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The conductance of the Penrose lattice at zero temperature is studied by the multichannel Lan-
dauer formula and the recursion method of the site Green functions. We have investigated the
dependence on the Fermi energy and the lattice size. The Fermi-energy dependence of the conduc-
tance studied for a system with up to 3571 sites exhibits singularly rapid and large conductance Auc-

tuation. Analysis of system-size dependence of the fluctuations with respect to energy suggests the
wave functions are critical. This critical behavior of the wave functions is more directly confirmed

by the lattice length dependence, which shows power-law decays of conductance up to a system
with about 1.32 million sites.

I. INTRODUCTION

In this paper we will study conductance of the Penrose
lattices (PL) at zero temperature following the preceding
paper' (hereafter referred to as I), where we studied the
electronic structure of the same model. As discussed in
Paper I, the electronic structures of quasicrystals (QC)
show singular behaviors that originate from their quasi-
periodic lattice structures. Our conclusion on the PL was
that the energy spectrum has a singular part but the total
bandwidth remains finite and most of the wave functions
are localized in a power law. It is quantum transport
properties such as conductance that refIect the singular
electronic structures most clearly, because the conduc-
tance is a site off-diagonal quantity and hence sensitive
not only to amplitude of the wave functions but also to
their phases. Besides, conductance is in itself an intrigu-
ing and important property which characterizes various
kinds of condensed matter. Therefore we expect that the
electronic properties and transport properties of QC be-
come clearer through the calculation of conductance of
the PL. Unsmoothness of the density of states (DOS)
would lead to singular energy dependence of the conduc-
tance, and the localized nature of the wave function
inAuences its system-size dependence. '

A singular behavior of conductance in the PL was also
pointed out by Choy, but the systems he used were not
large and the use of a finite imaginary part for energy
variable in the Green functions was unavoidable in nu-
merical computations. The above two facts made it
difficult to observe such intrinsic character, because the
finite imaginary part as well as finite temperatures smears
out quantum coherence of the wave functions; singular
electronic properties of QC, however, originate from the
interference effect of the coherent wave functions. Soko-
loff treated the transport properties of QC by applying
the Faber-Ziman scheme to the scattering time of elec-
tron propagation. He stated that the quasiperiodic struc-
tures yield no singular scattering and suggested the ex-

istence of another origin of high resistivity observed in
real QC alloys. The Faber-Ziman formula was originally
developed for liquid metals and determines the scattering
time by the Born scattering process caused by the weak
pseudopotential. Through the study of the Anderson lo-
calization problem, however, it has become clear that
essential to this problem is the correlation between two
one-particle Green functions in the response function and
also that, beyond the Born approximation, the quantum
coherence effect should be carefully taken into account.
Hence direct calculation without such approximations is
necessary for the question of whether QC have intrinsic
singular transport properties characteristic to their quasi-
periodic structures. In order to investigate such intrinsic
character in detail, we will calculate the dependence of
the conductance on the Fermi energy and on the lattice
length at zero temperature for the systems as large as
possible, using the multichannel Landauer formula,
which is free from the artificial imaginary part of energy
variables. The results will be discussed based on the elec-
tronic structure studied in Paper I.

Conductance of a one-dimensional QC, the Fibonacci
chain (FC), has been studied in great detail by many
researchers. ' One advantage of the model is that
analytical treatments are available, since the 2 X 2
transfer matrices, which determine the conductance,
obey a simple dynamical mapping. In particular, Suther-
land and Kohomoto showed that increase in the resis-
tance with the system size is bounded by a power-law
function and that the distribution of resistance values has
a multifractal character at energies within the spectrum
where the trace map tends to a limit cycle. ' As is ex-
pected, conductivity is not a well-defined quantity in this
model. As an example, Goda showed the resistance
changes the lattice length dependence from power-law in-
crease to exponential increase at the energies within ener-
gy gaps. " These unusual behaviors of the FC model
directly reAect the character of its wave functions.

It is much more difficult to study conductance of the
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PL than the FC because no analytical treatments are
available. But since the FC is rather a special model in
the QC family as discussed in Paper I, the study of QC in
higher dimensions is indispensable for deeper understand-
ing of characteristic behaviors of their transport proper-
ties. In this connection, it is worthwhile to note that
there are some essential differences between the FC and
the PL. One is the difference of the energy spectrum.
The results in Paper I showed that the PL has an energy
spectrum including a singular part but the total band-
width remains finite. On the other hand, the spectrum of
the FC is a Cantor set and the total bandwidth is always
zero no matter how small the quasiperiodic potential (or
transfer) is. ' Another important difference is the dimen-
sionality itself. In one dimension the length dependence
of conductance is completely determined by the spatial
form of the eigenstate wave function at the Fermi energy.
But in higher dimensions, since multiple eigenstates are
degenerate at a fixed energy, conductance is not dominat-
ed only by localization behavior of each eigenstate, and
mode mixing between them plays an important role. '

This paper is organized as follows. In Sec. II, we ex-
plain our method of numerical computations. In Secs.
III and IV, we show the results of numerical computa-
tions of the Fermi-energy dependence and the lattice
length dependence, respectively, and discuss the results.
Section V is devoted to conclusions. Some results of this
work have been published in short notes. In this pa-
per we present our results in more systematic form and
discuss them from various aspects.

II. METHOD OF CALCULATION

In this section, we explain our method of calculating
conductance of the PL. In general, care is necessary in
the proper definition of the conductance of finite systems.
As the definition of conductance, we apply the mul-
tichannel Landauer formula (MCLF) originally
developed in the Anderson localization problem, because
in this formula there is no ambiguity in defining conduc-
tance even for finite systems. The reason for giving finite
conductance is that the MCLF defines conductance in a
configuration where the relevant finite system is connect-
ed to two lead lines of infinite length, and consequently
the total system has a continuous energy spectrum. In
the original formula by Anderson et aI., the MCLF
defines conductance by the scattering matrix in this
configuration; later Lee and Fisher'" rewrote the formula
in terms of the site Green functions, which proved
effective in calculating length dependence. But to apply
the Lee-Fisher expression to our case, several
modifications are necessary, since the PL is topologically
nonperiodic. We would like to point out that another
efficient scheme —the transfer-matrix method' '—
cannot be applied to the PL. This is due to the existence
of a special scattering mechanism in QC. We will return
to this point at the end of Sec. IV. In contrast, with ran-
dom potentials on a regular lattice, careful selection of a
pattern of PL as a scatterer is needed in order to reduce
undesirable scattering originating from the scatterer
boundaries and the interfaces to the lead lines, which

A. Direct method

The MCLF defines conductance as follows. In the
configuration where the scattering boundary condition is
imposed to the lead lines, the amplitudes of the scattering
waves b are related to the incident wave amplitudes a
through the scattering matrix S, which describes the
scattering processes by the scatterer:

b~ t r'
=S

b~ a~ aR

left
lead line

scatterer right
lead line

FIG. 1. Con6guration of the MCLF. The shaded central

part is the scatterer and a unit cell of the PPL is shown. (The

right end column is attached to make the interface regular. )

Lead lines are attached on both sides. The periodic boundary
condition is imposed in the vertical direction and the system

then has a cylindrical shape.

scattering would smear out intrinsic transport properties
otherwise. The periodic approximations of the PL used
in Paper I are appropriate for this purpose because we
can reduce the surface scattering by imposing the period-
ic boundary condition in the lateral direction of electric
current. We will use unit cells of the periodic Penrose lat-
tices' (PPL) as scatterers to study energy dependence
because we have already studied their electronic struc-
tures, but the semiperiodic Penrose lattices' (SPPL) are
more suitable for studying length dependence because
they hold quasiperiodicity in the current direction.

We show an example of our configuration of the
MCLF in Fig. 1. The central part is a relevant scatterer,
i.e., a unit cell of a PPL or a finite section of a SPPL, and
the left and right parts are lead lines —square lattices
with infinite length and finite width M. We use the same
model as Paper I; put atoms in the center of each
rhombus (or square in the lead lines) and set the electron
transfer energy to be —1 only for nearest-neighbor pairs.
The distortion at the interfaces between the scatterer and
the lead lines is of no significance, because our choice of
the transfer energies does not depend on the distances of
atoms but only on the connectivity.

First, we explain the application of the original MCLF
to the PL, which is used in calculating energy depen-
dence of conductance. Later, we will explain the Lee-
Fisher method used for the length dependence.
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where t, t' are the transmission matrices, r, r' are the
reAection matrices, and the subscripts L,R refer to the
left and right lead lines. Conductance is defined in units
of e /h per spin by

'/V 2~sink

E = —2(cosk, +cosk ),
k = l (l=0, . . . , M —1),=2~

(2.3a)

(2.3b)

g =Tr(t t)= g ~t &~

a, P

(2.2)

where t f3
is the transmission coefficient from the P chan-

nel in the left lead line to the o. channel in the right lead
at a specified Fermi energy E. The unitarity of the
scattering matrix ensures that replacing t with t' in the
defintion (2.2) does not change the result. Somewhat
di6'erent definitions were also proposed' in addition to
Eq. (2.2), but we will use the simplest definition (2.2) in
this paper because we are interested in global behaviors
of conductance with respect to the Fermi energy and the
system size rather than in absolute values. In low-
conductance cases such as our model, diA'erences among
various definitions are generally small quantitively. One
advantage of the formula (2.2) is its high symmetry, e.g. ,
it is invariant under unitary transformation of the chan-
nels.

We comment on our choice of channels. For a
specified energy E, we choose plane waves in the lead
lines as the channels and identify them by their momen-
tums:

where the subscripts x and y denote the directions paral-
lel and perpendicular to the electric current respectively,
M is the width of the lead lines, and the values of k are
determined under the periodic boundary condition. The
wave functions (2.3a) are normalized so that the total
current of probability density should be unity in the x
direction, which normalization leads to the unitarity of
the scattering matrix. Note that the scattering matrix is
defined between propagating waves a and b in the relation
(2. 1) and that their dimensions depend on the energy E.
The propagating waves are given by real momenta k„
determined by Eq. (2.3b), while the other complex solu-
tions correspond to exponentially decaying or increasing
waves. Hereafter, we refer to them as open channels and
closed channels, respectively. In the open channels the
right going waves (incident waves in the left line pkL and
scattering waves in the right lead line ilrkR') have momen-
ta 0(k (vr, and the left going waves (scattering waves
in the left gkL' and incident waves in the right gkR ) have
momenta m. (k (2m.

The scattering matrix can be obtained by solving a
Schrodinger equation with the scattering boundary con-
dition. Let the wave function at a specific energy E be
expanded as follows in three regions,

Mo M —Mo

g (ctL gk" I, +bL pk"'I )+ g cLI,ptI, (in the left lead line)
i2=1 b=1
N

a, (in the scatterer)
J
Mo M —Mo

(aRAka+bRa C R )+ g cRbfRg (in the right lead line)
a=1 b=1

(2.4)

where g, are atomic orbitals located at rhombus centers
in the PL, and pL~, pR& are wave functions exponentially
decaying outwards in the lead lines. Mo is the number of
open channels and X is the site number in the scatterer
part. The phases of the incident and scattering waves
g'", P'"' can be set arbitrarily, and the scattering matrix
will be transformed by the corresponding unitary matrix,
but the observable quantity g is invariant under the trans-
formation. Note that g'", g'"', P are determined from Eq.
(2.3) for the specified energy E and the normalization of P
is irrelevant to the result of g. The Schrodinger equation
to solve is

(2.5)

for given incident wave amplitudes Ibt } and IbR },and
unknown variables are IaL }, IaR }, Icr }, IcR },and [a.}.
Equation (2.5) is automatically satisfied in the lead lines
except the sites adjacent to the scatterer, because electron

transfer is limited to between nearest-neighbor sites.
Therefore we have only to solve the Schrodinger equation
(2.5) at the scatterer sites and the lead line sites adjacent
to the scatterer. The number of both unknown variables
and independent equations is 1V+2M, where X is the site
number in the scatterer and the M is the lattice width
(the total channel number including open and closed
channels), and, consequently, we can determine IaL },
IaR }, IcL }, IcR }, and Ia. } uniquely. The only excep-
tional case is when there are eigenstates confined within
the scatterer at the specified energy, such as the confined
states at E =2.0 in our model. ' Even in that case, al-
though Ia,. } are not unique, the scattering wave ampli-
tudes I aL I and I aR } are uniquely determined. The
scattering matrix is obtained by solving the Schrodinger
equation for 2MO incident waves. But for calculation of
the conductance g, solutions for the Mo right going in-
cident waves are sufficient.
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B. Recursion method

where the double primes denote the imaginary part. The
Green functions are defined at an energy including an
infinitesimal imaginary part. The arguments of G refer to
the coordinates in the current direction and 'G is still a
matrix with respect to the lateral dimensions:

(G(L, I.'1)„.=(lj I.'j'1
(2.7)

The conservation law of electric current ensures that the
result (2.6) does not depend on the coordinate L in the
current direction. But the natural choice of L is the one
in the lead lines rather than in the scatterer, since the to-
tal current parallel to the current direction is defined
easily; therefore, we will use the formula setting L in the
right lead line. An advantage of the expression (2.6) is
that we can calculate site Green functions eSciently us-

ing a recursion method.
We can simply specify the coordinate in the current

direction as follows, in spite of nonperiodic lattice struc-
ture of the scatterer. The rhombus configuration in our

Next, we explain the recursion method for the MCLF
modified from the original one for application to the PL.
This method is efficient particularly for studying length
dependence of conductance at a specified Fermi energy.

Lee and Fisher rewrote the formula (2.2) and obtained
the expression given by the site Green functions in the
same configuration'

g =4Tr[G "(L,L)G "(L +1,L +1)—G "(L,L +1)2],
(2.6)

G (l)=t,E Hi —'BI—iG (l —1)B~,j (2.8)

where H& is the Hamiltonian inside the Ith column and
BI &

is the one between the 1th and (I —1)th columns.
Therefore we can calculate G (1),G (2), . . . , G (l) by
applying the recursion formula (2.8) successively starting
from G (0). Since the starting point G (0) is the Green
function of a square lattice with a finite width Gz, the an-
alytic form is easily obtained for arbitrary complex ener-
gies. It should be noted that compared with the original

scatterer (PPL or SPPL) is topologically the same as a
pentagrid, so we can classify rhombuses into two groups
by reference to the grid that repeats in the current direc-
tion (hereafter we will refer to it as the 0 grid). One
group is the rhombuses sitting on the 0 grid which form
quasiperiodically spaced segments made of the same
number of rhombuses (say the 0 grid segments); the oth-
er is an ensemble of all other rhombuses, which are
separated by the 0-grid segments, and we may consider
them as glue that connects the 0-grid segments. We will
thereby give the same coordinate l to each 0-grid segment
or glue part (see Fig. 2). We use these segments and glue
parts as units when we extend the lattice, and call them
columns. We always connect lead lines to a 0-grid seg-
ment.

The recursion formula of the site Green functions is
obtained as follows. Consider a case of a finite scatterer
with l —1 columns connected only to the left lead line,
and add the Ith column on the right side of the scatterer
(see Fig. 2). By this extension, the Green function at the
far right column G is transformed according to the fol-
lowing Dyson equation:

connect to
right lead line

START

~ 0 ~

FIG. 2. Scheme of the recursion formula. The SPPL is being extended with recursion step and the configuration for the MCLF is
provided by connecting it to the right lead line. The 0 grid in the SPPL is shaded.
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G(l, l)=[E HI ——Gs 'BI,G—(l —1)Bi,]
G ( l + 1, l + 1 ) = [E Hi+ —

I
—Gs —G ( l ) ]

G (l, l + 1)= —G (l, l)Gs,

(2.9a)

(2.9b)

(2.9c)

where Gz again denotes the Green function of the semi-
infinite square lattice. The conductance of the scatterer

one' the recursion relation used here has two di6'erent
points due to its nonperiodic lattice structure. One is
that the dimension of G, which equals the site number
in the column, varies from column to column. The site
number in the glue parts in the scatterer is on average 1.5
times that in the 0-grid segments, i.e., 1.5M. The other
di6'erence is the irregular intercolumn transfer process,
which is shown by the rectangular matrix B&

We can also obtain the Green functions G after we con-
nect the above semi-infinite system to the right lead line
using the Dyson equations:

with I columns is given by inserting these Green func-
tions into the definition (2.6).

This recursion method is very efficient. One advantage
is that the dimensions of the matrices which we are mani-
pulating are only the site numbers of each column (fewer
than 1500 in our calculation), much smaller than the total
site number in the scatterer (up to about 1.32 million).
This method is hence particularly efficient for long
scatterers. Another point is that while we are extending
the scatterer conductance can be calculated at each
length. For these reasons the recursion method is ap-
propriate for studying length dependence.

III. ENERGY DEPENDENCE OF CONDUCTANCE

We show the energy dependence of conductance of the
PL in Fig. 3. Using the direct method of the MCLF ex-
plained in the preceding section, we have calculated the
conductance for five systems —the unit cells of PPL with
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FICs. 3. Fermi-energy dependence of conductance for the unit cells of the PPL. Energy resolution is»~.



43 ELECTRONIC PROPERTIES OF THE. . . . II. 8897

the lattice widths M =10,16,26, 42, 68 and the site num-
bers X =76, 199,521, 1364,3571, respectively. The ener-

gy resolution of the curves is 0.01. We will focus on two
features of the curves, conductance fluctuation with
respect to the Fermi energy in each system and system-
size dependence of this conductance fluctuation. We will
compare the results with the electronic structure of the
PL studied in Paper I, particularly by calculating the
Thouless number. '

First, we notice that the conductance curves show
large and rapid fluctuations with respect to the Fermi en-
ergy. This behavior contrasts with finite periodic systems
such as a square lattice with a uniform on-site potential,
which show smoother conductance curves. Second, the
behavior of the conductance Auctuation strongly depends
on energy regions. The conductance curves are relatively
smooth at low energies, but very spiky at high energies.

This spiky conductance curve correlates with the
unsmooth energy spectrum of the PL. We found by
analyzing level statistics that the DOS has a singular part
and the smoothness depends on the energy. As shown in

Fig. 3 in Paper I, the DOS is much smoother in low-
energy regions than in high-energy regions. The spiky
conductance curves and strong energy dependence of
conductance Auctuation can be interpreted mainly by
these DOS behaviors. This interpretation is confirmed by
the calculation of the Thouless number, ' using the
eigenenergies obtained in Paper I. The Thouless number
is defined by the ratio of energy shift 6E to energy separa-
tion AE, g TH

=5E /AE, 6E being caused by modification
of the boundary condition. The energy shifts 6E measure
the degree of localization of the wave functions, while
1/AE means the DOS in a conventional sense, but the
smoothness of the DOS is also involved in this term in
our case. The Thouless number calculated for the PPL is
shown in Fig. 4. Here, we define 5E as the difFerence be-
tween maximum and minimum energies calculated in Pa-
per I under four boundary conditions for a specified state,
and define AE by the average energy separation between
the specified state and the two neighboring states (each
separation is also averaged over the four boundary condi-
tions). Figure 4 shows the Thouless number with respect

LLI
CO

40
LLI

C3

LL|
CQ

0
0

D
D

00

0 Oa
0

00
0 0 0

0 0
0 0

0 0
0 D

0

II' a
a

(a)
N= 76

N= L. 99

D
0

0

0
D

0
D

0 D
0 0 0

0

II'

0 0
CI

o 0
0 0 0

0 0

a
'b CS 0
0 II 0 0

00 0 a' o8 ~
~ al 0

II d DO0 00
0 00

Io e e a
II 0 00 CI

0
0 0

Doe

0
0 00 a 0

a
0

0

e(A

IJJ 0 D 0

C3

N= 1364

0
0 0

0
D

Q 0 0 D

0
0 0
o 0 0

CI

0
CI 0 00 0

DD 0 0
0 000 a

Ie 0 0
0 000~ 00 0 0 0 0

0 00 0
00 0 ~0

dd

0 0$0 y0
D

0 IS 0 e go
I T

0

(A
(F) 0

LLI 0 0
a

C3
0 0

I— o

p
—4

(F3

IJJ

C3

DD
0
0
0

0 0 O D

0

0 a a0 0 D
a 0
0

0

P o

0 e
0

D

CL 0 0

Q3 DO

e
o

0 0Z: D 0

00 D0
0

0
0

00

0
oa a0

00
0

0 IC

0 D
0 00

D

D 0 0 0

0

0
0

0
0

0 0

0 0
00 II

0 0
+0 a

a 0

0 0 ~0D
D D0db D

0 0 00
OCI ~ ODD

0 a D0 0 a

0 a
a 00
D

a 0 D

00 0
0 00 0

D 0

0
00

D 0
0

0 0
00

D lie Iha

I T

t. c)
N= 521

00
0 0

00 0
0

o0~ 0 o OI
d

ID0 0D @IS,
0 0 0

a CO oao 00
00 0 Saea

0
O 0 0 Diff D 0 D

II oa
0

ENERGY

O

DO 0 Cl

0 00 ooo 0
o 0 IIICIO 0 o

aA~Pj & e ~II~

' .e~ ~7P'3
T I

(A

LLJ

C3

I—

10

0

0
0 D 0

0
0

0
0

0 II0
0

Cdl 0

0 0
g a

0
a 00 0

DO %e 0
0 0

0 00
0 0

a
0 0 0

000 0 0
0 0

a o

8DaIS a 0
ae o 0 e'

0 00 00
0 eo 0

II~
0

Colo 0 a

O 00 000
D

0 0 0 D 00
0 Oo
0 CS 0 a a

a 0 D 0

~ D Iog Dc 0 Doa 0+~
0 e o ~0 0

D 00 0'bo 0 00~ a S y~ p 0

~I

0
0

I I I I

0

ENERGY

0
0

B
a

(e]
N= 3571

+4

FIG. 4. Thouless number vs eigenenergy for all the eigenstates of the PPL.
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to the eigenenergy averaged over the four boundary con-
ditions, for all eigenstates of five PPL. This figure looks
very similar to the conductance-energy curve in Fig. 3.
This similarity means that the spiky behaviors of the con-
ductance curves originate from the singular electronic
structure, unsmooth DOS and critical wave functions.

The conductance curves show prominent dips at some
energies, e.g., around E = —2.65, —0.90,0.80, 1.95.
These dips are caused by energy gaps in the DOS, which
we can find clearly in Fig. 3 in Paper I. Since the dip
structure becomes clearer with increasing system size, we
believe that the gaps exist in the thermodynamic limit, al-
though their origin is not well understood.

Next, we investigate the system-size dependence of this
large Auctuation in the conductance-energy curves. Since
the conductance Auctuation changes its behaviors de-
pending on energy regions, we divide the total energy re-
gion into five subregions and calculate the average value
and the standard deviation for each of the five PPL. The
subregions are defined simply by the energy gaps in the
DOS E =(A) —4.00 to —2.69, (B)—2.61 to —0.95,
(C) —0.82 to 0.78, (D) 0.88 to 1.92, (E) 1.98 to 2.68. Fig-
ure 5 shows the averages and the standard deviations of
the fluctuating conductance within these five energy re-
gions calculated for five PPL. Later, we will show a more
detailed result with a finer energy resolution for the larg-
est system X =3571, which confirms the validity of this
analysis.

As seen in Fig. 5, the conductance Auctuation changes
in system-size dependence from low- to high-energy re-
gions. This fact coincides with the result of diagonaliza-
tion of the Hamiltonian wherein eigenfunctions change
their spatial form depending on energy regions. In region
A, the average increases with the system size, while the
changes in regions C —E are small. The behavior in re-
gion 3 is similar to the periodic system with extended
wave functions, where the conductance is proportional to

the channel number M, and this point will be made clear
by studying length dependence later. On the other hand,
the behaviors in the other regions indicate that the wave
functions are not totally extended but rather localized.
But those behaviors are also different from strongly local-
ized systems, because strongly localized systems must
show exponential decrease of the average and the Auctua-
tion with the system size. In this sense, the conductance
behaviors except in very low energy region are consistent
with our conclusion that most wave functions in the PL
are critical. Those behaviors are similar to the metallic
systems with mesoscopic length scale, and it is interesting
that the conductance Auctuation in the PL is the order of
unity in units of e /h except at very low (3) and high
(E) energy regions, which reminds us of the universal
conductance Auctuation in mesoscopic systems.

The two different behaviors of conductance were found
earlier in another quasiperiodic model, the two-
dimensional Fibonacci lattice (2D FL). ' The 2D FL is a
square lattice where the on-site potential is quasiperiodi-
cally distributed in the coordinate space. This model
changes the character of electronic properties depending
on the potential strength V. When V is small, the total
bandwidth is finite and the conductance is large. On the
other hand, when V is large, the total bandwidth is zero
and the conductance is small and its fluctuation is the or-
der of unity. Thus the behaviors in low- and high-energy
regions of the PL are similar to the weak and strong po-
tential cases of the 2D FL, respectively.

We show in Fig. 6 the conductance curve for the larg-
est system X =3571 with a very fine energy resolution
0.0002. This resolution is fine enough to reproduce all
fine structures of the curve. The statistics of conductance
calculated for this result is also shown in Fig. 5, and this
is coincident with the previous result calculated at a
smaller number of energy points. The agreement
confirms quantitative validity of our statistical treatment.

10-
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16
26
42
68

76
199
521

1364
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[7

FIG. 5. Statistics of conductance for the PPL within five en-

ergy regions: E =( 2) —4.00 to —2.69, (8) —2.61 to —0.95,
(C) —0.82 to 0.78, (D) 0.88 to 1.92, (E) 1.98 to 2.68. Center
symbols show the averages, and half widths of the bars indicate
the standard deviations. Data at far right in each energy region
show the results for the energy resolution 5ppp.

IV. LENGTH DEPENDENCE OF CONDUCTANCE

In this section we study the length dependence of con-
ductance of the PL in extremely large systems and dis-
cuss the localization problem of the wave functions. For
studying length dependence, the SPPL are more ap-
propriate than the PPL used in the preceding section, be-
cause the SPPL hold quasiperiodicity in one direction.
We consequently calculate conductance with extending
the lattice in this quasiperiodic direction and fixing the
lattice width. The lattices we use are the SPPL with a
width of M =68—752 and a site number up to 1 318 368.
From now on, we define the length of a SPPL by the ratio
of the site number of the lattice to the lattice width,
I, —:X/M.

We will compare the length dependence of the conduc-
tance between low- and high-energy regions. According-
ly, we set the Fermi energy at some typical energies judg-
ing from the result of the energy dependence of the con-
ductance. Magnified conductance curves in these two re-
gions are shown in Fig. 6.

First, we consider the very low energy case. Figure 7
shows the result of length dependence at the Fermi ener-
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gy E = —3.90. The curves are Hat with small fluctuation
as a function of the lattice length. This behavior indi-
cates that the wave functions at this energy are almost
freely extended like periodic systems, and this is con-
sistent with the energy dependence. Below the energy
E = —3.80, the conductance shows a stepwise curve as a
function of the Fermi energy and the step values agree
with the number of propagating plane waves (open chan-
nels) in the lead lines at each energy. Small Auctuation is
the result of quantum resonance observed in finite sys-
tems. Therefore we conclude that the wave functions of
the PL are extended, at very low energies, at least up to
the maximum size we used.
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FIG. 7. Dependence of conductance for the SPPL on the
length L =N/M at a very low energy E = —3.90.
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FIG. 6. Detailed energy dependence of conductance for the
PPL with N =3571: (a) whole region, and magnified parts of (b)
low- and (c) high-energy regions. Energy resolution is,o'oo.

This length dependence seems inconsistent with our
conclusion in Paper I that most of the wave functions are
localized in a power law, but great care is necessary in its
interpretation. First, we note that even though the wave
functions may be extended in the very low energy region,
this is not necessarily incompatible with the previous
conclusion, because the previous conclusion was based on
the distribution function of 8 norms; consequently, we
cannot rule out the possibility that there still exist a very
few extended wave functions since the 8-norm distribu-
tion is a statistical analysis. The second, and more plausi-
ble, possibility is that these extended behaviors might be
the result of a finite-size effect and the wave functions will
show power-law localizations in the limit of M ~~. The
result of direct diagonalization of the Hamiltonian as well
as the above length dependence shows the wave functions
in the very low energy region can be well approximated
by plane waves. This means that the wave functions do
not "feel" the scattering potential before the scatterer
reaches the size where quasiperiodicity is established in
the length scale of wavelength of the corresponding plane
wave. Since the wavelength becomes longer with de-
creasing energy, it is necessary to manipulate very large
systems in order to estimate the thermodynamic behav-
ior. In this sense, our calculation at E = —3.90 may not
yet reach the size to show asymptotic behaviors, and it is
possible to consider the slight decay part of the length
dependence observed in the largest system, M =466, as
precursor of a power-law localization. The system size
used here is almost the upper limit in numerical compu-
tations. Of course, it is desirable to find an analytical
treatment for the asymptotic behaviors, but we have not
yet succeeded. One reason for the difhculty is that there
is no continuous mapping that transforms the topologi-
cally "disordered" PL into a regular lattice, which for-
bids a conventional perturbative approach to this prob-
lem.

Next we consider a low-energy region, a bit higher
than the previous case, where the conductance curve
loses its stepwise character. Figure 8(a) shows the length
dependence at E = —3.40 as an example. At this energy
the conductance decreases slowly with the lattice length,
and the log-log plot clearly shows a power-law decay [see
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the PL has an unsmooth part and that the unsmoothness
increases with the system size and depends on energy re-
gions, i.e., it is more spiky in high-energy regions. We
therefore think that the unsmooth spectrum character
directly results in spiky conductance-energy curves of the
PL, and this relationship is explicitly visualized by the
energy dependence of the Thouless number. The fluctua-
tions in the conductance-energy curves reveal only small
system-size dependence except in very low energy region,
both in their averages and standard deviations. This
system-size dependence is different from freely extended
systems and strongly localized systems, which is con-
sistent with our previous conclusion that most of the
wave functions are critical, and we reexamined this point
through a more direct analysis, length dependence of the
conductance. The observed fluctuations in the order of
unity have similarity with the universal conductance fIuc-
tuation in mesoscopic systems.

The length dependence shows power-law decays of the
conductance except at very low energies. Since the
length dependence of conductance exhibits the character
of the wave functions in the coordinate space, these re-
sults support that the wave functions of the PL are criti-
cal. We should mention that other behaviors are also ob-
served in the length dependence. One example is that the
conductance does not decay but only fluctuates at very
low energies. This behavior indicates that the wave func-
tions are extended as in periodic systems, and is con-
sistent with the stepwise behavior in the energy depen-
dence in this energy region. But further study is neces-
sary to answer the question of whether this extended
character would be intrinsic or not, i.e., an effect of finite
system size. The other example is fast conductance decay
observed at some high energies, but we do not think this
fast decay is intrinsic since it could be interpreted by a

gap formation in the energy spectrum at a specified Fer-
mi energy by extending the lattice. As a matter of fact,
the conductance shows power-law decays when the ener-

gy is shifted slightly higher.
As discussed above, our previous conclusion that most

of the wave functions are critical was convincingly sup-
ported in the qualitative sense by the present result that
the conductance showed power-law decays at most ener-
gies. Nonpower behaviors observed at some energies can
be explained as the result of extrinsic factors, and we may
hence consider them as exceptional cases. However,
there is a quantitative discrepancy in the power-law ex-
ponents; the present result gave exponents smaller than
those given by the analysis of 8 norms in Paper I. By ex-
amining the applicability of the 8-norm analysis, we
found that the finite-size effect is not negligible at low en-
ergies and the 8-norm analysis gave exponents larger than
the real values in our calculation. Therefore we believe
that more reliable exponents are the present results deter-
mined from the length dependence of conductance.

In summary, conductance of the PL is characterized by
spiky energy dependence and power-law decays with the
lattice length. The spiky behaviors in the energy depen-
dence correspond to the unsmooth DOS of the PL and
the power-law decays originate from the wave functions
localized in a power law. These transport properties are
dominated by the strong scattering due to topological
nonperiodicity in the lattice structure.
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