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Using the augmented-plane-wave band-structure method, the reliability of approximation for-
mulas for the momentum density of positron annihilation pairs (MDAP) is investigated for some
alkali metals and for Cu and Pd. Such formulas are often based on neglecting the anisotropy
of the positron wave function. A comparison of two of these approximations (proposed by
Loucks and Hubbard-Mijna, rends) with an improved one that is presented here indicates that
the complete or partial neglect of the anisotropy of v/j+ has almost no influence on the MDAP for
momenta within the central Brillouin zone and only weak inAuence within the nearest umklapp
zones. For higher momenta, however, large errors may appear, especially if one investigates
annihilation processes with highly delocalized valence electrons.

I. INTRODUCTION

During recent years, many theoretical investigations
have dealt with the important role of the positron wave
function @+ for an accurate and reliable determination
of the momentum density of positron annihilation pairs
(MDAP) in crystalline solids. Practically all well-proved
solid-state approaches have been applied to the prob-
lem of getting positron wave functions with the follow-
ing properties. They should (I) lead to MDAP formulas
which are not too complicated for practical purposes and
(2) describe the physics of the positron (especially the
anisotropy of g+) within the whole volume of the crystal
as exactly as possible .

In fact, it is rather diFicult to calculate positron
wave functions which simultaneously fulfill these two
conditions. For example, both the signer-Seitz
approximation and the plane-wave (PW) expansion2
of g+ lead to relatively simple expressions for the MDAP,
but the former approximation does not at all take into
account the anisotropy of the wave function, while the
latter shows a very poor convergence for small values of
p.

A successful compromise between the two condi-
tions mentioned above is offered by the pseudopoten-
tial method where the positron wave function is de-
scribed by a product of a rapidly varying core function
and a smooth pseudowave function (which can be effec-
tively expanded into plane waves), and the augmented-
plane-waves r4 (APW) method. The application of
the linearized form of the Korringa-Ikohn-Rostocker-
Ziman (KKRZ) method —developed by Hubbardr and
by Hubbard and Mijnarends —to MDAP calculations
also leads to APW-type expressions. ~ How and to
what extent the APW-type MDAP formulas take into
account the anisotropy of @+ will be discussed in detail
in Sec. III. The problem is that realistic representations

of the positron wave function frequently lead to very com-
plicated MDAP formulas. Therefore, in many APVf-type
approaches, g+ is assumed to be spherically symmetri-
cal, at least within the muon-tin sphere. A similar and
very successful concept for MDAP calculations uses the
linear-muflin-tin orbitals (LMTO) approach:rg Inside a
sphere with Wigner-Seitz radius (overlapping spheres),
g+ is approximated by its spherical average, and a plane-
wave expansion for the product of the electron and the
positron wave function is used in the overlap correction
terms.

Another way of calculating the momentum density in
Compton scattering and positron annihilation is based
on the Koringa-I&ohn-Rostocker (KKR) method and
a multiple-scattering formalism. The corresponding
formula which takes into account the full anisotropy of
g+ is relatively complicated but nevertheless well suited
for computational evaluations. 2 Finally, linear combi-
nations of atomiclike orbitals (LCAO) methods have also
been successfully applied to this problem, ~ leading to
MDAP formulas which also include anisotropic positron
wave functions, due to the fact that @+ is represented by
a sum of orbital functions centered at different atomic
sites. However, the numerical expense of these methods
is rather high. For more details, see, e.g. , the review
articles Refs. 18 and 24 and the references therein.

Recently, we published a paper2 where we investigated
the sensitivity of the MDAP within the independent-
particle model (IPM) to the electron and positron crys-
tal potentials using the APW method. We were espe-
cially interested in the high-momentum components of
the MDAP, and we observed that for a proper descrip-
tion of some of these components, the spatial anisotropy
of the positron wave function must not be neglected.

Motivated by this experience, we started the follow-
ing investigation on the reliability of APW-based MDAP
formulas which are often used in the literature. De-
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spite the fact that the work presented here uses a specific
band-structure approach, some of its results (concerning
the inHuence of the anisotropy of g~ on the calculated
higher-momentum umklapp components of the MDAP)
may also be of some interest for users of other methods
to calculate electron and positron wave functions.

II. BASIC RELATIONS

In the framework of the IPM, the MDAP is given by

pgpM(p) = 2 ) f(n, k) iA~(k, p) i

n)k

with

V
A„(k, p) = —b'(p —k—K)0 dr exp( —ip r) @„k(r) g+ (r),

«r I~I »MT (3)

&max

g„z(r) = ) a~(k) 4' ) i jr(~k+ C~rMT)
Gl e,m

R, (r, E„)
X

Rr(~MT, E )

x Y* (k ~ G)Yj (r)

for ~r( & rMT . (4)

Correspondingly, the formulas for the positron wave

where hp represents the photon-pair momentum, f(n. , k)
denotes the Fermi-Dirac distribution function, and the
factor 2 accounts for the spin degeneracy. g„k and g+
are the wave functions of the annihilated electron and
of the thermalized positron, respectively, both normal-
ized to the crystal volume V. 0 is the volume of the
primitive cell, and K denotes a reciprocal-lattice vector
such that p —K lies in the first Brillouin zone (BZ). In
the following, all electron and positron wave functions
are given as APW expansions. For the crystal potentials
seen by the electrons, self-consistent mu%n-tin potentials
including the local Hedin-Lundqvist correlation term
were used. In the case of the alkali metals and copper,
these potentials were obtained from our own APW cal-
culations, and for palladium, the potential published by
Moruzzi, Janak, and Williams was used. The crys-
tal potentials for the positrons were simply the Coulomb
parts of the corresponding electron potentials (without
the exchange-correlation terms) with opposite sign. No
electron-positron correlation was included.

For crystal lattices without a basis (and only such ma-
terials are investigated in this paper), the electron wave
functions are given by

]-
@„k(r)= ) a~(k) exp [i(k+ C) rj

V

function in its quantum-mechanical ground state read

1
g+(r) = ) bo, exp(iG r) for ~r~ ) rMT,

V
(5)

1 max

Q+(r) = ) ba 4x ) i je(IGlrMT)
Cv e,m

R+ r(r, E+)
X

R+ r(rMT, E+)

x Yr* (G)Yr (r)

for )r~ & rMT . (6)

In order to distinguish this positron wave function from
the approximations which are discussed in the following,
throughout this paper, Eqs. (5) and (6) are called the
"true" APW positron wave function.

In Eqs. (3) —(6), the a~ and the b~ are the APW co-
eKcients of the electron and the positron wave function,
respectively, belonging to the reciprocal-lattice vector G,
and rMT is the muf5n-tin radius. The functions Rg and
R+ q are the solutions of the radial Schrodinger equa-
tion in the electron and positron muKn-tin potential, re-
spectively, jr(z) means a spherical Bessel function, and
Yr (x) denotes a spherical harmonics. E„(E+) means
the energy eigenvalue of the electron(positron) state.

The quality of the APTS wave functions, especially
their quantum mechanically correct, behavior on the sur-
face of the mufBn-tin sphere, is mainly determined by
two parameters, (1) by the number N~ of reciprocal-
lattice vectors G and (2) by E „, the number of partial
waves included in the calculation. For the present work,
N~ ——87 (89) for bcc (fcc) metals and E „= 11 were
used both for the electron and the "true" positron wave
functions. This choice of N~ and Z „ turned out to be
suFicient for the following investigations. We shall come
back to this point in detail at the beginning of Sec. IV.

III. APPROXIMATIONS OF THE APW
POSITRON WAVE FUNCTION

A. Approximations of Loueks
and Hubbard-Mijnarends

Apart from some reservations due to the relatively
crude treatment of the crystal potentials as muFin-tin
potentials, the formulas (3)—(6) can be considered as well-

proved representations of the Bloch wave functions of
electrons and positrons in crystalline solids. Therefore,
in calculating the MDAP, it would be highly desirable to
use these APW functions without any further approxi-
mation. However, an uncompromising use of Eqs. (3)—
(6) in Eq. (2), as it has been performed by Gupta and
Siegel, leads to an expression which is too compli-
cated for many practical purposes. For this reason, many
authors whose positron work is based on the APW for-
malism (or other related forrnalisms) use simplifications
of the positron wave function, mainly by a partial or total
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neglect of the anisotropy of g+ (see, for example, Refs.
8, 11, 14, 18, and 28).

One of these approximations of gP+ goes back to
Loucks, who assumed this function to be constant in
the interstitial region and to be the ground-state solu-
tion of the radial Schrodinger equation including appro-
priate boundary conditions inside the muon-tin sphere.
A modified procedure follows from the work of Hubbard
and Mijnarends: For ~r~ & rMT, a plane-wave ex-
pansion of @+ is replaced by its spherical average, while
in the interstitial region, the full PW expansion is used.
Both proposals can easily be applied to an APW expan-
sion of g~ (see, e.g. , Ref. 14). For ~r~ & iMT, g+(r)
is replaced by its spherical average g,&h(r). Mathemat, —

ically, that means that fm~„ in the positron formula Eq.
(6) is taken to be zero, and only the s part of the expan-
sion is left. One gets

@. h( ) = ).t jo(~G~~T)
1 - . R+0(r, E+)

+0 rMT) +

(0), ,
(&)

@»h(z.) for /rf & ~T .
(8)

If the full APW expansion [Eq. (5)] is used in the inter-
stitial region, one gets the approximation

) bo exp(iC r) for ~r~ ) @MT,
1

y,'(r) = & V

, vP, ph(r) for [rf & rMT .

(9)

Here and henceforth, the superscripts (0) and (1) mean
approximations of the positron wave function according
to I'oucks and Hubbard-Mijnarends, respectively. The
corresponding expressions of A„(k, p) can be obtained
by inserting Eqs. (3), (4), (8), and (9) into Eq. (2). One
gets

Outside the muon-tin sphere, according the proposal of
Loucks, s g+ is approximated by the first (constant) term
of Eq. (5), and the positron wave function reads

)(q p) q(p k K))-g (k) q q( K) "MT i)(l — l"~~))
0 /G —K/

+ ) (2E+ 1)je(/k+ G/)Pe(cos0a) Te(p, E )
4~~V '-*

and

A{ )~t p) li~& k K))-a~~k) )-b~
~

b~D+A K)
"'

'(~l + ' —
I "T))

0 [G+ G' —K]

4 ~V'-*
+= ) .(2&+ 1)je(lk+ GI)Pe(costa) Te(p, E~)

E=O

where 0~ is the angle between the vectors k+ G and p,
and

Te(»E ) =
&MT

dr i. je(pr)
' " g»h(i. ) .Re(r, E„)

—0 ~MT) n

Inserting A„or A„mto Eq. (1), one gets pipM or pipM,
(o) (i)- (0) . (~)

respectively, two of the most frequently used approxima-
tions of the MDAP within the IPM.

The quality of g+ and g+ is shown in the Figs. 1
and 2 where the true positron wave functions [Eqs. (5)
and (6)] for rubidium (as an example of an alkali metal)
and palladium (as an example of a transition metal with
d bands) are compared with the corresponding approx-
imations of Loucks [(Eq. 8)] and Hubbard-Mijnarends
[(Eq. 9)] along the principal crystallographic directions
[100], [110],and [111].

For small values of ~r~, both @+ and @+ are very(0) (i)
reliable. This is by no means a surprise because of

the fact that, in the vicinity of a nucleus, the positron
ground state is nearly spherically symmetrical and there-
fore very similar to the spherically averaged function
@»h() ). For higher values of ~r~, however, the anisotropy
of the positron wave function and, consequently, the de-

viations of g+ and g+ from g+ become more and more(o) (i)

significant. Outside the muFin-tin sphere, the approxi-
mation g+ also deviates considerably from g+, whereas

g+() exactly coincides with the true positron wave func-
tion.

It is the aim of this paper to investigate for some met-
als (alkali metals, transition metals, noble metals), if
and to what extent these deviations inhuence the cal-
culated MDAP results. For this purpose, it is necessary
to develop a more accurate approximation of the positron
wave function (if one does not want to use the relatively
complicated MDAP formula as it can be found in Ref.
13).
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B. Improved approximation

1 ~ I 1

V ) .io IGApw) = ).co exp(tG 'r)
V

(12)

We propose the following procedure.
(i) Firstly, starting from the true positron APW ex-

pansion, a set of plane-wave coeKcients c~

(ii) Secondly, we define the following approximation of
the positron APVf wave function:

1 ) co exp(iG. r) for lrl ) ro,
g+ (r;rp) = V

, @, h(r~) for lrl ( r p,

is calculated [the abbreviation lG&&~) means the G'th
term of the sums in Eqs. (5) and (6)]. To our experience,
the PW expansion (12) requires only a relatively small
number of terms to produce a very good description of
the positron wave function not only in the interstitial re-
gion outside the muffin-tin sphere (this is self-evident due
to the basic structure of the APW ansatz), but also in
a certain region of r below rM~ where the approxima-
tions g+() and g+ fail. To be specific, for this work, we
used 135 plane waves for bcc and 137 plane waves for fcc
metals.

0.05

+(2l(ro)
2 (14)

where the region of integration is the Wigner-Seitz cell,
and the subscript (2) of y2 refers to our new approxima-
tion g+ . The results of this optimization of ro for the
metals investigated are summarized in Table I. As can
be seen, all ro values lie roughly in the region between
0.4rM~ and 0.6rM~.

In order to get quantitative information about the
quality of g+ in comparison with g+ and @+,we also(2) . (o) (1)

calculated the y2 values for these two approximations (of
course, without any optimization process):

where g,zh(r) is given by Eq. (7). The "coupling radius"
ro is smaller than rMT, which means that the PW part of
tP+ extends somewhat into the muKn-tin sphere. The
best values for ro have been determined by minimizing
the expression

0.03 2
X(il

I 0.01 0.13

0.01 0.09

Q.oi 0.05

0.2 0.3 0.4 0.5

r (urfits of a) W 0.01

FIG. 1. APW positron wave functions of Rb along the
directions [100], [110], and [111]as a function of r (in units
of the lattice constant a). The units of the ordinate are arbi-
trary. The solid lines mean the "true" positron wave function
according to Eqs. (5) and (6), and the dashed lines repre-
sent the simple approximation of the wave function Eq. (8),
proposed by Loucks (Ref. 8). The approximation Eq. (9),
proposed by Hubbard-Mijnarends (Ref. 18) is represented by
the dashed curves up to the mu%n-tin radius and by the solid
lines in the interstitial region. Within the accuracy of the 6g-
ure, our improved approximation according to Eq. (13) can-
not be distinguished from the "true" positron wave function.
The coupling radius Tp and the mufEn-tin radius rMT are also
indicated in the figure.

OQ1

0.01

0.1 0.2 0.3 0.4 0.5

r (units of a)

FIG. 2. APW positron wave functions of Pd along the
directions [100], [110],and [111]as a function of r (in units of
the lattice constant a). The units of the ordinate are arbitrary.
The meaning of the curves is equal to that in Fig.1.
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TABLE I. Coupling radii ro (in units of the muffin-tiu radius rMT) for the improved approx-
imation (13) of the positron wave functions in alkali metals and in copper and palladium. The
lattice constants a and the muon-tin radii rMT are given in atomic units. The meaning of p(p),
y~i~, and y&~~(ro) is explained by Eqs. (14) and (15) and the text following these equations.

metal
Ii
Na
K
Rb
Cs

a
6.597
8.003
9.882

10.554
11.423

TMT

2.857
3.465
4.279
4.570
4.946

~0 TMT

0.635
0.635
0.494
0.410
0.451

10 y(q)(ro)
0.027 647
0.040 738
0.008 157 5
0.005 797 0
0.020 768

2 2
&(o i/&(& i

46.7
51.8

451.8
788.7
283.1

2 2x(,)/x(, i
18.5
20.6

179.8
314.1
112.9

Cu
Pd

6.831
7.42

2.415
2.62

0.410
0.451

0.003 981 4
0.031 344

2926.6
642.4

532.9
116.8

The ratio y&o)/g& ) and y&i&/y&2), which are also in-

cluded in Table I, clearly indicate the superiority of gI+)
over g+ and g+ . The high quality of our approxima-(o) (1)

tion (13) is also demonstrated in Figs. 1 and 2. Both for
rubidium and for palladium, within the accuracy of the
figures, no deviation between the true function g+ and

our approximation g+~) is visible (this is also true for the
I

other alkali metals and for copper). Therefore we think

that it is well justified to consider our proposal @I+) as a
very good approximation of the true APW positron wave
function.

Inserting @+ together with the APW electron wave
function [Eqs. (3) and (4)] into the expression for
A„(k, p), Eq. (2), one gets

&&'&(k, p) = b(p —k —K) ) (k) ) b(G + G' —K)—
~G + G' —K(

4x~V+ ) (2E+ 1)je(~k+ C~rMT)Pe(cosoG) Ue(p, E„)

+ ) cG ) (2/+ I)je([k+ GfrMT)Pe(cosgG G') We(fp —G'f, E~)
gl

(16)

where

Ue(p E-) =

and

T p Re(r; E„)dr r je(pr), ', g,ph(r)
MT I n)

&MT

We(ip —C'i, E„)= dr r je()p —G'~r)

Re(r; E„)
%(rMT E )

OG has been already defined in context with Eq. (11),
and 0~ ~ means the angle between the vectors k + C
and p —G'. The expression (16) has the same structure
as Eq. (11), except for an additional term due to the
new definition of the positron wave function between the
coupling radius ro and the muKn-tin radius according
to Eq. (13). Of course, this term causes a considerable
increase of the computation time [roughly a factor of 2—3
in comparison with a numerical evaluation of Eq. (11)],
but we think that this is acceptable if one takes into

account the significantly improved approximation of the
positron wave function used in Eq. (16). Consequently,
the insertion of A„ into Eq. (1) leads to the very reliable

approximation pypM of the true MDAP.
The main role of Eq. (16) for the present investigation

is that it may be used for a critical examination of the
MDAP approximations p&pM and pgpM which neglect or(o) (I)

only partly include the anisotropy of the positron wave

function. Namely, if one accepts pypM as a standard, all
differences

(& ~) (&) (2)
+pipM = pipM pipM (' = 0 1)

may be considered as errors of the approximations pro-
posed by Loucks (i = 0) or Hubbard-Mijnarends (i = 1).
Therefore we calculated and compared pipM, pipM, and

pipM for some momenta inside the central BZ and inside
some umklapp zones. The results of this test are sum-
marized in the Tables II and III and in Figs. 3 and 4.
They are discussed in the following section.
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TABLE II. A comparison of the approximations pIplM [i = 0, Loucks (Ref. 8); i = 1, Hubbard-Mijnarends (Ref. 18); i = 2,
this work] of the momentum density of annihilation pairs (MDAP), based on Eqs. (10), (11), and (16), respectively, for the
alkali metals Li, Na, K, Rb, and Cs. The MDAP has been calculated for the I' point of the Brillouin zones belonging to the
reciprocal-lattice vectors Cr ——(0, 0, 0), (1,1,0), and (2,0,0) (C in units of 21r/a, a being the lattice consta. nt). ApIp'M means the

differences between pIplM and pIplM, 'the values in parentheses are the corresponding relative errors (in Fo) with respect to pIplM.

metal

Li

Na

Rb

Cs

(o,o, o)
(1,1,0)
(2,o,o)

(a,o,o)
(1,1,o)
(2,o, o)

(o,o, o)
(1,1,0)
(2,o,o)

(o,o,o)
(1,1,0)
(2,o, o)

(o,o,o)
(1,1,o)
(2,o,o)

0.949 800
0.006 091 29
0.000 695 85

0.963 386
0.005 465 46
0.000 643 76

0.947 217
0.009 314 73
O.QQQ 647 74

0.940 561
0.010 886 6
0.000 596 59

0.924 990
0.014 272 7
0.000 412 10

(o,2)
pIP M

+0.000 069 (+0.007)
—0.000088 62 (—1.45)
+0.000 196 86 (+28.3)

+O.QOO 249 (+0.026)
-O.OOO1O129 (—1.85)
+0.000 243 83 (+37.9)

+0.000 334 (+0.035)
—0.000 179 33 (—1.93)
+O.QOO 340 07 (+52.5)

+O.QQ0 406 (+0.043)
—0.000 228 4 (—2.10)

+0.000 371 17 (+62.2)

+0.000 307 (+0.033)
—0.000 310 0 (—2.17)

+0.0 00 370 06 (+89.8)

(&,2)
+PZP'M

+0.000 027 (+0.003)
—0.000 036 50 (—0.60)
+0.000 099 12 (+14.2)

+o.ooo o91 (+o.oo9)
—0.000 041 94 (—0.77)
+0.000 123 13 (+19.1)

+0.000 122 (+0.013)
—0.000 074 81 (—0.80)
+a.0oo 169 45 (+26.2)

+0.000 157 (+0.017)
—0.000 101 9 (—0.94)

+0.000 182 82 (+30.6)

+0.000 093 (+0.010)
—0.000 139 8 (—0.98)

+0.000 176 49 (+42.8)

0.012
Cu

0.010

0.008

N
~~

0.006

lg

E
~ 0.004

002
c

0.01

I

I

L

l

0.002

0.
0.
i11O i3OO

2.
I

I310

p (units of 2m/a)

FIG. 3. The momentum densities of annihilation pairs
prpM in K for the (110) and (200) umklapp regions, calcu-
lated within the independent-particle model. The horizontal
coordinate axis has the [110]direction with I'11p as zero. The
marked parts of this axis indicate the regions of occupied elec-
tron states. The solid line represents the improved approxi-
mation pIpM (this work), the dashed and the dash-dotted lines

show the approxj. matrons pyPM and pypM according to Loucks(o) (~)

(Ref. 8) and Hubbard-Mijnarends (Ref. 18), respectively.

O.
I

1. 2.

]2oo

p (units of ~/a)
FIG. 4. The momentum densities of annihilation pairs

p1pM in Cu (electron states with predominant s + p char-
acter) for the (111) and (200) umklapp regions, calculated
within the independent-particle model. The horizontal coor-
dinate axis has the [111]direction with I'qqq as zero. The solid

line represents the improved approximation pIpM (this work),
the dashed line shows the approximation p&&M according to
Loucks (Ref. 8).
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TABLE III. A comparison of the approximations p&pM [i = 0, Loucks (Ref. 8); i = 1, Hubbard-Mijnarends (Ref. 18); i = 2,
this work] of the momentum density of annihilation pairs (MDAP), based on Eqs. (10), (11), and (16), respectively, for Cu
and Pd. The MDAP has been calculated for the momenta defined by Eq. (18). For both metals, the calculation has been
performed for two distinct electron states, one of them with a predominant 8 + p and the other one with a predominant d

character (notice the charge analysis of the corresponding states). Dp&p'M means the differences between pipM and p&PM, the
values in parentheses are the corresponding relative errors (in %) with respect to p&pM.

(o,o,o)
(1,1,1)
(2,o,o)

(o,o, o)
(1,1,1)
(2,o,o)

(o,o,o)
(1,1,1)
(2,o,o)

(o,o,o)
(1 1 1)
(2,o, o)

(2) (o,a)
~IP M ~IP M

Cu (predominant s + p character): s = 87.9%,p = 11.0%, d = 1.1'%%uo

0.934 482 +0.001 269 (+0.136)
0.008 443 11 —0.001 005 62 (—11.9)
0.004 860 18 +0.001 477 29 (+30.4)

Cu (predominant d character): s = 0.2%, p = 1.8%, d = 96.8%
0.005 039 76 —0.000 075 10 (—1.49)
0.127 436 +0.001 860 (+1.46)
0.002 046 33 —0.000 082 23 (—4.02)

Pd (predominant s + p character): s = 84.3%%uo, p = 9.5%, d = 6.2%
0.867 385 +0.001 526 (+0.176)
0.001 809 75 —0.00066472 (—36.7)
0.006 843 71 +0.002 396 38 (+35.0)

Pd (predominant d character): s = 3.1%,p = 4.4%, d = 90.2%

0.043 048 4 —0.000 380 7 (—0.88)
0.226 721 +0.003 661 (+1.61)
0.002 893 08 —0.00034022 (—11.8)

+0.000 284 (+0.030)
—0.000 261 45 (—3.1)
+0.000 351 84 (+7.2)

—0.000 022 76 (—0.45)
+0.000 836 (+0.66)

—0.000 018 72 (—0.91)

+0.000 341 (+0.039)
—0.000 192 94 (—10.7)
+0.000 547 04 (+8.0)

—0.000 1198 (—0.28)
+0.001 845 (+0.81)
—0.000 077 15 (—2.7)

IV. RESULTS AND DISCUSSION

Before we discuss in detail the errors ApypM which

arise if one of the approximations @+~) or g+() is used in
the MDAP formulas (1) and (2), we have to make sure
that the calculated pypM's are not falsified by a nonsuK-
cient convergence of the APW wave functions. Therefore
we made extensive convergence tests, and we observed
that an increase of No, and l „used in this work (see
the end of Sec. II) may indeed slightly change some of
the numbers of the Tables II and III. However, it must be
emphasized that these uncertainties of the ApypM values
are at least one order (and in most cases two orders) of
magnitude smaller than the corresponding ApypM val-
ues themselves, which means that Xo = 87(89) and

11 used in our calculations guarantee that all
absolute and relative errors presented in Tables II and
III are significant.

In Table II, we compare the approximations pypM and

p&pM with our standard p&pM for the MDAP due to va-(r) (2)

lence electrons in alkali metals at the I' point of the cen-
tral BZ, G = (0, 0, 0), and of the nearest umklapp zones
belonging to the reciprocal-lattice vectors G = (1, 1, 0)
and (2,0,0).

It is one striking feature of the results of Table II
that the values of Ap&p'M and Ap&p'M (the absolute er-(0,2l (1 2)

rors of p&pM and p&pM, respectively) do not show a very
strong dependence on the diferent metals or on the dif-
ferent regions in the momentum space. In fact, between
the lowest and the highest values of ApIPM (i = 0, 1),

a ratio of about 1:6 is observed, in strong contrast to
the corresponding ratio of the pypM values themselves
which amounts to more than 1:2000. For instance, in the
CRse of rubidium the absolute values of APj'p M for the
(000), (100), and (200) regions approximately amount to
4.1 x 10 4, 2.3 x 10 4, and 3.7 x 10 4, respectively, while

the corresponding values of pypM are 0.94, 0.0109, and
0.000 597.

The consequence of this behavior of the absolute errors
is, of course, a strong increase of the corresponding rela-
tive errors with decreasing pgpM. Therefore, for all alkali
metals investigated, the reliability of the approximation

pIpM is very high inside the central BZ (with relative
errors less than 0.05'%%uo), and it is satisfying inside the
nearest (110) umklapp region where the relative errors
slightly increase from about 1.5% (lithium) to about 2.2%
(caesium). However, the situation completely changes if
we look at the results for the (200) umklapp region. In
this case, the small amounts of the pypM values lead to
high and partly dramat, ic relative errors of the approx-
imation pIpM (about 28% for Li, 38'%%uo for Na, 53% for
K, 62% for Rb, and 90%%uo for Cs). Concerning the ap-

proximation p&pM proposed by Hubbard-Mijnarends, its
qualitative error behavior is quite similar to the results
discussed above. Quantitatively, however, the better per-
formance of @+() in the interstitial region leads to abso-

lute and relative errors of pypM which are only about half

the corresponding errors of the approximation pypM.
As an instructive example which is typical for all al-

kali met, als investigated in this paper, the pIpM values in
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potassium along the [110] direction in momentum space
are shown in Fig. 3. Because of the fact that —as has
been discussed before —the central momentum region is
almost insensitive to an anisotropy effect of g+, only the
(110) umklapp region with its rather small and the (200)
umklapp region with its remarkably high sensitivity on
the anisotropy of the positron wave function are shown
in this figure.

Until now, we discussed the annihilation behavior of
strongly delocalized valence electrons in alkali metals.
Such electrons have a considerable probability density in
the interstitial space as well as in the region at and un-

der the surface of the muKn-tin sphere, essentially within
the sensitive region of ~r~ ) ro where the approximations

g+ and g+ show relatively large deviations from the
true positron wave function (see Figs. 1 and 2). In d-

band metals like copper and palladium, however, there
are also stronger localized electron states (with predom-
inant d character) near to the Fermi level. These d elec-
trons have their highest probability density in the inte-
rior parts of the muKn-tin sphere (where the anisotropy
of @+ is very small), and we should therefore expect a

~ ~ (ol (~)significant reduction of AprpM and +pIpM
This is exactly what one observes from Table III where

MDAP values for copper and palladium for the momenta

V. CONCLUSIONS

As a consequence of our numerical tests concerning
the quality of the frequently used approximations pypM

and pypM for the MDAP, we can conclude the following.
These approximations are excellent for momenta within
the central BZ and fairly good for momenta near to the
central zone [e.g. , for the (110) zones in bcc metals]. For
higher momenta, however [e.g. , for the (200) zones in
bcc and the (ill) and (200) zones in fcc metals], the
situation considerably deteriorates, especially for anni-
hilation processes of strongly delocalized electron states.
In these cases, the anisotropy of the positron wave func-
tion plays an important role in an accurate calculation
of the MDAP. Therefore, for theoretical investigations of
the MDAP and for comparisons between theoretical and
experimental annihilation rates where the momenta do
not go very far beyond the central region, the accuracy
of the approximations of g+ according to Loucks [Eq.

1.4

1.2

p = — '
(1, 1, I)+ G

0.3
3

(18)

(in units of 2z/a, a being the lattice constant) with
G = (0, 0, 0), (l, l, l), and (2,0,0) are summarized. For
these metals, the calculations were performed for two dis-
tinct electron states, one with a predominant s + p char-
acter and one with a predominant d character (notice the
charge analysis of these electron states in Table III). As
can be seen from this table, for electrons of marked s+ p

(O) (1) o ~ ~

character, the error behavior of p&PM and p&PM is simi-
lar to that for the alkali metals. One observes very low
relative errors for the central momentum region, and con-
siderable relative errors for the (111)and (200) umklapp

regions, especially for pgpM The better performance of
(i) (o)

p&PM with respect to p&pM is more marked than it was in
the case for the alkali metals, with a ratio of the corre-
sponding errors of about 1:4. In Fig. 4, we show the pIp)M

and the pIp)M values in copper along a line in momentum
space through the I' points of the (111) and (200) umk-

lapp regions. The p&pM values are not included in Fig.
4, because the corresponding curve is very similar to the

pypM curve and would diminish the clearness of the fig-
ure.

For electrons with predominant d character, both the
absolute and the relative errors of pipM and pypM
significantly smaller for the whole momentum region in-
vestigated. This reduction is presumably even stronger
for tightly localized core electrons, but we did not per-
form any tests in this direction.

I= 0.8—
th

UJI-
0.6

0.4

02 —~

0.0
0.8 1.0 1.2 1.4 1.6 1.8 2.0

p (units of 2m/a)

FIG. 5. The influence of the anisotropy of @~ on a 2D-
ACPAR projection profile of the momentum density of anni-
hilation pairs onto the (110) plane in K. The horizontal axis
has the [110] direction with I ppp as zero The circles .repre-
sent the experimental results of Oberli (Ref. 29). The solid
line shows the IPM profile according to the improved approx-
imation pIpM (this work). The dashed and the dash-dotted

(o) (i)lines belong to the approximations pipM and pipM according
to the formulas of Loucks (Ref. 8) and Hubbard-Mijnarends
(Ref. 18), respectively. The line indicated by LSQ is the re-
sult of a least-squares scaling of the IPM profile onto the
experimental points. All results are given as a fraction of the
conduction-electron contribution at p = p&

—0.
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(8)j and Hubbard-Mijnarends [Eq. (9)I will generally be
suKcient. As an example which supports this argumen-
tation, in Fig. 5, we show a comparison of theoretical
and experimental results based on measurements of the
two-dimensional angular correlation of positron annihila-
tion radiation (2D-ACPAR) in potassium. For that, nu-
merical integrations of the calculated pypM values along
high-symmetry directions in the momentum space were
performed (of course, only regions of occupied electron
states were taken into account for these integrations),
and these results were compared with corresponding ex-
perimental data of Oberli. 2s As can be seen in Fig. 5, the
anisotropy eA'ect of g+, indicated by the three theoretical
curves based on pIpM (i = 0, 1, 2), is indeed not negligi-
ble, but it is smaller than the statistical uncertainties of
the experimental values and considerably smaller than
the difference between the experimental and theoretical
profiles which is mainly due to many-body effects.

In order to understand the smallness of this anisotropy
effect, one has to remember that the theoretical 2D-
ACPAR curves of Fig. 5 result from integrations of pipM
curves like those in Fig. 3. Obviously, by far the great-
est part to these integrals (about 90%%uo) comes from pipM
values of the (110) umklapp region, and only a small rest
of about 10% is due to the (200) umklapp region. There-
fore, despite the high sensibility of this region on dilferent

approximations of 1t+, the total anisotropy eff'ect on the
(integrated) (110) ACPAR profile is relatively small.

However, this is certainly no more true if one consid-
ers 2D-ACPAR profiles where the (200) umklapp regions
become dominant (regrettably, for such high-momentum
regions, there is a lack of experimental data with suf-
ficient statistical quality due to the small intensities of
the corresponding annihilation rates). In these cases,
the anisotropy efFect of g+ might be even more impor-
tant than many-body effects, but our present knowledge
about the inhuence of electron-positron correlations on
high-momentum components of the annihilation rate is
not yet good enough to make a final decision about this
question.

Therefore, if one is interested in investigations of the
MDAP in the high-momentum region, as, for example,
we were in our recent paper, it is of great importance to
use an efficient and reliable approximation of the positron
wave function like the expression (13) that we propose in
this paper.
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