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The electronic structure of the two-dimensional Penrose lattice is studied by numerical diagonali-
zation of a tight-binding Hamiltonian for finite systems with up to 3571 sites. We have analyzed the
smoothness of the energy spectrum and localization behavior of the wave functions by level statis-
tics and a generalized participation ratio. The results show that the energy spectrum contains a
singular part, and most of the wave functions are critical, i.e., neither extended nor localized. These
behaviors of the electronic properties are discussed based on their quasiperiodic lattice structure.

I. INTRODUCTION

The observation of sharp diffraction spots with
icosahedral symmetry in a rapidly quenched A1-Mn alloy
by Shechtman et al. ' called into question our long-
standing belief that every ordered structure must be
periodic. It clearly indicated the existence of long-range
order without translational symmetry. The notion of
crystals was generalized independently by Levine and
Steinhardt on the structures which are not periodic but
still hold a kind of translational long-range order, called
quasiperiodicity. They classified materials with these
structural properties into a new class of ordered struc-
tures and called them quasicrystals (QC). Actually, they
showed that the structure factor of a three-dimensional
(3D) generalization of the Penrose lattice was close to the
observed icosahedral diffraction pattern of the Al-Mn al-
loy. Since the first discovery, many materials have been
found to have quasiperiodicity" and some of them show
2D quasiperiodic structures with decagonal, octagonal,
or dodecagonal symmetries. Now it is known that the
QC phase is not only metastable but thermodynamically
stable in some materials such as Al-Li-Cu alloys. There-
fore QC are not rare variations of usual crystals, but rath-
er they constitute a new category of condensed matter
comparable to the conventional categories —crystals and
disordered materials (amorphous).

The structure of QC has a character intermediate be-
tween crystals and disordered materials: e.g. , the lack of
translational symmetry is common with disordered ma-
terials, but the sharp diffraction spots are common with
crystals. It is well known that disorder in the lattice
structure brings qualitative change to electronic proper-

ties when strength of the disorder exceeds a critical value,
and wave functions, in particular, always become local-
ized in 1D and 2D disordered materials, i.e., the critical
strength is zero, which is called the Anderson localiza-
tion. We hence expect that due to the nonperiodic lat-
tice structure, the electronic properties of QC show be-
haviors intermediate between crystals and disordered ma-
terials or possibly specific to the quasiperiodicity. Alter-
natively, we hope that this study may throw new light on
the localization mechanism in amorphous materials from
the viewpoint of structural disorder.

Some interesting electronic properties have actually
been found in a 1D quasicrystal, the Fibonacci chains
(FC)—the model where the perturbations such as on-site
potentials (or transfer energies) are quasiperiodically ar-
ranged in the space following the Fibonacci sequence.
The most interesting property is the energy spectrum
with a self-similar structure of energy gaps, called "the
devil's staircase, " and the total bandwidth decreases
down to zero in a power law with increasing system size
B-X . It is mathematically proved that the energy
spectrum is a Cantor set and singular continuous.
Another important consequence that came out of the
study is the belief that all the eigenstates are critical, '

i.e., neither extended all over the lattice as are the Bloch
states, nor exponentially localized as are the strongly lo-
calized states of the Anderson localization. However, a
recent study has revealed that there is an exceptional case
(see Ref. 11). Some of the wave functions were proved to
be localized in a power law with a self-similar structure
and the exponents of the localizations were calculated;
strictly speaking, they have a multifractal structure. '

All the other states are chaotic or random. An interest-
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ing fact is that the singular continuous spectrum and the
power-law behaviors of the wave functions do not vanish
no matter how small the quasiperiodic potential is, but
the potential strength affects only the value of exponents.
This is different from incommensurate systems such as
the Harper model, ' which changes its electronic proper-
ties with increasing incommensurate potential strength
from extended wave functions and finite bandwidth to lo-
calized wave functions and zero bandwidth. This
difference arises from the magnitudes of short-wavelength
Fourier components of the quasiperiodic potentials.
Since the short-wavelength components of the FC have
larger amplitudes than those of the incommensurate
models, the wave functions of the FC are more extended
in the momentum space, and thus correspondingly local-
ized in the coordination space.

We cannot, however, immediately regard all these elec-
tronic properties of the FC as universal in other QC, be-
cause this model is quite special in the QC family owing
to its one dimensionality. The speciality of 1D systems is
well known in the Anderson localization problem: the
wave functions are always localized no matter how small
the disorder strength is. But a more important point is
that the FC lose the topological nonperiodicity, a charac-
teristic feature of real QC materials in 3D. Actually, the
quasiperiodicity of the FC model is not a topological one
but the distribution of double-valued potentials (or
transfer energies) on a topologically regular lattice. The
topological nonperiodicity has a remarkable effect on the
electronic properties —frustration of the wave functions, '

which we will discuss later. Consequently, some of the
results in the FC would be specific to 1D systems and the
FC may not exhibit the electronic properties general in
higher-dimensional QC. In order to study the electronic
properties of QC from the viewpoint of the effect of topo-
logical quasiperiodicity, we must hence treat the systems
in two or higher dimensions. We would like to clarify
whether the properties observed in the FC are also gener-
ic in higher-dimensional QC by studying the Penrose lat-
tices' ' (PL) as a typical 2D example.

In comparison with the FC, the PL has been studied by
fewer researchers, ' and mathematically rigorous results
are only some exact eigenstates located at particular ener-
gies. First, it is known that the nearest-neighbor tight-
binding models have thermodynamically degenerate
eigenstates, called confined states and string states. '

These states are strongly localized and their thermo-
dynamic degeneracy is due to Conway's theorem. But
they are not a characteristic property of QC in them-
selves, since they are a consequence of special local topol-
ogy. In addition, their high degeneracy means that they
are unstable to perturbations such as long-range electron
transfers or nonuniform potentials; ' note that the ex-
istence of the confined states strongly depends on the
Hamiltonian. Therefore it may be an oversimplification
to conclude that other wave functions have the same
character. The second rigorous result is that we can con-
struct a tight-binding Hamiltonian so that certain mul-
tifractal wave functions should be its eigenstates by set-
ting long-range transfer energies according to a complex
rule. It is intriguing that this procedure can be applied

to an infinite number of (but, of course, particular) mul-
tifractal wave functions. But since this procedure is quite
artificial, it is not clear whether there are also multifrac-
tal eigenfunctions in other simple models, such as
nearest-neighbor hopping models.

We will study the electronic properties of the PL in 2D
in this paper and the following one (hereafter referred to
as I and II). Paper I is devoted to the study of the elec-
tronic structure, mainly smoothness of the energy spec-
trum and localization problem of the wave functions.
The subject of Paper II is the transport properties, partic-
ularly conductance at zero temperature, and discussion
will be given based on the electronic structure studied in
I. We hope to more deeply understand the effect of
quasiperiodic lattice structure on the electronic proper-
ties. The PL are an appropriate model for that purpose
due to their two dimensionality (the lowest-dimensional
model with topological quasiperiodicity). One advantage
is that lower-dimensional systems exhibit the effect of
"disorders" on the electronic properties more clearly.
Therefore the PL would be the model most sensitive to
topological quasiperiodicity, one of whose important
effects is frustration induced in phases of the wave func-
tions. The other advantage is a practical one, tractability
in numerical computations. A smaller number of sites
are sufficient to reproduce the localization behavior in the
PL compared to higher-dimensional models, since locali-
zation of wave functions would be determined by linear
size of the systems.

This paper is organized as follows. In Sec. II we sketch
our argument on general trends of the electronic proper-
ties of QC based on their quasiperiodic lattice structures.
In Sec. III we explain the model Hamiltonian to be stud-
ied, with emphasis on the choice of boundary condition.
In Secs. IV and V, we show results of numerical compu-
tations on the density of states (DOS) and the wave func-
tions, respectively, and discuss the electronic properties.
The last section is devoted to brief conclusions. In the
Appendix, we review our method of generating periodic
approximations of the PL in the framework of the mul-
tigrid method; these approximations are used as a
structural template of the model Hamiltonian. Some re-
sults have been already published in letter form. ' In
this paper we would like to show our results and discus-
sions more completely.

II. GENERAL ASPECTS OF ELECTRONIC
STRUCTURE OF QUASICRYSTALS

In this section, we will consider general trends of the
electronic structure of QC before numerical computa-
tions, focusing particularly on smoothness of the energy
spectrum and localization behavior of the wave functions.

Let us first define our terminology about the energy
spectrum and localization behavior to make our discus-
sions clear. In discussing the singularity of the energy
spectrum, we will sometimes use the term smooth spec-
trum to specify the spectrum in which all level spacings
are scaled by the reciprocal of the site number,
AE ~ 1/X. On the other hand, we will call the spectrum
with an anomalous system-size dependence, AE ~ 1/X~
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(P%1), an unsmooth spectrum or singular spectrum .In
describing localization behavior, let us define the wave
functions which cannot be normalized in infinite systems
but are not extended, as cvitical wave functions H. ere, ex-
tended wave functions means that they have asymptotical-
ly homogeneous amplitudes, f ~, ~

z ~g(r)~ dr-R" (d:
space dimensions), while our definition of localized waue
functions is square-integrable wave functions. Note that
according to this definition, power-law wave functions
g(r)-~r~ are classified into the localized wave func-
tions if their exponent a & d /2.

To argue the electronic structure, we should take into
account two important properties which characterize QC
structure; one is nonperiodicity and the other is the prop-
erty known as Conway's theorem, ' in the case of PL.
Conway's theorem states any finite-size section of the lat-
tice repeats its figure an infinite number of times quasi-
periodically. (Hereafter we will also call this property by
the name of Conway's theorem for other QC, for simpli-
city. ) In the PL, its quasiperiodic structure is character-
ized by the golden ratio ~. Its irrationality leads to the
nonperiodicity of the lattices and the quadratic identity
~ =~+ 1 creates the self-similarity and Conway's
theorem. As we will discuss below, the nonperiodicity of
QC has a tendency to cause the wave functions to be lo-
calized, while Conway's theorem leads them to be extend-
ed

It is appropriate to apply the picture of nearly free
electrons —the approach from the limit of extended wave
functions, in order to explain our argument that non-
periodicity of QC leads the wave functions to become lo-
calized. Now, assume the potential energy is proportion-
al to the structure factor in the momentum space
Vk ~ $(k), which assumption may be qualitatively valid.
Remember that each spot k of the diffraction pattern
opens an energy gap at the Bragg plane which bisects the
line joining the origin to the point k, and the energy
dispersion jumps by an amount of about 2~ Vk~ at the
plane. On the other hand, once we recall the characteris-
tic property of QC that the momentum space is densely
filled with diffraction spots, we notice that the momen-
tum space is densely filled by the Bragg planes and that
the energy bands become shredded into tiny pieces with
gaps opening at almost every k point. Considering that
these gaps are associated with almost equal-weighted hy-
bridization of the wave functions on the Bragg planes
corresponding to k and —k, the dense distribution of the
Bragg spots implies that an unperturbed Bloch wave
function will be hybridized with a number of wave func-
tions with various momentums owing to the potential
scattering. The hydridization in the momentum space
leads to wave functions correspondingly localized in the
coordinate space. Since the DOS is obtained by project-
ing the shredded energy dispersion curve into the energy
space, it must have a singular part and cannot be very
smooth. It should be emphasized that the singularity de-
pends on lattice dimensionality, because energy degenera-
cy plays an important role in this mechanism in the sense
that both energy and momentum must be conserved in
the scattering process of a Bloch electron pair and the en-
ergy degeneracy depends on the space dimensions. In the

case of the FC, as shown by Kohmoto et al. and Ostlund
et al. , the DOS has a self-similar hierarchy of energy
gaps and the total bandwidth is zero in the thermo-
dynamic limit, no matter how weak the quasiperiodic po-
tentials are. In this case, gaps in the energy-momentum
dispersion curve directly result in energy gaps in the
DOS, and this comes from the one-to-one correspondence
between energies and momenta, except the double degen-
eracy of k and —k. On the other hand, in more than one
dimension, an infinite number of unperturbed Bloch
states with the same ~k

~
are degenerate at a specified en-

ergy. While the energy is isotropic with respect to the
direction of the momentum vector, the scattering poten-
tial

~ Vk~ is anisotropic, actually decagonal in the PL.
Therefore the gap does not open at all the points on the
constant-energy surface and there still remains a part of
the zero-gap surface. Of course, in the PL the gap struc-
ture also shows tenfold symmetry in the momentum
space. The remaining zero-gap surface contributes to
keeping the DOS finite at the specified energy, even
though the value is considerably reduced. Actually, ten-
fold symmetry is close to being isotropic, but real gaps
would not appear in the DOS in this sense, and only
pseudogaps open. Thus, based on the intuitive argument
above, we expect that QC have an unsmooth energy spec-
trum and localized wave functions, but the total band-
width will be generally nonzero in more than one dimen-
sion, in contrast to FC.

Then are wave functions in QC exponentially local-
ized? To discuss this question, we must take into account
the effect of Conway's theorem that leads the wave func-
tions to become extended. To illustrate this process, let
us make a thought experiment based on the real-space
renormalization-group (RSRG) theory starting from the
opposite limit of the previous argument, i.e., the limit of
localized wave functions. From now on we consider the
case of the PL in particular, but the argument would hold
in various kinds of QC. Suppose that there is an eigen-
state whose eigenfunction can be well approximated by a
wave function go mostly localized in a section with radius

i.e. , its localization length is go. According to
Conway's theorem, the section where $0 is localized has
some duplicates within a distance of 4/0. ' Hereafter, we
shall set the number of duplicates as 1 for simplicity, but
this simplification does not lose generality. Put the same
wave function as $0 on the duplicate section by transla-
tion and call it Po, then Po would be another good ap-
proximation of the specified eigenfunction as well as go.
The energy di6'erence between $0 and $0 is very small be-
cause it comes only from the difference of atomic
configuration outside the finite sections, and the overlap
integral of the two wave functions $0 and $0 is in the or-—a(Oder of e ' where a is a constant close to 4. Thus the
Hamiltonian with degrees of freedom limited to the two
wave functions lijo and go can be described by a two-level
system: the diagonal matrix elements are determined by
the level separation between the two states, and the off-
diagonal elements ( QO~H~QO) are in the same order as the
overlap integral. By diagonalizing the Hamiltonian, we
can obtain two better approximations of the specific
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eigenfunction —bonding and antibonding states made of
fo and $0, and their localization lengths become longer in
the order of the distance between the two patterns
g&

—ago. Because Conway's theorem holds for any pat-
tern, we can repeat the above RSRG procedure an
infinite number of times. This means that the localization
length will diverge with the number of RSRG pro-
cedures. Consequently, wave functions cannot be local-
ized exponentially in QC in general, but would show
power-law decays instead. If the amplitude of the wave
functions and the length scale vary with the RSRG step
as P-c" and L —a", the exponent of power-law decay is
given by —inc/lna. In fact, in the FC some of the wave
functions show power-law decays (strictly speaking they
have multifractal structure' and others are also believed
to be critical). The difference between QC and other ma-
terials lies in the magnitude of the matrix elements. Of
course, periodic crystals have self-similarity as well as QC
and Conway's theorem holds in them. But because their
lattice structure is really periodic, the two diagonal ele-
ments of the effective two-level Hamiltonian always have
the same value and this results in c =1. Consequently,
the exponent becomes zero, as required by Bloch's
theory. On the other hand, since disordered materials
have no restrictions on distribution of potential energies
in the lattice, duplicates of a finite pattern locate very far
from the original one; roughly speaking, the distance in-
creases exponentially with respect to the diameter of the
pattern, while it is proportional to the diameter in QC.
As a result, the off-diagonal elements of the effective
two-level Hamiltonian of disordered systems are much
smaller than the level separation, and hence the two
states cannot hybridize well. This means the wave func-
tions must be localized exponentially.

In conclusion, power-law decays are caused by com-
petition of the two effects of QC—nonperiodicity and
self-similarity (Conway's theorem), which have a tenden-
cy to lead the wave functions to be localized and extend-
ed, respectively. Of course, our argument is not
mathematically rigorous but only heuristic and qualita-
tive. To verify our scenario analytically, a perturbation
theory for a dense set of potentials I Vk) ranging over
many orders in magnitude is necessary, but no one has
yet succeeded in that difficult problem in more than one
dimensions. ' Therefore, by direct numerical computa-
tion we will study the energy spectrum and the wave
functions of the PL to confirm our scenario.

III. MC)DEL

We will explain the model studied, and comment on
some of its properties which are obtainable without nu-
merical computations. Appropriate models should be
Hamiltonians simple but sufficient to reproduce the
characteristic properties of QC, and it is desirable that
the number of free parameters be small. An important
consideration is the choice of boundary condition to use
in numerical computations.

Our model is a single-band tight-binding Hamiltonian
on the PL in which an s-like atomic orbital is placed in
the center of each rhombus and the transfer energies are

set to be finite and constant only between nearest-
neighbor rhombus pairs irrespective of their distances.
We choose the transfer energy as —1 so that slowly vary-
ing wave functions should have lower energies, then the
eigenvalue equation is

(3.1)

where the sum is taken over the nearest-neighbor sites of
the site i. Although our model is not realistic for study-
ing physical properties of real QC materials such as Al-
Mn alloys (e.g. , the conduction band is not an s band but
is made up of Al's 3p and Mn's 3d orbitals), we believe it
adequate to qualitatively consider the effect of quasi-
periodicity on the electronic structure. Our model has no
free parameter, i.e., all the energies are scaled by the
transfer energy, and quasiperiodicity is taken into ac-
count through the connectivity of the sites in the Hamil-
tonian. Considering this point, we may hence expect that
there would be no critical energy at which the spectrum
changes its character and that the character would be
qualitatively the same everywhere in the spectrum. We
will discuss this point again when we analyze the DOS
through approximated band calculations.

Here, we list the structural properties of our model.

(i) The coordination number is 4 at all the sites.
(ii) The lattice is not bipartite.
(iii) There is a majority of odd-member rings in the ring

statistics (87.5%).

From these properties, we can easily obtain information
on the electronic structure.

(1) The eigenvalues are restricted within the region—4+E +4.
(2) The DOS is asymmetric.
(3) At the band bottom E = —4, our model has the

eigenstate with uniform amplitudes, i.e., the totally bond-
ing state, like the square lattice.

(4) Antibonding states near the band top are strongly
frustrated owing to the odd-member rings, so the band
top is pushed down some degree from E =4.

Another model has been used in some studies, ' ' ' a
tight-binding Hamiltonian where an atom is placed on
each vertex of the rhombuses instead of on the center. In
that model, the lattice is bipartite but the coordination
number ranges from 3 to 7; as a result, the DOS is sym-
metric and the eigenenergies are distributed within the
region —7 ~ E ~ 7. Since the coordination number varies
from site to site, the wave functions of the eigenstates
near the band edges have large amplitudes on the sites
with large coordination numbers. On the other hand, in
our model this mechanism does not work, because the
coordination number is constant.

We must overcome two difficulties to perform numeri-
cal computations. First, since we can manipulate only
finite systems, not infinite systems, a systematic extrapo-
lation of the results obtained for several finite systems is
indispensable for understanding thermodynamic behav-
iors. However, because QC do not have unit cells, a finite
part of a QC of a fixed size does not have a uniquely
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determined atomic configuration. In this sense, it is
difficult to perform "systematic" calculations in QC, in
contrast to crystals. What is the most systematic pro-
cedure to reach an intrinsic QC?

The second point is that the boundary condition is an
important consideration when we study the electronic
structure or the transport properties. It is well known
that a surface of a lattice creates surface states localized
near the surface (their number is proportional to the sur-
face area), and they are sensitive to the boundary condi-
tion in use. In the thermodynamic limit, the surface
states do not contribute to bulk properties, i.e., extensive
quantities such as specific heat, susceptibility, etc., but
they affect transport properties more seriously. A more
important point is that the systems which we can treat in
numerical computations are not extremely large (roughly
speaking, fewer than 10 —10 sites), hence we should
make every effort to reduce the boundary effects. What is
the best boundary condition to this end? Presumably the
best choice would be the periodic boundary condition. If
the Dirichlet boundary condition were imposed, a num-
ber of atoms would be exposed to the vacuum and elec-
trons on these atoms could not move towards that direc-
tion. On the other hand, if we can impose the periodic
boundary conditions (as we explain below, this is possible
with some modification), the local atomic environment of
any atom in the finite lattice will be the same as in infinite
lattices up to the distance of half of the linear lattice size.

The periodic boundary condition cannot be imposed
originally, since QC do not have periodicity. However,
we can show that it is possible to generate a sequence of
periodic lattices that approximate a QC in a systematic
way, ' since QC have some structural properties simi-
lar to crystals. This method essentially relates to the op-
timal rational approximants of the irrational number
which characterizes the QC structure. The systematic se-
quence of the periodic approximated lattices is also an
answer to the first problem of how to extrapolate to the
thermodynamic limit. We generated periodic approxima-
tions of the PL by modifying the pentagrid method, and
we will call these the periodic Penrose lattices (PPL) here-
after. Typical examples are shown in the Appendix, and
we review our generation method and analyze their struc-
ture there. We note that the PPL are very close to the
original PL: actually, the number of defects in the unit
cell, i.e., wrong edges where Penrose's matching rule is
violated, can be reduced to 2, irrespective of unit-cell
size. Hence our Hamiltonian with the periodic bound-
ary conditions reproduces the same local atomic
configuration as the original PL except at the two defects
as far as the unit cell is concerned, and it will converge to
the thermodynamic limit faster than the models with the
Dirichlet boundary conditions, where all the sites on the
free surface are defects.

We diagonalize the tight-binding Hamiltonian defined
for unit cells of the PPL by imposing the periodic bound-
ary conditions in two directions of the translation vec-
tors, but do not perform the band calculation by continu-
ously varying the wave vector in the Brillouin zone. It is
possible in principle to calculate energy dispersions Isi, I

for the periodic lattice tiled by the unit cell, but we think

it would be neither useful nor practical. If we improve
the periodic approximation of the lattice by one step, the
area of the Brillouin zone will be reduced by a factor
close to ~, and the energy bands will become folded
and divided into subbands. Thus the point k=0 of a
large system corresponds to finite k points of a smaller
system. Therefore we had better calculate for large sys-
tems with the periodic boundary condition rather than
calculate for small systems at finite k points. The main
reason is the limit of computer time, however, so we cal-
culate an approximated DOS using four boundary condi-
tions instead.

IV. ENERGY SPECTRUM
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FIG. 1. Integrated DOS of the unit cells of five PPL under
the periodic boundary conditions.

We show in Fig. 1 the integrated DOS of the PL. They
are straightforwardly obtained from the eigenenergies

I E I calculated by numerical diagonalization of the Ham-
iltonian. The systems used here are 5 unit cells of the
PPL generated with approximants ~~

p 3 5 g ]3 the
lattice widths are M =10,16,26, 42, 68, and the site num-
bers are X =76, 199,521, 1364,3571, respectively. The
reason we do not show the DOS itself is that it looks
smooth or spiky depending on the width of broadening
artificially introduced to draw the DOS curve. As seen in
Fig. 1, the integrated DOS converges rapidly with in-
creasing system size and we notice some features of the
curves. (1) The DOS is not a Cantor set with hierarchical
gap structure, and neither does it have large energy gaps.
Some small gaps seem to exist, and we will discuss this
point again later. (2) The band bottom remains at
E = —4.0, and the corresponding wave function has uni-
form amplitudes in the coordinate space; on the contrary,
the band top is pushed down to E =2.68. Remember,
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the coordination number is 4 at every site in our model,
so that the feature at the band bottom is a natural conse-
quence. The pushdown of the band top is caused by frus-
tration of the antibonding wave functions at the odd-
member rings in the atomic configuration, as explained in
Sec. III. (3) The integrated DOS jumps exactly at
E =2.0 by about 6.8%. This means that a thermo-
dynamic number of the eigenstates are degenerate at this
energy. They are the confined states and string states
mentioned before. The analytical form was completely
obtained for all of them they are unusual wave func-
tions that have their amplitudes only on finite sections
(the confined states) or on sections with the Hausdorff di-
mension ln2/inc (the string states). Though their singu-
lar forms are interesting, they are not typical wave func-
tions of QC, because the quasiperiodicity is not essential
for their existence and they appear only at E =2 as dis-
cussed before. Therefore we will not investigate them
further.

Next, we will study the smoothness of the energy spec-
trum by level statistics. We actually calculate two
quantities to measure the smoothness. First, consider the
distribution of the level spacings AE between neighboring
eigenstates and count the number of AE ~ BN~:

(4.1)

disordered systems where the eigenenergies are randomly
distributed with no correlations, it is known that the level
spacings follow the Poisson distribution with the width
proportional to 1/N. ' Almost all level spacings are con-
sequently scaled by I/N and the result again is P= —l.
Thus both in periodic crystals and in disordered materi-
als, the two curves D(p) and F(p)/B must jump from 0
to 1 at P= —1 with increasing P, in the thermodynamic
limit N —+ ~. Even if there is thermodynamic degeneracy
at some energies, it will not change their character quali-
tatively: the only change to occur is the shrinkage of the
jump at p= —1. The finite-size effect results in smooth
increases in the curves instead of abrupt jumps, and the
width of broadening decreases in proportion to 1/lnN
with increasing system size.

In Fig. 2, we show the D (13) and F(P) curves for the
five PPL calculated by the data shown in Fig. 1. Curves
with the smaller steps show the results of the larger sys-
tems. First, focus on the D (P) curves. We observe that
they have almost converged when P (—1. 1 within these
system sizes, and we may hence expect the D(P) curve
will smoothly decrease with decreasing P in this region in
the thermodynamic limit. The smooth decrease of the
curve in the region P (—1 means that a thermodynamic
number of the level spacings have an anomalous size

where N is the number of sites, B—= c& —
c& is the total

band, and 0(x)= 1 if x )0 and 0 otherwise. The propor-
tion of the level spacings with the system size dependence
N~-N~+ ~ is given by D (13+hP) D(P), so D—(P) is the
integrated distribution function of the exponents P which
specify the system-size dependence of the level spacings.
Second, let us define another quantity with which to mea-
sure the smoothness of the DOS. Calculate the percen-
tage of the energy regions filled by the level spacings with
the size AE =BN~:

1.0

0.5

0.0

(a)

—2

X9 P—log~ (4.2)
8.0 T-

(b)

This means that the fraction F(P) of the total band B is
filled by the level spacings with the size BN (n ~P). In
the thermodynamic limit, these functions should satisfy
the following relations because B is independent of the
system size: D(P)=1 when P) —1, and F(f3)=0 when
P( —1. It should be emphasized that these relations
must be satisfied whether the DOS is smooth or singular.
Before calculating them for the PL, let us consider the
general behaviors of D (P) and F(/3) curves in conven-
tional systems. In the systems where the DOS, p(E), is
well defined and smooth, such as periodic crystals, the
number of states locating within a small energy section
from E to E +BE is Np(E)6E, where N is the total num-
ber of sites. Then, the mean level spacing is given by
b,E —5E/[Np(E)5E]=1/[Np(E)], so the system depen-
dence is 1/N, and consequently the exponent takes the
value f3= —1 for almost all states. On the other hand, in

4.0-

p.p 1

FIG. 2. (a) Integrated distribution of the system size depen-
dence exponents of the level spacings, D(P), and (b) integrated
width F(P). The systems are the PPL unit cells with

N =76, 199,521, 1364,3571, and curves with smaller steps are
for the larger systems. The total band B is fixed to the estimated
limit value B =6.68.
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dependence —a width narrower than conventional sys-
tems. In other words, the DOS has a singular part: it
will diverge at those energies. On the other hand, the
curve approaches D (/3) = 1 in the region P ) —1 with in-
creasing system size, as required by the general relation.
We comment on the finite value of the D (P) curve at very
low /3. It comes from the thermodynamic degeneracy of
the confined states and the string states, and actually the
value agrees with the analytical estimation 6.68%.'

Next, let us focus on the F(/3) curves. Judging from
the graph, we can expect that these curves show diA'erent
behavior from conventional systems as well as the D(/3)
curves and they converge into a continuously increasing
curve when /3) —1, although the convergence is not
good within the present calculations. If the F(/3) curve
shows the singular behavior as predicted here in the ther-
modynamic limit, a finite fraction of the band is filled by
the level spacings with the size dependence wider than
1/X. This means again that the DOS has a singular part:
it will vanish at an infinite number of energy points.
Note that the proportion of the anomalously large level
spacings is, of course, zero.

Thus those anomalous D (/3) and F(/3) curves illustrate
the unsmooth character of the DOS. Actually, it is ex-
pected in the limit of X~~ that a thermodynamic num-
ber of level spacings have the system-size dependence
narrower than the smooth spectrum cases (/3( —1) and
that a finite part of the total band is filled with the level
spacings with a size dependence wider than the smooth
spectrum cases (/3) —1). These behaviors indicate that
the energy spectrum of the PL is not smooth, in the sense
of the definition in Sec. II. The exponent of system-size
dependence /3 is continuously distributed.

Whether the DOS has a regular part or not is deter-
mined by the jump of the two curves at /3= —1. If the
D (/3) and F(/3) curves jump by finite amounts there, the
DOS has a regular continuous part in addition to a singu-
lar part. We cannot judge whether there is a regular part
within the present calculation, but the conclusion can
remain that the DOS has a singular part.

We will try an approximated band calculation to visu-
alize the singular part of the DOS more clearly. As ex-
plained before, the band calculation is possible in princi-
ple due to the lattice periodicity, but almost untractable
for large systems because of the limitation of computer
time. We calculate the DOS using the eigenenergies only
at four k points, but this analysis is sufficient to repro-
duce its unsmooth character qualitatively. Our method is
as follows. Choose the four k points at 0 b&/2 bp/2 and
(b, +bz)/2 where b, and b2 are the reciprocal lattice vec-
tors of each PPL, and approximate each band by con-
stant DOS. One reason for this choice is that extreme
points in the energy dispersion curves usually appear at
high symmetry points in the Brillouin zone. Term the
eigenenergies at the four k points t E;rI, [E,+I, Is;rI, and

IE;M I, respectively, then the approximated DOS is given
by

where c, ,
'"=min I E;r, E;z, E;r, s,M I, and:—maxIE;„, E,x, E;r, E;MI. Here, we assume that there are

no level crossings, and this assumption is generally valid
except for accidental degeneracies because our unit cells
have almost no symmetries. (In fact, the unit cells used
here have mirror symmetry with respect to the diagonal
line, but it leads only to the degeneracy of c,;z=c;z and
does not refute the above argument. )

We show the results of the DOS in Fig. 3 and they re-
veal two characteristic features. One is that the DOS be-
comes less smooth and more spiky with increasing system
size. This feature confirms our conclusion that the DOS
has a singular part, since it would otherwise converge
into a smooth curve. The other is that the smoothness
depends on energy regions. At low energies, each band is
quite broad and several bands overlap each other; accord-
ingly the DOS is relatively smooth. On the other hand,
at high energies the bands hardly overlap and the width
of each band is narrow, consequently the DOS looks
spiky. The energy dependence of the smoothness is con-
sistent with behaviors of the wave functions calculated by
numerical diagonalization. At low energies, the wave-
function amplitudes vary slowly in the coordinate space
and are similar to plane waves. As a result, their energies
vary by considerable amounts depending on the boundary
conditions. At high energies, the phase of the wave func-
tions oscillates rapidly in the coordinate space and the
phase correlation length is quite short; consequently, the
eigenenergies are not much influenced by the boundary
conditions. These behaviors explain the di6'erence of the
DOS character between low- and high-energy regions.
When we explained our model in Sec. II, we expected
that the character of the energy spectrum would not
change in the band because our model has no free param-
eters. Hence, if the spectrum intrinsically changes in
smoothness or has any energy gaps, they must originate
from the scattering by topological nonperiodicity and the
coherent interference eA'ect of multiple-scattered waves
would cause this. But the smooth DOS in the low-energy
region might be a finite-size eA'ect, since the slowly vary-
ing wave functions in this energy region suggest that the
lattice used here might not be large enough. We cannot
judge whether the energy spectrum retains a smooth
character in the thermodynamic limit or whether it also
becomes singularly unsmooth. In any event, it is true
that the degree of smoothness is relatively di6'erent be-
tween the low- and high-energy regions. We will discuss
this problem again in Paper II, based on the dependence
of conductance on energy and lattice length. We note
that actually there is a 2D quasiperiodic model which in-
trinsically changes the character of its electronic struc-
ture from extended to critical. But this model has a pa-
rameter which measures the strength of the quasiperiodic
potential, and the character changes with respect to this
parameter. Therefore this example does not necessarily
support the change of the DOS character in the PL mod-
el.

p(E) =—g . 9(E E; '")9(E;—'" E), —(4.3)

The approximated DOS supplies another important
piece of information on the total bandwidth. Our con-
clusion that the DOS of the PL is not a Cantor set and
has a finite bandwidth was based on the integrated DOS
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curve profile, but we can discuss this point more quanti-
tatively by analyzing the approximated DOS shown in
Fig. 3. We directly calculate the total bandwidth by sum-
ming up the area of the energy regions within the spec-
trum. The result for the system with N =3571 is (the to-
tal bandwidth)IB =0.62, where again B =E~—E„and its
system-size dependence is small in contrast to the FC
model. This result explicitly shows that the energy spec-
trum of the PL occupies a finite energy region —an im-
portant difference between 1D and higher-dimensional
QC.

A comment on our band calculation to avoid possible
misunderstanding: we calculated eigenenergies at four
points in the Brillouin zone of the PPL, but of course the
Brillouin zone cannot be defined for the original PL be-
cause it has no periodicity. The approximated band cal-
culation is an analysis to study the thermodynamic limit
behaviors of the DOS from the results of finite systems,
and we believe the results of this analysis are reliable and
useful even when the systems in use are not very large.

V. WAVE FUNCTIONS

We will study the localization problem in the PL in
this section. We argued that the wave functions should
be critical in the sense defined in Sec. II, based on a
heuristic argument. We investigate this problem by cal-
culating the 2p norm of the wave functions defined as fol-
lows:

2p 2 p
(5.1)

This is a generalization of the participation ratio,
which corresponds to the particular case of p =2. It
satisfies the axioms of norm only if p ~ 1, but we may use
it as the measure of localization irrespective of p. To ap-
ply this quantity to the localization problem, calculate
the 2p norm in a section of X sites for power-law func-
tions f(r) —Ir! in 2D, then the result is, when p)1,

{aj
N= 76 N= 1364

1
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FIG. 3. Approximated DOS of the PPL calculated from the eigenenergies at four k points.
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N-'&-" (0&a&1/p)
N " ' (1/p &a&1)
N (1&a),

(5.2a)

and when@ &1,

N' ~ (0&a(1)
llgll~, = N' " (1&a&1/p)

N (1/p &a) .

(5.2b)

Therefore we can obtain the exponents of the wave func-
tions by analyzing the system size dependence of the 2p
norms calculated in systems of sufficient size. For ex-
ponents a(1 (a) 1), the parameters of p) 1 (p &1) are
appropriate choices for the 2p-norm analysis. Exponen-
tially localized wave functions give the value llgllzz

——N
and freely extended wave functions correspond to the
case of a =0.

We show in Fig. 4 the integrated distribution function
of the 8 norm calculated for all the wave functions of the
four PPL with the site numbers 1V =76, 199,521, 1364.
The PPL with X =3571 is not calculated owing to limit-
ed computer time. The integrated distribution function is
defined by

(5.3)

1.0

0.5-

0.0 1

—3 —2

FIG. 4. Integrated distribution of 8 norms of the eigenfunc-
tions, for four PPL with N =76, 199,521, 1364. Curves with
smaller steps are for the larger PPL.

The I(y) curve shows the integrated distribution of the
exponents of power-law decays for a specified system if
the finite-size correction is negligible. Since we set p =4,
the value y is related to the localization exponent o. as
a = 1+y/0 when —3 & y &0 [see Eq. (5.2a)j. An advan-
tage of the 2p norm is that the analysis can be applied for
any power-law wave functions by setting p at a suitable
value according to the power-law exponent a. The global
profile of the I(y) curve has not converged sufficiently,
but since the discrepancy between the largest two systems
is quite small, particularly at low y, we can expect the re-
sult of the system with X = 1364 to be close to that in the
thermodynamic limit, and that the I(y) curve will show

a smooth increase with y mostly in the region—
—,
' &y & —

—,'. This behavior means that most of the
eigenfunctions in the PL are power-law localized in the
space with the exponents —,'& o.' & —,'. Since the power-law
decaying functions with the exponent a & 1 cannot be
normalized as mentioned in Sec. III, they are classified as
critical wave functions. Since critical wave functions do
not correspond to the point spectrum part of the DOS,
the result of the 8 norm supports our conclusion on the
singularity unsmooth energy spectrum.

Thus we have succeeded in confirming the critical
character of the wave functions and the localization ex-
ponents are determined as —,'&o. & —', through an analysis
of the 8 norm. However, the absolute values are not so
reliable, because the lattices used here are sometimes not
large enough to reproduce asymptotic behaviors of the 8
norms. This effect brings finite-size correction to the ex-
ponents, and, in particular, we must take into account the
fact that wave functions have nodes. But since the ex-
ponents are shifted to larger values by the effect of the
nodes, we can expect the real values are smaller than
those obtained here, and consequently the present con-
clusion on the critical wave functions is unchanged. We
will discuss the absolute values of the exponents again in
Paper II, based on length dependence of the conductance.

Note that we should take care in the interpretation of
the power-law decays. The 2p norm defined above is
determined only by the distribution of amplitudes of the
wave functions, and the information on spatial form of
the wave functions is not included in the formula of the
2p norm. Therefore, what we call power-law wave func-
tions here are not necessarily the functions whose en-
velope functions decay in a power law. We cannot rule
out anomalous cases such as wave functions whose ampli-
tudes obey the same distribution function as the power-
law function but are distributed randomly in the coordi-
nate space, nor can we distinguish single power-law wave
functions and self-similar wave functions with multifrac-
tal structures.

VI. CONCLUSIONS

In this paper we have studied the electronic structure
of the Penrose lattice by the numerical diagonalization of
a nearest-neighbor tight-binding Hamiltonian defined on
a systematic sequence of approximated periodic lattices
with up to 3571 sites. We investigated, in particular,
smoothness of the energy spectrum and the localization
problem of the wave functions by analyzing statistics of
the level spacings and the 2p norms, respectively. We
thereby found that the energy spectrum contains a singu-
lar part in spite of its finite total bandwidth, i.e., energy
separations have anomalous system size dependence, and
that most of the wave functions are critical and have a
similar behavior to the power-law decaying functions
with the exponents —', ——', . These numerical results sup-
port our heuristic arguments that the electronic struc-
tures of quasicrystals generally also exhibit singular be-
haviors in higher than one dimension due to the competi-
tion between the localization and delocalization mecha-
nisms originating from two characteristic structural
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properties. Further analysis and discussion will be made
in Paper II by studying their transport properties.
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APPENDIX: PERIODIC APPROXIMATIONS
OF THE PENROSE LATTICE

In this appendix, we explain our method of generating
periodic approximations of the PL in the framework of
the multigrid method originally proposed by de Bruijn.
In some other works, similar approximations based on
the projection method have been proposed, particularly
for describing modulated 3D structure, ' but as de
Bruijn and Gahler and Rhyner showed, these two
methods are equivalent. The emphasis is put on the
unified prescription of the approximations modified in
one direction and those in two directions.

then, this vector gives the coordinate of the correspond-
ing rhombus vertex. Here, It J are called the tiling vec-

tors and usually chosen to be t =e . Finally, determine
the connectivity of the vertices as follows. Consider an
intersection of the lines in the grid space, then notice that
it is shared by just four polygons and they are mapped
into four vertices in the physical space as stated above.
Connect each vertex pair whose corresponding polygons
share an edge, and a rhombus is obtained. Generating
rhombuses for all intersections in the pentagrid, we ob-
tain a PL tiled by thick and thin rhombuses without any
overlap or vacancy. We note an important property of
the PL which we will use in a numerical calculation
scheme in Paper II. Each grid of the pentagrid is
mapped into quasiperiodically spaced rhombus arrays in
the physical space. In each array, rhombuses line up
sharing two opposite sides with their two neighbors. Be-
cause each rhombus has two pairs of parallel sides, it lies
on the corresponding two grids.

1. Multigrid method

First, we review briefly the multigrid method of gen-
erating the PL and define the technical terms which we
will use later. In terms of the multigrid method, a PL
tiled by two kinds of rhombuses (fat and thin) is topologi-
cally described as the dual lattice of a pentagrid. A pen-
tagrid G is an ensemble of five sets of equally spaced
paralle1 lines, and each set of parallel lines G- is called a
g/'ld:

5

G=U G, ,
J =1

G =IxCR ~x.e =k, +pi, k EZJ,

e, =(cos(j —1)P, sin( j—1)P), /=2~/5,

(Ala)

(Alb)

(A 1 c)

where R and Z are the sets of all real numbers and all in-

tegers. The five real parameters I y ], called grid parame
ters, specify the position of the origin of the pentagrid,
and must be chosen to satisfy the relation g y =0 (mod

1) and so that any set of the three lines should not cross
at a single point. The five unit vectors Ie~. J, pointing to
the vertices of a regular pentagon, determine the direc-
tion and the spacing of each grid G, and are called grid
vectors. The pentagrid divides the grid space into small

pieces in the shape of polygons. The PL are generated by
mapping these polygons into rhombus vertices in the
physical space, and these two lattices are consequently
dual to each other. The method of mapping is as follows.
For each piece in the grid space, let us define a set of five

integer indices:

(A2)

2. Periodic approximations

Periodic approximations of the Fibonacci chain have
been used for systematic calculations of electronic proper-
ties. However, we cannot impose the periodic boundary
conditions on arbitrarily chosen parts of 2D or 3D quasi-
periodic lattices. But since the PL consist of grids as well
as crystals, we can generate their periodic approxima-
tions with certain modifications.

Our goal is periodic pentagrids which approximate the
original one. Once they are given, periodic approxima-
tions of the PL can be straightforwardly constructed as
their dual lattices. The nonperiodicity of the PL comes
from the property that any two grids i.n the pentagrid
form a rhombus lattice, but the other three grids are in-
commensurate to this lattice. Considering this point, our
approximation method is (1) fix two grids as in the origi-
nal pentagrid; (2) change the directions and the spacings
of the other three grids so that they will be commensu-
rate to the lattice made of the fixed two grids.

We can satisfy this requirement in the following way.
Figure 5 shows the central part of the original pentagrid
for grid parameters y =0 for all j. (This choice is used

only for judging whether they are commensurate or not.
We will use appropriate parameters in actual lattice gen-
eration. ) The five solid lines show the lines x.e =0, and
dashed lines I e =1. We shall fix the grids 1 and 2 here-
after, and they form a rhombus lattice tiled by a unit cell
OACB with the edge length 1/sinit =a. Let P and Q be
the intersections of the line x e.= 1 (j =3,4, 5) with OA
and 08, respectively. In the case of the original pen-
ta grid,

where x is taken inside the piece and [x J denotes the
largest integer less than or equal to x. Next, assign the

OP3 = OP4 =OQq =OQ~ =ra,
OP, =OQ3=a .

(A4a)

(A4b)
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wider range of periodic approximations of the original
PL.

3. Periodic Penrose lattices and semiperiodic
Penrose lattices

I
I

'4

FIG. 5. Central part of the pentagrid when all y, =0.

Here, the irrational number r in Eq. (A4a) is the reason
that the grids j =3,4, 5 are incommensurate with respect
to the rhombus lattice made of grids 1 and 2. Therefore a
periodic approximation of the pentagrid can be obtained
by substituting rational numbers for the ~'s, and this ap-
proximation is explicitly expressed by the grid vectors,

e, =e&,

e =—
4

1
e2=e2, e3= —e, + e2,

1 1 1
e] — e2, e5= e] —e2,

s4 r4 $5

(A5)

where the r's and s's are rational approximants of ~ in the
coefficients of OP's and OQ's, respectively. The grid
spacing for j =3,4, 5 is no longer 1 after the approxima-
tion.

Now that we have periodic pentagrids, we can generate
periodic approximations of the PL by following the map-
ping procedure explained earlier. The grid parameters

I y I must be chosen under the same constraints as be-
fore. Note that the tiling vectors are not modified but set
to be t =e as in the original PL case. This choice of
It I ensures that the generated lattices are tiled by the
same thick and thin rhombuses as the original ones.
Thus the independence of the tiling vectors from the grid
vectors plays an important role in generating various
modulated structures.

Some comments on the approximation are appropriate.
The method (A5) does not cover all the degrees of free-
dom of modulating the pentagrid into a commensurate
one; further generalizations remain. First, we can alter-
natively fix the grids 1 and 3 instead of 1 and 2. The
difference between these two choices affects the shape of
the unit cell of the modulated pentagrid and its dual lat-
tice. The unit cell is a parallelogram with angle 2~/5
when grids 1 and 2 are fixed, while it is a parallelogram
with an angle ~/5 for grids 1 and 3. Second, there
remains the degree of freedom of modulating the two
fixed grids. We may change the angle and the spacings of
the two grids. With these modulations, we can generate a

Following the procedures explained above, we generate
two special sequences of systematic approximations of
the PL (Ref. 29) for use in numerical computations —the
periodic Penrose lattices (PPL) and the semiperiodic Pen-
rose lattices (SPPL). The PPL will be used mainly for the
study of electronic structure, while the SPPL for the
study of length dependence of the conductance.

The periodic approximations of the lattice are deter-
mined by the approximants of the golden ratio ~. The
optimal approximants are, as is well known, the ratios of
successive Fibonacci numbers ~-~„—:F, +, /F„. Here,
I F„ I is defined by the recursion relation
F, + &

=F„+F,
&

with the initial values F, = 1, F2 =2,
and in the explicit form F„=[r"+'—( —r) '"+"]/&5.
As n increases, the approximant approaches the golden
ratio rapidly while oscillating around it:
r —r„—( —1)"&5r ' . Thus the golden ratio can be
systematically approximated by the sequence

T 3 g g &p
'''I'

First, we generate a sequence of the periodic approxi-
mations by substituting r„ for all r's and s's in Eq. (A5)
fixing grids 1 and 2. This choice provides periodic lat-
tices with unit cells in the shape of a thick Penrose
rhombus. We shall call them the periodic Penrose lattices
hereafter. Some examples of the unit cells of the PPL are
shown in Fig. 6. The PPL have the following properties:
(1) the periodic boundary condition can be imposed on
the unit cell in both of the two directions; (2) the unit cell
has a fatter shape than selected in fixing grids 1 and 3; (3)
there are no extra modulations for the pentagrid. Proper-
ty (2) means that the number of sites on the boundary is
smaller and the boundary effect is accordingly less critical
in numerical computations. Property (3) means modula-
tion of the lattice is the least possible. A remarkable fact
is that the number of defects, i.e., vertex edges where the
Penrose matching rule is violated, can be reduced to two
per unit cell, irrespective of unit-cell size. This means
that the PPL are the optimal approximations.

For the study of length dependence of conductance,
another type of approximation is more appropriate: i.e.,
the lattices quasiperiodic in the direction in which we ex-
tend the lattice. To this end, we must modulate the pen-
tagrid so that it is periodic only in one direction while re-
taining quasiperiodicity in the other direction. This re-
quirement is fulfilled by the modulation (A5) in which
only r3 and r4 are substituted by ~, , and s4 and s& remain

The corresponding dual lattices are consequently
periodic in one direction but quasiperiodic in the other
direction, and we shall call them the semiperiodic Penrose
lattices hereafter. In Fig. 7, we show a part of a SPPL for

Defects in SPPI. are not analyzed in detail yet,
but the defect density decreases as the approximation im-
proves.

Analyzing the structure of the PPL more quantitative-
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O

(b)

quasiperiodic

FIG. 7. A part of the semiperiodic Penrose lattice generated
by ~„=—,'. M=16.

Now it is a straightforward calculation to obtain the
numbers of fat and thin rhombuses and the total number:

n+I n n+2 2n+4 2n+2

N 4F F +I+F jF +2 F2 +3+F2

N =N "+N'"»=F +F2n +5 2n +3

(A8a)

(A8b)

(A8c)

FIG. 6. Unit cells of the periodic Penrose lattices. (a) ~„=3,
M =16,&=199;(b) ~„=—', , M=26, %=521.

where the addition formula F + =F F +F ~F &
is

used for the derivation.
Next, let us define the width of the unit cell. Consider

a unit cell of a PPL, then we notice that the grid which
we fixed in the generation procedure consists of quasi-
periodically spaced rhombus arrays (called segments),
and the number of rhombuses in each segment is the
same. Define the width of the unit cell by the number of
rhombuses; this is given by

1M = (Niq+Ni3+Ni4+Ni5)=2F„+2 . (A9)F.+i

1 1
cosP —1, sintt

e =—
4

1 (cosP+ l, sing),

1 —cosP, —sing

ly: for a PPL, the grid vectors are explicitly given by

e, =(1,0), e2=(cosg, sing),

(A6)

For example, for the PPL generated by approximants
7

y7 2 3 5 8 ]3
the rhombus numbers are N =76, 199

521,1364,3571, and the widths are M = 10, 16,26,
42,68, respectively.

Analysis of the SPPL can be done similarly, but note
that only r3 and r4 are approximated into ~„ in this case,
which means that the modified pentagrid has only one
translation vector. We can easily count the number of in-
tersections of the translation vector and the other grids
j =2, . . . , 5, and the result is

(A 10)

N, =F„+,a~e;Xe, ~
. (A7)

where, again, an approximant of the golden ratio is set to
r„=F„+&/F„and $=2ir/5. Let us count the number of
rhombuses in the unit cell. This is given by the number
of intersections of the grids in the unit cell of the modu-
lated pentagrid, and the number of intersections N," for
each grid pair (i,j) is determined by the ratio of the area
of the pentagrid unit cell to the area of the smallest paral-
lelogram made by the specified grid pair:

n

The SPPL can be regarded as a periodic stack of strips of
infinite length. As in the PPL case, define the strip width
by the number of rhombuses that are located on the seg-
ment corresponding to the translation vector, then

M =M2+M3+M4+M5

=2(F„+F„+,) =2F„+2, (A 1 1)

and this result coincides with the value for the PPL gen-
erated by the same ~, .
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