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Spin scaling of the electron-gas correlation energy in the high-density limit
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The ground-state correlation energy per particle in a uniform electron gas with spin densities n
~

and nt may be expressed as e, {g,r, ) =I{(,r, )E.,(0, r, ), where r, =[3/4m {nt +n t )]'~' is the density
parameter and g=(n t

—n i )/(n t + n t ) is the relative spin polarization. We find an analytic expres-
sion for the spin-scaling factor {SSF)I{(,r, ) in the high-density limit r, ~0. It decreases from the
value 1 at (=0, approaching the value —,

' with slope —Oo as g approaches 1. A simple approxima-

tion to this SSF which displays the correct qualitative behavior is g'{g), where

g{g)=[(l+g) ~'+{I —g) ']/2. We find that g{g) is the SSF for the coefficient of the ~Vn~'/n ~'

term of the spin-density gradient expansion of the exchange energy, and a good approximation to
the SSF for that of correlation: C „{g) /C (0)=g {g) and C, {g, r, ~0) /C, {0,r, ~0)=g {g). We
also find that the

~

Vg~' contribution to the correlation energy is always negligible.

I. UNIFORM ELECTRON GAS

Although it is possible to evaluate the random-phase-
approximation (RPA) correlation energy of a uniform
electron gas exactly for all densities n and spin polariza-
tions g from the von Barth and Hedin (vBH) formula, '

such a calculation would involve a two-dimensional nu-
merical integration. In this work, we present an analytic
form for the spin-scaling factor (SSF) which, in the high-
density limit, scales the correlation energy of the
paramagnetic state (/=0) to that of an arbitrary spin-
polarized state (g). This study is motivated by the fol-
lowing observations. (1) vBH have already given an ap-
proximate spin-scaling factor for correlation in a parame-
trization of their numerical RPA results. ' However,
their SSF is based upon the spin scaling for exchange. In

the low-density limit (r, ))1), the beyond-RPA correla-
tion energy is proportional to 1/r, like the exchange ener-

gy. Hence, it is reasonable that the correlation energy
might scale the same way as exchange does. But in the
high-density limit r, —+0, where the relative error of the
RPA vanishes asymptotically, the correlation energy
diverges like lnr„much more weakly than the 1/r, of
the exchange energy. Therefore we cannot expect the
vBH scaling to be accurate in this limit. (2) A better
knowledge of the spin dependence of the correlation ener-

gy in some limits (e.g. , r, ~0 and r, ~ Oo) can provide an
insight into the construction of more accurate yet simple
spin-density functionals for the correlation energy.

We employ the vBH expression for the correlation en-

ergy per electron of a uniform electron gas with spin den-
sities n t and n t (in atomic units where A'= e =I = 1):

E, (g, r, )= — f ™
dW' I dQ Q [a&(Q, W) —in[1+a&(Q, W)]],

(cr, ) 0

where c =(4/9n)'/ and

r, =(3/4irn )'

n =n&+n&,
CP'

2 2
a&(Q, 6')= [xiP(xiQ, xi&)+x2P(x2Q, x2W)],4~

(2)

(3)

(4)

pr2+ 2 4

P(Q W)= . 1+ ln
Q2 4Q3

x, =(I+g)-'/3,

x, =(1—g)-'/3,

g=(nt —n&) n/.

W +Q (1+Q)
W +Q (1—Q)

8' + 2

arctan
W

2

+arctan 8

Here kF = 1/cr, is the Fermi wave vector, while

Q =k/2k+ and &=co/2kF are reduced expressions for
the wave vector k and frequency co of dynamic density
fluctuations.

If P( Q, 8') were bounded, we could expand
in[1+a&(Q, W)] in powers of r, and find that e, (g, r, )

tends to a value independent of r, as r, ~0. Thus the
correct lnr, divergence of E, (g, r, ) arises from the 1/Q
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singularity of /3(g, W) as Q —+0. Note that for small

Q (Q « 1), /3(Q, W) has the following structure: s, (g, r, )= — f ™
du f dQ Q' —,'a~&(g, gu)

(cr )2 0 Qo

22R(u)+O(g uo), u &1

P(Q, W)=
2

R (u)+O(g u 2), u )1,

where

(9)

(10)
where

3 f du G&(r„u ),8~'

Gr(r„u)= f dQ Q [x,p(x, g, x2gu)
Qp

+x2p(x2g, x2gu)]~ .

(20)

(21)

R(u)=1 —u arctan(u ') .

[As u varies from 0 to ~, the function R (u) decreases
monotonically from 1 to 0]. Keeping only the leading
term in the small-wave-vector approximation Q « 1 (val-
id for the high-density limit), we have

All other terms contribute at most a constant indepen-
dent of r, to the correlation energy in the limit r, ~0. To
find the r, dependence of Gr(r„u), we diff'erentiate it
with respect to r„
BG~(r„u ) = —

Qo [x,P(x, Qo, x,gou )
Br,

P(g, W)= R (u)= 2
(13)

+,p(x, g„x,g, u)]
Br,

(22)

for any u. Gell-Mann and Brueckner have arrived at a
similar expression. However, we stress here that they
did not give a spin-dependent version of their derivation.

We split the Q integration in Eq. (1) into two parts,

Since Qo « 1, we have

BGg(r„u) = ——[R~(u)]
07" 7"

Hence

(23)

f"dg=f 'dg+f"dg,

where Qo is a critical point which is determined by

a((go, W)=1 .

Explicitly
1/2

Cf'

Qo= R~(u)
2m

with

R&(u)= R(x, u)+ R(x2u) .
1 1

X) X2

(14) G&(r„)u= —2[R&(u)] lnr, .

It follows that

where

= A (g)lnr, ,

A (g)= f du [R~(u)]4~'

For the paramagnetic state,

E,(g, r, )= — f du( —2)[R (u)] lnr,

(24)

(25)

(26)

C Q2
a (Q, W)= Rg(u)=2~g' g'' (18)

according to Eq. (13).
In the second integral of Eq. (14), the integrand has a

power expansion around a&(g, W) =0,

Hence, in the first integral of Eq. (14), Q can be con-
sidered very small everywhere. a&(g, W) is thus well ap-
proximated by

A(0)=
3 f du[2R(u)]4~'

(1—ln2) =0.031 09071

7T2

recovers the original result of Macke.
Define the SSF for the correlation energy as

(s, r, )
1(g)=

(s0, r, )
(28)

Q2Ia~(g, W) —in[1+a~(g, W)]]

=Q2[ —,'a~(g, W) —
—,'a~(g, W)+ ) . (19)

Then we have, in the high-density limit (r, ~0),

A (0)
Inserting Eqs. (14), (18), and (19) into Eq. (1), we find that
only the first term in the series (19) is responsible for the
logarithmic divergence of the correlation energy in the
high-density limit,

f d. R(x, u)R (x,u)
l+ f du [R (u)]

0

(29)
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As a check on Eq. (29), recall that

((=1, r )=—'E ((=0 r /2 /') .

In the high-density limit, Eq. (30) implies that

(30)

(31)

Equation (29) indeed satisfies this condition. We perform
the necessary integrations in Eq. (29), and find (see the
Appendix)

~»2(31+~2)+~ lln31+3 21n3 2 21n(31+3 2)
I(g) =—1+

2 2( 1 —ln2)
(32)

where

(33)

In the high-density limit, the Fourier transform of the
RPA correlation hole density is accurately approximated

4

g)1/3 (34)

As a check on Eq. (32), we evaluated the integral of Eq.
(29) numerically and found that the results agreed.

In Table I we compare I(g) with various spin-scaling
factors and with the numerical RPA for r, =0.5 and 0.01.
We see that as r, —+0, the numerical RPA ratio ap-
proaches I(g). We also observe that as g approaches its
fully polarized value 1, the SSF I(g) approaches its
minimum 0.5 with infinite slope. On the other hand, the
SSF is quite insensitive to the change of g near /=0.
These features can be well understood if we look at the
power expansion of Eq. (32) near (=0 and 1. For small
g, we find

a&z+a2z +tz3z2 3

p, (,r„k )~
[I+({3z+P z +O(r z )]

(38)

where k, =Q4/m. cr, is the Thomas-Fermi screening
wave vector and z =k/g (g)k„and where

g (g) =—,
' [(1+/)'/'+ (1—g)'/'] . (39)

a„tzz, a3, P„and Pz are constants independent of r, and
g. Now

E, (g, r, )=—f dk p, (g, r„k)
77 0

I ( g) = 1 —0.271 57$z .

But, for g near 1, we find

I (g) =
—,
' + 1.539 73(1—g) /

(35)

(36)

a&z+u2z +a3z2 3

=g (g) dz
[ I+js,z+P z +O(r, z ) ]

Clearly, in the approximation of Eqs. (38) and (40),

(40)

As a direct physical consequence of these features, the
ferromagnetic state ((=1) of a high-density uniform elec-
tron gas is extremely unstable against infinitesimal depo-
larization. The local correlation potential

1(k)= [g (4) l' . (41)

In the same approximation, the real-space correlation
hole in the high-density limit is

Bn
[nc,, (n t, n

& )] (o.= 1 or 1 ) (37) p, (g, r„R)=g (gk, ) A, (gk, R),

for the minority ( 1 ) spin diverges to —oo as $~1, to lure
more electrons into the $-spin state.

a relationship which persists for large R even away from
the high-density limit and beyond the RPA.

In Table I, we see that [g (g)] is a much more accurate

TABLE I. Various spin-scaling factors for the correlation energy of a uniform electron gas with spin polarization g in the high-
density limit, along with numerical RPA values for r, =0.5 and 0.01.

0.0
0.2
0.4
0.6
0.8
0.9
0.999
1.0

'From Ref. 8.

E,{(,0.5)'

E,(0,0.5)

1.000
0.990
0.959
0.902
0.812

0.635

E, ($,0.01)
E, (0,0.01)

1.000
0.990
0.957
0.896
0.794
0.711
0.551

1.000
0.989
0.955
0.892
0.785
0.699
0.513
0.500

I sH{g)

1.000
0.983
0.931
0.840
0.705
0.616
0.502
0.500

1

d3

1.000
0.968
0.879
0.758
0.626
0.562
0.501
0.500

1.000
0.987
0.945
0.872
0.756
0.669
0.509
0.500

Ivww(g)

1.000
0.989
0.955
0.891
0.769
0.664
0.502
0.500
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d =21/3 1+(
2

5/3 S/3 i /2

(42)

I,BH(k) =1—
—,'f (0»

( )= [(1+() +(1—g) —2]
2(2'i —1)

(43)

The last column of Table I lists the SSF of Vosko, Wilk,
and Nusair (VWN),

approximation to the SSF than d (Ref. 7) and I,BH(g)
(Ref. 1). Here

Eqs. (17) and (25) —(27) we find, in the high-density limit,

Et t/E, =(1+/)/[4I(g)] .

In conclusion, we find the spin-scaling factor for the
correlation energy of a uniform electron gas in the high-
density limit. As a decent approximation, [g (g) ] shows
the proper qualitative behavior near (=0 and 1. More-
over, as discussed below, g (g) is the SSF for the exchange
coefficient (when Vg can be neglected) and a good ap-
proximation to the SSF for the correlation coefficient of
the density-gradient expansion.

1 1+5/
IvwN(0)=1

2 1+& f(0) ~

where

o=3vr A (0)f"(0)—1=0.574082 .

(45)
II. ELECTRON GAS WITH SLOWLY VARYING

SPIN DENSITIES

The exchange-correlation energy (E„,=E +E, ) of a
many-electron system has a spin-density gradient expan-
sion

By construction, Eq. (45) is exact to order g . We plot all
these spin-scaling factors in the high-density limit in Fig.
1. Observe that IvwN(g) is slightly more accurate than
[g (g) ] for g & 0.87. However, IvwN(g) displays in-
correct behavior (i.e., finite slope) near g= l. [g(g)], on
the other hand, behaves more correctly near g= l.

The total correlation energy of the uniform electron
gas is E, = I d r nc, , (n, g). Sometimes it is of interest to
separate E, into g1, J, l, and f $ terms, where E,~ t arises
from nt alone (with no contribution from nt). From

E„,= f d'r nE„,(n, g)

+f d r[C„, (n, g)~Vnt ~
/n

&

+C„", (n, g) Vn, ~'/n 4"

+Cia(n, g)Vn&. Vn&/(n&n&) ], (48)

valid for slowly varying spin densities. By symmetry,
C„",~(n, g)=Ct,"(n, —g) and C„", (n, g)=C(~(n, g). The-
exchange coeKcients are constants: C ~ ~ =C ~ ~ and

K0I-
O

(3

O

0.5

SPIN POLARIZATION (

FICx. 1. Various spin-scaling factors for the correlation energy of a uniform electron gas in the high-density limit vs spin polariza-
tion g. I (g) is exact. See Eqs. (32) and (41)—(46).
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F.„,= f d'r[ ne„,(n, g)+C„,(n, g)iVn
~

/n i3], (49)

2/3 2/3

C„(n,g)=C„", (n, g) +Cia(n, g)

C„~ ~ =0. In the high-density limit, the correlation
coefficients C, depend only upon the local spin polar-
ization g, not upon n. A parametrization of this depen-
dence has been given by Rasolt and Davis. '

For
~ Vg~ =0, Eq. (48) simplifies to

Note that 8, is so small that the iV(i contribution to
the correlation energy is never important. In a spin-
density wave of a uniform-density electron gas, and in
some atoms (e.g., H and He), the Vn Vg contribution to
the correlation energy is zero. In some other atoms (e.g.,
Li), this contribution is positive like the iVn i contribu-
tion, but much smaller than the latter. Thus, like Hu and
Langreth, we drop the Vn. V( and iV(i contributions
to the correlation energy.

1/3 1/3

Thus the exchange coefficient scales exactly as

C„(g)/C„(0)=g (g), (51)
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C, (n, g)/C, (n, O) =g (g), (52)

with an error of less than 1%. [Equation (52) is exact at
g =0 and 1, and the error is less than 0.5% for
g (0.6.] In contrast, the spin-scaling factor d '(g) pro-

posed by Hu and Langreth for the correlation coefficient
[see Eq. (42)] makes an error as great as 5.5%. Thus we
propose Eq. (52) as a useful relationship for gradient ex-
pansions and generalized gradient approximations. '
Because the n dependence of C, (n, O) is very weak' '
within or beyond the RPA, Eq. (52) might well be valid
over a broad range of densities.

When ~V/i&0, we must add to Eq. (49) the following
terms derived from Eq. (48):

where C (0)= —0.001 667 21. (For present purposes, we
use Sham's exchange coefficient, " ignoring Kleinman's
order-of-limits problem. '

) For correlation, we use the
Rasolt-Davis parametrization' of the high-density limit
to find (see Table II)

APPENDIX A: ANALYTIC INTEGRATION
OF EQ. (29) FOR THE SPIN-SCALING FACTOR

Denote

F(y&,y2)= f du R R
0 3'& ' 12

= f du 1 — arctan
0 3'i

0
X 1 — arctan

It follows that

~F(yi yz) 1

~3~ 32

where

(A 1)

(A2)

f d r [ 2)„,(n, j)V—n Vg/[n'i (1 —
g )

i
]

+6 (n g)iVg~ n /(1 —g )
i

j (53)

G(y, ,y2) = f du 1— arctan

where 2)( —g)= —2)(g) and 6( —g)=6'(g). Table II
shows the exchange (x) and correlation (c) contributions
to the coefficients 2) and 8 in the high-density limit. Now

0
X —arctan

3'2

0
Q

2 +p
2

(A3)

TABLE II. Exchange (x) and correlation (c) coefficients for the spin-density gradient expansion, Eqs.
(49) and (53), in the high-density limit. Here C „(0)= —0.001 667 21 (Ref. 11) [or —0.002 381 73 (Ref.
12)], and C, (0)=0.004 231 5 (Ref. 10).

0.0
0.2
0.4
0.6
0.8
0.9
0.999
1.0

C„(g)
C„(0)

1.000
0.996
0.981
0.955
0.911
0.875
0.798
0.794

2)„(g)

C.(0)

0.000
0.133
0.260
0.373
0.449
0.445
0.146
0.000

6'„1g)

C„(0)

1.000
1.009
1.036
1.083
1.153
1.200
1.259
1.260

C, (g)
C, (0)

1.000
0.995
0.979
0.951
0.903
0.866
0.797
0.794

2),(g)
C, (0)

0.000
0.090
0.173
0.241
0.272
0.251
0.055
0.000

@,(s)
C, (0)
—0.037
—0.033
—0.020
—0.001

0.021
0.029
0.009
0.000
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BG (y1,y2 )

By 2

oo u+2y2 du 1 —— arctan
0

32G(3132)=—32 ——
3 132+—311 (3 +32)

y2ln(y, +y2)
3y )

1

u +y

f oo 1
du

0 2+ 2
y2 2y2

u arctan

With the help of the following results

y2

(u +y2)

(A4)

(A5)

+ - y2lny2+ A (y, ),
3y&

(A10)

2 2
y2+ ln(y1+y2)

6 y2 yl

A (y, ) +B (y, ), (Al 1)
'IT 2+ y 2lny2-

6y, y2

where A (y, ) is an undetermined function of y, alone.
Inserting Eqs. (A10) into Eq. (A2) and integrating the

resultant equation, we get

f "du u

u +y

u arctan

oo 1
du

p ( 2+ 2}2

y&+y2=—ln
2

3 )
4y

(A6)

(A7)

2 (y, )= ——y, lny, , (A12)

where B (y1) is another undetermined function of y1.
Because Eq. (Al) is symmetric in y1 and y2, we must

have

oo u 1Ty )
du

(u +y ) 4y (y, +y )

we perform the integrations in Eq. (A4) and find after
reorganization

+G =~y2 yi+ y
aG

'By,
= ' 2 ' 2 'yl+y2

y2ln(y1+y2)+ y2111y2 . (A9)
y& y&

Hence Eq. (Al 1) becomes

F (y1 y2) F (y2,y1)
2 2

y2=—(y, +y2)+ — lny2+ lny,
6 ' 6 y, y2

2 2
y& y2+ ln(y, +y2) .
y2 y&

(A13)

(A14)

Integrating this equation results in

Finally Eq. (32) is obtained after the substitution of Eq.
(A14) into Eq. (29).
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