowledge should advance sub-
stantially, since the band-structure energy of the metal is
no more than a sum of pair potentials interacting be-
tween ions, and the effect of s-d hybridization is included.
The WH pair potential has been used for the determina-
tion of surface properties of noble metals and for the
evaluation of the structure and entropy of the 3d transi-
tion series, in the liquid state. '

In the present paper we use the variational method
with a hard-sphere Auid as a reference system and the
WH formulation of the d-band structure to make the cal-
culation of the Helmholtz free energy of three series of
liquid transition-metal elements. It will be seen that the
theory predicts the thermodynamic properties of liquid
transition metals approximately as well as the corre-
sponding theory in the simple metals.

II. FORMALISM

The evaluation of the Helmholtz free energy F of the
system of interest requires a method based on the Gibbs-
Bogoliubov inequality, which states that one can reason-

ably approximate the free energy F by that of an ap-
propriate reference system. In this method the free ener-
gy F of the transition metals, per ion, can be expressed in
terms of the free energy of the hard-sphere (HS) reference
system plus a perturbation term, and thus

F ~F (r))+Eo+ f d r g (r, rI)u(r) —TS,
&

.

Here F (r)) is the free energy of the HS system given by
3/2

2aMk& T —+1
2 N

F (i))= —kiiT ln

(2)

The first term on the right-hand side of Eq. (2) is the
ideal-gas free energy, per ion, of N identical particles with
mass M in the volume V, while the second term is the
Carnahan-Starling' equation of a HS system with pack-
ing fraction as a function of diameter o.

[i)=(vr/6)cr X/V]
For simple metals, the calculations in wave-number

space have proven quite successful. In contrast, for tran-
sition metals where an inverse-power form of the pair po-
tential takes place, the calculations have to be made in
real space. It is found that the HS radial distribution
function, which is taken to be that given by Throop and
Bearman, " is conveniently solvable numerically and
seems to guarantee a degree of success. For the volume-
dependent contribution Eo and the effective pair poten-
tial u(r ), which determines the response of the metal to
the arrangement of the ions at constant total volume, we
used the WH expression. On the other hand, the entropy
of the electron gas S,&

cannot be neglected in the case of
liquid transition metals because of the large values of the
density of states for d bands nd(EF), at the Fermi level.
The electronic entropy may be written

S„= kii T[n, (EF)+nd(EF)] .
3

In order to be consistent with the WH prescription, the
rectangular model, suggested by Friedel, ' has been used

43 8924 1991 The American Physical Society



43 VARIATIONAL THERMODYNAMIC CALCULATIONS FOR. . . 8925

to evaluate the density of d states.
In the WH formulation of the transition-metal poten-

tial the nearly-free-electron theory of the simple metals is
extended to include the effects of the transition-metal d
band, so that the pair potential can be written (in atomic
units)

Except for a slight modification of the s-like electrons
term, the volume-dependent contribution Eo is given, ac-
cording to the WH description, by

4~Z2e 2

Eo =F-Eo
2

28. 1
u (r) =usM(r)—

225
2 d 8

1/2 3
12 Zd r

Zd 1—
n 10 r'

(4)

—lim 2~Z, e— vA

q o ~ 4me kz
G(q)

q

In this equation EEz is the sum of the kinetic energy and
the exchange-correlation energy of the uniform electron
gas. Its explicit expression is (in atomic units)

The first term usM(r), which corresponds to the e6'ective
pair potential in the simple metals, is given by

Z2
u (r)= '

1 ——fF (q) dq (5)

and must be numerically calculated with the classical ex-
pression of the normalized wave-number —energy charac-
teristic,

F~(q ) =
2

iUD(q ) 1—
4we2Z, &

1

e(q)
1

1 —G(q)

where wo(q ) is the form factor and e(q ) is the dielectric
function. To perform our calculations we used the Ash-
croft' empty-core model potential and the two functions
of Vashishta and Singwi' (VS) and of Ishimaru and Ut-
sumi' (IU) as the local-field exchange-correlation func-
tion G(q). The second term in Eq. (4) results from a
treatment of the overlap between d states on different
ions combined with Friedel's rectangular model of the
density of d states. The third term, varying as r, is a
correction to the previous term and can be seen as a shift
of the d-band center due to nonorthogonality of d-like
states. The last two terms involve the coordination num-
ber n, the d-state radius rd, and the number of valence
electrons Z, on each ion site.

Zs 2.21

rs
+0.031 lnr, —0. 115

rs

where r„such as r, =(3/4w) V/XZ„ is the radius of the
sphere that contains one electron, on average. The
second term in Eq. (7) represents the self-energy between
an ion and its surrounding cloud of charge, whereas the
last term corresponds to the rearrangement of various en-
ergetic contributions that come from the standard deriva-
tion performed by Hasegawa and Watabe. ' We have to
note that in their formulation the parameter R, of the
empty-core model potential, usually contained in the
Hartree energy, is missing. On the other hand, the long-
wavelength limit of the local-field exchange-correlation
function appears in Eq. (7) through the parameter y,
since

2

G(q)=y +O(q ) .
kF

III. APPLICATION TO THE LIQUID
TRANSITION METALS

From the form of the expressions of u(r) and Eo, we
can see that only a small number of parameters are neces-
sary to predict the transition-metal energy. We believe
that certain parameters can be kept for the liquid state,

TABLE I. Transition-metal parameters of the 3d series. Zd is the number of d electrons, d is the
nearest-neighbor distance, rd is the d-state radius, Pd and PHs are the contributions to pressure from
the d electrons and the hard-sphere model, respectively (in 10 energy a.u. per volume a.u. ), r, is the
electron-density parameter, and R, is the empty-core radius.

Sc
T1
V
Cr
Mn
Fe
Co
Ni
CU

Zd

1.5
2.5
3.5
4.5
5 ' 5

6.5
7.5
8.5
9.5

d (a.u. )

6.253
5.578
4.957
4.722
4.234
4.692
4.739
4.711
4.832

rd (a.u. )

2.344
2.042
1.853
1.701
1.626
1.512
1.437
1.342
1.267

—0.727
—1.716
—2.760
—3.346
—2.694
—2.184
—1.429
—0.596
+0.164

pHs

0.374
0.446
0.630
0.685
0.442
0.603
0.614
0.608
0.449

r, (a.u. )

2.841
2.748
2.537
2.450
2.532
2.421
2.388
2.378
2.427

R, (a.u. )

1.461
1.731
1.656
1.625
1.674
1.372
1.170
0.965
0.807
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TABLE II. Transition-metal parameters of the 4d series. Symbols are as in Table I.

Y
Zl
Nb
Mo
TG

Ru
Rn
Pl)
Ag

Zd

1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

d (a.u. )

6.718
6.010
5.403
5.151
5.110
5.009
5.085
5.200
5.461

rd (a.u. )

2.987
2.665
2.420
2.268
2.098
1.985
1.872
1.777
1.682

Pd

—0.549
—1.345
—2.301
—2.672
—2.334
—1.478
—0.612
+0.134
+0.542

pHs

0.221
0.358
0.603
0.727
0.702
0.717
0.616
0.478
0.283

r, (a.u. )

3.369
3.039
2.785
2.660
2.579
2.554
2.580
2.626
2.744

R, (a.u. )

1.987
2.034
1.934
1.805
1.598
1.329
1.100
0.850
0.694

while others have to be changed. Thus, as has been advo-
cated by WH, the number of electrons per ion in free-
electron-like states (Z, ) is taken to be 1.5 for all transi-
tion metals, with the exception of gold, for which Z, =2.
The number of d electrons (Zz) can then be easily ob-
tained since the total number (Z) of s and d electrons is
known (Zz =Z —Z, ). On the other hand, though u(r ) is
not strictly structure independent, because of the pres-
ence of n ', we have maintained n constant to 12 for
all transition metals in the liquid state. In fact, we have
numerically checked that the results are not too sensitive
to the choice of the value of n lying between 8 and 12.

It emerges from the WH work that the model is
specified by two other parameters obtainable from the
free-atom characteristics. One parameter is the radius R,
of the empty-core model potential and the other is the d-
state radius rd, which can be directly calculated in terms
of atomic wave functions. However, for the latter, it is
preferable to use adjusted values in fitting the d band-
width. ' To treat all the transition metals on an equal
footing, we have adopted the values of rd quoted by WH
and we have fitted the core radius R„in requiring the
cohesive energy to be the minimum at the observed
volume of each liquid metal. This procedure of fitting is
based on the condition

(F~ +Et, +F., +F ) =0,
BV

(10)

where Ef consists of the electron-gas energy EE& and of
the contributions of the simple metals, namely, the
Madelung energy and the Hartree energy

Zs 2.21
f 2 „2

S

+0.031 1nr, —0. 115
r

1.8Z 3R
+

r r3
S S

The two following terms in Eq. (10) account for the
effects of transition-metal d bands and are connected to
the last two terms of Eq. (4). They are written as follows:

3

Eb = —15.45n '
Zd 1—Zd rd

10
(12)

6

E, =11.4nZd
d

(13)

R, =
—,'[ —4.42r, +(0.916+1.8Z, )r, +0.031r, j

8mr,

9 (p~+pHs»

where

a g~HS
p~ = — (Eb +E, ), pHs =—

av '' av

(14)

(15)

In estimating the HS contribution to the pressure we
have adopted the value of q=0. 45 for all transition met-

where d is the nearest-neighbor distance. The last term
in Eq. (10) is the free energy of the HS fluid, already given
by Eq. (2). Resolving Eq. (10), we find the core radius R,
for the liquid state, such as

TABLE III. Transition-metal parameters of the 5d series. Symbols are as in Table I.

La
Hf
Ta
W
Re
Os
Ir
Pt
Au

Zd

1 ' 5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9

d (a.u. )

7.057
5.911
5.406
5.181
5.181
5.057
4.110
5.246
5.452

rd (au. )

2.987
2.722
2.533
2.401
2.268
2.136
2.042
1.966
1.909

Pd

—0.675
—1.427
—2.372
—2.460
—1.676
—0.907
+0.134
+0.954
+ 1.249

pHs

0.136
0.446
0.689
0.868
0.919
0.924
0.750
0.525
0.312

r, (a.u. )

3.466
2.983
2.818
2.717
2.610
2.566
2.579
2.641
2.479

R, (a.u. )

2.328
1.948
1.985
1.791
1.388
1.086
0.697
0.781
0.633
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FIG. 1. Packing fraction obtained from the variational
method with the Ichimaru-Utsumi local-field exchange and
correlation function, for the three series of liquid transition met-
als. The arrows indicate the tendency observed when the
exchange-correlation effect is absent.

als. Besides this, since the d bands are likely to be little
modified from the solid state to the disordered state, we
have taken the values of pd from WH. All the relevant
parameters used for the calculations are displayed in
Tables I—III.

IV. RESULTS AND DISCUSSION

The free energy has been calculated variationally, as
described in Sec. II, with the Hartree dielectric function
as well as both the VS and IU local-field exchange-
correlation functions, in order to investigate the effect of
the interacting electron gas. In Fig. 1, we have represent-
ed the variation of the packing fraction calculated with
the IU local-field function, across the three transition-
metal series. The first point revealed in Fig. 1 is that g
passes through a maximum in the middle of the 3d and
4d series, while the tendency is inverted for the Sd series.
The second point concerns the local-field function. With
the exception of Sc and Y, it is found that the exchange-
correlation effect gives the greatest value of g when the d

FIG. 2. Pair potential of Sc. The closed circles correspond to
the total potential, the triangles to the s-like contribution
without exchange-correlation effect, the crosses to the s-like
contribution with IU dielectric function, and the squares to the
d-band contribution.

band is half empty, and the smallest one when the d band
is filled to a large extent. While the difference between
the two local-field functions is very small, we notice that
the values gvs obtained with the VS function lie between

9IU and 7jH
We have displayed in Tables IV—VI the values of the

packing fraction and the free energy calculated with Eq.
(1). The values of g, obtained by fitting to the first peak
of the liquid structure factor, ' have also been reported
for the 3d transition series. Although slightly smaller,
the calculated packing fractions are reasonably close to
that of q, except for Sc, Mn, and Ni. Hence, we expect
that the results for entropy are in as good agreement with
experiments as those of Meyer et al. ' Incidentally, note
the very good agreement for Pt with a value of

=0.468 quoted by the authors.
The electronic contribution to the entropy, which

remains a small correction to that of the HS reference
fiuid ( —10%), has been calculated using the rectangular
model for the density of d-like states [nd(E~) = 10/Wd ]
with the bandwidth 8'd taken from Harrison. ' It is
worth noting that the d-band contribution to the entropy
is about five times that for the electron gas.

TABLE IV. Packing fractions and free energies (in a.u. ) calculated with the variational method, for
3d transition series (H, Hartree; VS, Vashishta and Singwi; IU, Ichimaru and Utsumi; gHs, packing
fraction fitted to the experimental structure factor).

Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu

0.3525
0.4150
0.4175
0.4425
0.5000
0.4350
0.4200
0.4050
0.4175

FH

—0.7347
—0.7042
—0.7652
—0.7573
—0.6864
—0.7430
—0.7519
—0.7564
—0.7456

Ivs

0.3300
0.4150
0.4200
0.4450
0.5075
0.4300
0.4050
0.3800
0.3825

Fvs

—0.7546
—0.7304
—0.7983
—0.7939
—0.7205
—0.7762
—0.7845
—0.7901
—0.7797

IIV

0.3250
0.4175
0.4250
0.4450
0.5150
0.4300
0.4000
0.3725
0.3700

—0.7558
—0.7344
—0.8029
—0.7988
—0.7258
—0.7781
—0.7852
—0.7913
—0.7827

9HS

0.43
0.437
0.436
0.445
0.449
0;438
0 444
0.442
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TABLE V. Packing fractions and free energies (in a.u. ) calculated with the variational method, for
4d transition series (symbols are as in Table IV).

Y
Zf
Nb
Mo
Tc
Ru
Rh
Pd
Ag

0.4250
0.4645
0.4645
0.4745
0.4850
0.4600
0.4400
0.4400
0.4500

—0.6369
—0.7112
—0.8000
—0.8435
—0.8437
—0.8502
—0.8122
—0.7896
—0.7501

Qvs

0.4250
0.4725
0.4675
0.4825
0.4875
0.4575
0.4300
0.4175
0.4125

Fvs

—0.6508
—0.7344
—0.8291
—0.8748
—0.8515
—0.8770
—0.8372
—0.8165
—0.7784

IIv

0.4250
0.4775
0.4725
0.4875
0.4900
0.4575
0.4275
0.4100
0.4000

Frv

—0.6538
—0.7404
—0.8357
—0.8807
—0.8555
—0.8781
—0.8379
—0.8196
—0.7843

The treatment of the exchange-correlation effects con-
tributes to the lowering of the free energy on the order of
5%. Our results of the free energy for the 3d series com-
pare fairly well with those of Hausleitner and Hafner.
According to the calculations, the IU local-field function
leads to a lower variational upper bound to the free ener-
gy than the VS function, for all transition and noble met-
als. However, in contradistinction to what happens in
the simple metals, the VS function yields the lowest
minimum variational for the volume-independent contri-
bution of the free energy. This point reveals the primor-
dial role of the volume-dependent contribution [Eq. (7)]
to the energy.

Considering that the free energy does not change very
much when we take into account the exchange-
correlation effects, it seems most useful to inspect the pair
potential that would be more sensitive to them, although
it is not clear to what extent the pair-potential concept is
justified, due to the strong mixture of fairly-localized-d
and nearly-free electrons in the transition metals. Some
authors proposed new promising techniques for calculat-
ing some properties, such as the structure of defects in
crystalline solids, ' ' which avoid the ambiguities of the
pair potential. Nevertheless, one usually expects
transition-metal potentials to be much shorter ranged
than for simple metals. In Figs. 2—4, we compare the
contribution of the d band, uz(r ), to the total pair poten-

"d
r =1.598 1/3

Zd1—
10

uq(r )= —0.322Zq 1—
8/3

Zd

10 2
"d

(16)

(17)

According to Eqs. (16) and (17) we observe that the more
pronounced is the uz(r ) the more the position r moves
toward low r. In addition, for the three transition-metal
series, the attractive well is smaller at the end than at the
beginning of the row, but it is for the elements of the mid-
dle of each row that the minimum is deeper [i.e.,
uz(r )=0.057 a.u. for Sc, 0.102 a.u. for Cr and 0.010

tial u(r) for three representative 3d transition metals. It
is found that the d band has a similar effect to that of the
exchange-correlation, though amplified when the d band
is half filled, in the sense that the repulsive part of u ( r ) is
drawn into lower r and that its attractive part is deeper.
Thus both the d-band and exchange-correlation effects
tend to reduce noticeably the range of the strong
screened Coulomb repulsion between ions. In the case of
the d band we can provide a general argument about the
magnitude of its eifect on u (r ) by calculating the position
r and the depth uz(r ) of the attractive well associated
with the d band,

TABLE VI. Packing fractions and free energies (in a.u. ) calculated with the variational method, for
5d transition series (symbols are as in Table IV).

La
Hf
Ta
W
Re
Os
Ir
pt,

Au

0.5300
0.4525
0.4600
0.4575
0.4625
0.4550
0.4600
0.4850
0.5150

—0.5573
—0.7720
—0.8306
—0.9016
—0.9631
—0.9602
—0.9371
—0.8078
—1.3295

/vs

0.5375
0.4575
0.4650
0.4625
0.4600
0.4475
0.4450
0.4700
0.4925

Fvs

—0.5768
—0.7950
—0.8595
—0.9303
—0.9883
—0.9854
—0.9681
—0.8348
—1.4038

IIU

0.5525
0.4650
0.4675
0.4650
0.4600
0.4450
0.4400
0.4650
0.4975

FIv
—0.5841
—0.8002
—0.8665
—0.9355
—0.9896
—0.9861
—0.9728
—0.8384
—1.4185
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FIG. 3. Pair potential of Cr (symbols are as in Fig. 2). FIG. 4. Pair potential of Ni (symbols are as in Fig. 2).

a.u. for Nij.
Another feature that is apparent in Figs. 2—4 is the dis-

placement of the pair potential curve u(r) underneath
the abscissa axis, in the range of r between the first- and
the second-nearest neighbors. This behavior, induced by
the d-band contribution, might have an inhuence on the
calculation of certain selected physical properties. The
WH potential has already been tested with respect to the
structure of liquid 3d transition metals by means of per-
turbation theory and it has been pointed out that if the
WH potential is good enough for the repulsive-core ap-
proximation, no decisive improvement is obtained when
the attractive tail is considered. Nevertheless, the new
thermodynamically self-consistent integral equation
for the determination of the structural properties of
liquids appears to be a more promising procedure. This
scheme, which combines the hypernetted-chain and the
Percus-Yevick equations, leads to a significant improve-
ment compared to conventional approximations. Calcu-
lations using this integral equation with the WH pair po-

tential are in progress and are planned to be published
shortly.

In summary, the WH pair potential has been used to
perform the calculations of the thermodynamic proper-
ties of liquid transition metals and the results point to a
qualitative agreement in the packing fraction for the
three series. On the other hand, the role of the
exchange-correlation contribution has also been clearly
shown, although the most important effect is that of the d
band, which is particularly sensitive in the middle of each
row.
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